首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of drug treatment of human hosts upon a population of schistosome parasites depend upon a variety of factors. Previous models have shown that multiple strains of drug-resistant parasites are likely to be favored as the treatment rate increases. However, such models have neglected to account for the complex nature of schistosome mating biology. To more accurately account for the biology of these parasites, a simple mating structure is included in a multi-strain schistosome model, with parasites under the influence of drug treatment of their human hosts. Parasites are assumed to pay a cost for drug resistance in terms of reduced reproduction and transmission. The dynamics of the parasite population are described by a system of homogeneous differential equations, and the existence and stability of the exponential solutions for this system are used to infer the impact of drug treatment on the maintenance of schistosome genetic diversity.  相似文献   

2.
Among parasitic organisms, inbreeding has been implicated as a potential driver of host–parasite co‐evolution, drug‐resistance evolution and parasite diversification. Yet, fundamental topics about how parasite life histories impact inbreeding remain to be addressed. In particular, there are no direct selfing‐rate estimates for hermaphroditic parasites in nature. Our objectives were to elucidate the mating system of a parasitic flatworm in nature and to understand how aspects of parasite transmission could influence the selfing rates of individual parasites. If there is random mating within hosts, the selfing rates of individual parasites would be an inverse power function of their infection intensities. We tested whether selfing rates deviated from within‐host random mating expectations with the tapeworm Oochoristica javaensis. In doing so, we generated, for the first time in nature, individual selfing‐rate estimates of a hermaphroditic flatworm parasite. There was a mixed‐mating system where tapeworms self‐mated more than expected with random mating. Nevertheless, individual selfing rates still had a significant inverse power relationship to infection intensities. The significance of this finding is that the distribution of parasite infection intensities among hosts, an emergent property of the transmission process, can be a key driver in shaping the primary mating system, and hence the level of inbreeding in the parasite population. Moreover, we demonstrated how potential population selfing rates can be estimated using the predicted relationship of individual selfing rates to intensities and showed how the distribution of parasites among hosts can indirectly influence the primary mating system when there is density‐dependent fecundity.  相似文献   

3.
The RQH (Red Queen hypothesis), which argues that hosts need to be continuously finding new ways to avoid parasites that are able to infect common host genotypes, has been at the center of discussions on the maintenance of sex. This is because diversity is favored under the host–parasite coevolution based on negative frequency‐dependent selection, and sexual reproduction is a mechanism that generates genetic diversity in the host population. Together with parasite infections, sexual organisms are usually under sexual selection, which leads to mating skew or mating success biased toward males with a particular phenotype. Thus, strong mating skew would affect genetic variance in a population and should affect the benefit of the RQH. However, most models have investigated the RQH under a random mating system and not under mating skew. In this study, I show that sexual selection and the resultant mating skew may increase parasite load in the hosts. An IBM (individual‐based model), which included host–parasite interactions and sexual selection among hosts, demonstrates that mating skew influenced parasite infection in the hosts under various conditions. Moreover, the IBM showed that the mating skew evolves easily in cases of male–male competition and female mate choice, even though it imposes an increased risk of parasite infection on the hosts. These findings indicated that whether the RQH favored sexual reproduction depended on the condition of mating skew. That is, consideration of the host mating system would provide further understanding of conditions in which the RQH favors sexual reproduction in real organisms.  相似文献   

4.
Schistosomiasis is a neglected tropical disease of clinical significance that, despite years of research, still requires an effective vaccine and improved diagnostics for surveillance, control and potential elimination. Furthermore, the causes of host pathology during schistosomiasis are still not completely understood. The recent sequencing of the genomes of the three key schistosome species has enabled the discovery of many new possible vaccine and drug targets, as well as diagnostic biomarkers, using high-throughput and sensitive proteomics methods. This review focuses on the literature of the last 5 years that has reported on the use of proteomics to both better understand the biology of the schistosome parasites and the disease they cause in definitive mammalian hosts.  相似文献   

5.
Schistosoma mansoni: TGF-beta signaling pathways   总被引:1,自引:0,他引:1  
Schistosome parasites have co-evolved an intricate relationship with their human and snail hosts as well as a novel interplay between the adult male and female parasites. We review the role of the TGF-beta signaling pathway in parasite development, host-parasite interactions and male-female interactions. The data to date support multiple roles for the TGF-beta signaling pathway throughout schistosome development, in particular, in the tegument which is at the interface with the host and between the male and female schistosome, development of vitelline cells in female worms whose genes and development are regulated by a stimulus from the male schistosome and embryogenesis of the egg. The human ligand TGF-beta1 has been demonstrated to regulate the expression of a schistosome target gene that encodes a gynecophoric canal protein in the schistosome worm itself. Studies on signaling in schistosomes opens a new era for investigation of host-parasite and male-female interactions.  相似文献   

6.
Mutapi F 《Parasitology》2012,139(9):1195-1204
Schistosomiasis is a major human helminth infection endemic in developing countries. Urogenital schistosomiasis, caused by S. haematobium, is the most prevalent human schistosome disease in sub-Saharan Africa. Currently control of schistosome infection is by treatment of infected people with the anthelmintic drug praziquantel, but there are calls for continued efforts to develop a vaccine against the parasites. In order for successful vaccine development, it is necessary to understand the biology and molecular characteristics of the parasite. Ultimately, there is need to understand the nature and dynamics of the relationship between the parasite and the natural host. Thus, my studies have focused on molecular characterization of different parasite stages and integrating this information with quantitative approaches to investigate the nature and development of protective immunity against schistosomes in humans. Proteomics has proved a powerful tool in these studies allowing the proteins expressed by the parasite to be characterized at a molecular and immunological level. In this review, the application of proteomic approaches to understanding the human-schistosome relationship as well as testing specific hypotheses on the nature and development of schistosome-specific immune responses is discussed. The contribution of these approaches to informing schistosome vaccine development is highlighted.  相似文献   

7.
Epidemiological dynamics depend on the traits of hosts and parasites, but hosts and parasites are heterogeneous entities that exist in dynamic environments. Resource availability is a particularly dynamic and potent environmental driver of within‐host infection dynamics (temporal patterns of growth, reproduction, parasite production and survival). We developed, parameterised and validated a model for resource‐explicit infection dynamics by incorporating a parasitism module into dynamic energy budget theory. The model mechanistically explained the dynamic multivariate responses of the human parasite Schistosoma mansoni and its intermediate host snail to variation in resources and host density. At the population level, feedbacks mediated by resource competition could create a unimodal relationship between snail density and human risk of exposure to schistosomes. Consequently, weak snail control could backfire if reductions in snail density release remaining hosts from resource competition. If resource competition is strong and relevant to schistosome production in nature, it could inform control strategies.  相似文献   

8.
Some species mate nonrandomly with respect to alleles underlying immunity. One hypothesis proposes that this is advantageous because nonrandom mating can lead to offspring with superior parasite resistance. We investigate this hypothesis, generalizing previous models in four ways: First, rather than only examining invasibility of modifiers of nonrandom mating, we identify evolutionarily stable strategies. Second, we study coevolution of both haploid and diploid hosts and parasites. Third, we allow for maternal parasite transmission. Fourth, we allow for many alleles at the interaction locus. We find that evolutionarily stable rates of assortative or disassortative mating are usually near zero or one. However, for one case, in which assumptions most closely match the major histocompatibility complex (MHC) system, intermediate rates of disassortative mating can evolve. Across all cases, with haploid hosts, evolution proceeds toward complete disassortative mating, whereas with diploid hosts either assortative or disassortative mating can evolve. Evolution of nonrandom mating is much less affected by the ploidy of parasites. For the MHC case, maternal transmission of parasites, because it creates an advantage to producing offspring that differ from their parents, leads to higher evolutionarily stable rates of disassortative mating. Lastly, with more alleles at the interaction locus, disassortative mating evolves to higher levels.  相似文献   

9.
The evolution of antimalarial drug resistance is often considered to be a single-stage process in which parasites are either fully resistant or completely sensitive to a drug. However, this does not take into account the important intermediate stage of drug tolerance. Drug-tolerant parasites are killed by the high serum concentrations of drugs that occur during direct treatment of the human host. However, these parasites can spread in the human population because many drugs persist long after treatment, and the tolerant parasites can infect people in which there are residual levels of the drugs. This intermediate stage between fully sensitive and fully resistant parasites has far-reaching implications for the evolution of drug-resistant malaria.  相似文献   

10.
Studying the distribution of parasitic helminth body size across a population of definitive hosts can advance our understanding of parasite population biology. Body size is typically correlated with egg production. Consequently, inequalities in body size have been frequently measured to infer variation in reproductive success (VRS). Body size is also related to parasite age (time since entering the definitive host) and potentially provides valuable information on the mode of acquisition and establishment of immature (larval) parasites within the host: whether parasites tend to establish singly or in aggregates. The mode of acquisition of soil-transmitted helminths has been a theoretical consideration in the parasitological literature but has eluded data-driven investigation. In this paper, we analyse individual Ascaris lumbricoides weight data collected from a cohort of human hosts before and after re-infection following curative treatment, and explore its distribution within and among individuals in the population. Lorenz curves and Gini coefficients indicate that levels of weight inequality (a proxy for VRS) in A. lumbricoides are lower than other published estimates from animal-helminth systems. We explore levels of intra-host weight aggregation using statistical models to estimate the intraclass correlation coefficient (ICC) while adjusting for covariates using a flexible fractional polynomial transformation approach capable of handling non-linear functional relationships. The estimated ICCs indicate that weights are aggregated within hosts both at equilibrium and after re-infection, suggesting that parasites may establish within the host in clumps. The implications of a clumped infection process are discussed in terms of ascariasis transmission dynamics, control and anthelmintic resistance.  相似文献   

11.
A longstanding paradigm predicts that microbial parasites and mutualists exhibit disparate evolutionary patterns. Parasites are predicted to promote arms races with hosts, rapid evolution and sexual recombination. By contrast, mutualists have been linked with beneficial coadaptation, evolutionary stasis and asexuality. In this review we discuss the recent surge of molecular data on microbes that are being used to test and reshape these ideas. New analyses reveal that beneficial microbes often share mechanisms of infection and defense with parasites, and can also exhibit rapid evolution and extensive genetic exchange. To explain these patterns, new paradigms must take into account the varied population biology of beneficial microbes, their potential conflicts with hosts, and the mosaic nature of genome evolution that requires locus-based tests to analyze the genetics of host adaptation.  相似文献   

12.
The theory that coevolving hosts and parasites create a fluctuating selective environment for one another (i.e., produce Red Queen dynamics) has deep roots in evolutionary biology; yet empirical evidence for Red Queen dynamics remains scarce. Fluctuating coevolutionary dynamics underpin the Red Queen hypothesis for the evolution of sex, as well as hypotheses explaining the persistence of genetic variation under sexual selection, local parasite adaptation, the evolution of mutation rate, and the evolution of nonrandom mating. Coevolutionary models that exhibit Red Queen dynamics typically assume that hosts and parasites encounter one another randomly. However, if related individuals aggregate into family groups or are clustered spatially, related hosts will be more likely to encounter parasites transmitted by genetically similar individuals. Using a model that incorporates familial parasite transmission, we show that a slight degree of familial parasite transmission is sufficient to halt coevolutionary fluctuations. Our results predict that evidence for Red Queen dynamics, and its evolutionary consequences, are most likely to be found in biological systems in which hosts and parasites mix mainly at random, and are less likely to be found in systems with familial aggregation. This presents a challenge to the Red Queen hypothesis and other hypotheses that depend on coevolutionary cycling.  相似文献   

13.
14.
Accurate inferences on population genetics data require a sound underlying theoretical null model. Organisms alternating sexual and asexual reproduction during their life-cycle have been largely neglected in theoretical population genetic models, thus limiting the biological interpretation of population genetics parameters measured in natural populations. In this article, we derive the expectations of those parameters for the life-cycle of monoecious trematodes, a group comprising several important human and livestock parasites that obligatorily alternate sexual and asexual reproduction during their life-cycle. We model how migration rates between hosts, sexual and asexual mutation rates, adult selfing rate and the variance in reproductive success of parasites during the clonal phase affect the amount of neutral genetic diversity of the parasite (effective population size) and its apportionment within and between definitive hosts (using F-statistics). We demonstrate, in particular, that variance in reproductive success of clones, a parameter that has been completely overlooked in previous population genetics models, is very important in shaping the distribution of the genetic variability both within and among definitive hosts. Within definitive hosts, the parameter F(IS) (a measure of the deviation from random mating) is decreased by high variance in clonal reproductive success of larvae but increased by high adult self-fertilisation rates. Both clonal multiplication and selfing have similar effects on between-host genetic differentiation (F(ST)). Migration occurring before and after asexual reproduction can have different effects on the patterns of F(IS), depending on values of the other parameters such as the mutation rate. While the model applies to any hermaphroditic organism alternating sexual and clonal reproduction (e.g. many plants), the results are specifically discussed in the light of the limited population genetic data on monoecious trematodes available to date and their previous interpretation. We hope that our model will encourage more empirical population genetics studies on monoecious trematodes and other organisms with similar life-cycles.  相似文献   

15.
When every individual has an equal chance of mating with other individuals, the population is classified as panmictic. Amongst metazoan parasites of animals, local-scale panmixia can be disrupted due to not only non-random mating, but also non-random transmission among individual hosts of a single host population or non-random transmission among sympatric host species. Population genetics theory and analyses can be used to test the null hypothesis of panmixia and thus, allow one to draw inferences about parasite population dynamics that are difficult to observe directly. We provide an outline that addresses 3 tiered questions when testing parasite panmixia on local scales: is there greater than 1 parasite population/species, is there genetic subdivision amongst infrapopulations within a host population, and is there asexual reproduction or a non-random mating system? In this review, we highlight the evolutionary significance of non-panmixia on local scales and the genetic patterns that have been used to identify the different factors that may cause or explain deviations from panmixia on a local scale. We also discuss how tests of local-scale panmixia can provide a means to infer parasite population dynamics and epidemiology of medically relevant parasites.  相似文献   

16.
Although parasitism is one of the most common lifestyles among eukaryotes, population genetics on parasites lag for behind those on free-living organisms. Yet, the advent of molecular markers offers great tools for studying important processes, such as dispersal, mating systems, adaptation to host and speciation. Here we highlight some studies that used molecular markers to address questions about the population genetics of fungal (including oomycetes) plant pathogens. We conclude that population genetics approaches have provided tremendous insights into the biology of a few fungal parasites and warrant more wide use in phytopathology. However, theoretical advances are badly needed to best apply the existing methods. Fungi are of prime interest not only because they are major parasites of plants and animals, but they also constitute tractable and highly useful models for understanding evolutionary processes. We hope that the emerging field of fungal evolution will attract more evolutionary biologists in the near future.  相似文献   

17.
The biology of fleas has been studied by a number of authors, as has the impact of various types of control measures. However, there are no mathematical models simulating the dynamics of a population of Ctenocephalides felis felis fleas on their host (the cat) and in their close environment (apartment). The model presented in this paper allows for integration of the numerous biological and behavioural parameters of the parasites and their hosts and for the variation of these same parameters. The various types of control measures can be programmed so that their impact over time can be studied. The model confirms the key role played by adult fleas, or emerged fleas contained in the cocoon. Only regular applications of persistent insecticides to the host animal will enable control of the parasite population. A combination of these insecticides with an IGR (Insect Growth Regulator) will accelerate decontamination of the home environment and see the disappearance of the parasites altogether if they are not reintroduced. The association of additional measures such as vacuum cleaning will accelerate the process of decontamination but will have no impact if carried out in isolation. One-off treatment with insecticide will not enable a reduction in the parasite population, even if carried out frequently. Use of insecticides on the home environment premises alone does not appear to be an adequate means of control. The present model can be used to test various integrated control measures which take into account different factors such as the number of host animals, the frequency of movement outdoors, the impact of the seasons.  相似文献   

18.
The digenean trematode Schistosoma mansoni is responsible for chronic schistosomiasis worldwide, and in Brazil alone an estimated 35 million people are at risk. To evaluate epidemiological patterns among human definitive hosts, we assessed genetic diversity and population subdivision of S. mansoni infrapopulations in human hosts from the highly endemic village of Virgem das Graças in the state of Minas Gerais, Brazil. We believe this is the largest such survey to date. Genetic diversity of parasites, measured over eight polymorphic microsatellite loci, was relatively high and standard measures of inbreeding indicated that the population was panmictic. Furthermore, there was no significant isolation-by-distance of parasite infrapopulations, and measures of population subdivision indicated significant but low to moderate levels of population differentiation. We conclude that patients within this village sample from a broad range of schistosome genetic diversity and effectively act as “genetic mixing bowls” for the parasites. These results contrast with those previously observed in the Brazilian village of Melqu?´ades and thus provide the opportunity for comparisons of environmental and epidemiological differences that are likely to influence host–parasite coevolution and parasite transmission.  相似文献   

19.
血吸虫是一种寄生在脊椎动物上有助于消化的地方或血管中的寄生虫.它们共有复杂的生活史,其中包括中间阶段的软体动物和一个脊椎动物宿主.根据MacDonald和May的工作,我们研究了一个基于血吸虫生活史的多个时滞的动力学模型,并且包含了一个由May和Wo11house提出的交配函数,当我们改变交配函数中的一个参数,血吸虫病的动力学行为从一个持久的疾病传播变成了疾病消失.如果增加雌性血吸虫的成熬周期,或交配周期和产卵周期,我们能够观察到长时间疾病传播的瞬时振动,这说明了对疾病的预测不依赖在一个特定时间的疾病水平,而是依赖一个充分长时间的疾病水平。  相似文献   

20.
We study a system of partial differential equations which models the disease transmission dynamics of schistosomiasis. The model incorporates both the definitive human hosts and the intermediate snail hosts. The human hosts have an age-dependent infection rate and the snail hosts have an infection-age-dependent cercaria releasing rate. The parasite reproduction number R is computed and is shown to determine the disease dynamics. Stability results are obtained via both analytic and numerical studies. Results of the model are used to discuss age-targeted drug treatment strategies for humans. Sensitivity and uncertainty analysis is conducted to determine the role of various parameters on the variation of R. The effects of various drug treatment programs on disease control are compared in terms of both R and the mean parasite load within the human hosts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号