首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PSI cyclic electron transport contributes markedly to photosynthesis and photoprotection in flowering plants. Although the thylakoid protein PGR5 (Proton Gradient Regulation 5) has been shown to be essential for the main route of PSI cyclic electron transport, its exact function remains unclear. In transgenic Arabidopsis plants overaccumulating PGR5 in the thylakoid membrane, chloroplast development was delayed, especially in the cotyledons. Although photosynthetic electron transport was not affected during steady-state photosynthesis, a high level of non-photochemical quenching (NPQ) was transiently induced after a shift of light conditions. This phenotype was explained by elevated activity of PSI cyclic electron transport, which was monitored in an in vitro system using ruptured chloroplasts, and also in leaves. The effect of overaccumulation of PGR5 was specific to the antimycin A-sensitive pathway of PSI cyclic electron transport but not to the NAD(P)H dehydrogenase (NDH) pathway. We propose that a balanced PGR5 level is required for efficient regulation of the rate of antimycin A-sensitive PSI cyclic electron transport, although the rate of PSI cyclic electron transport is probably also regulated by other factors during steady-state photosynthesis.  相似文献   

2.
In angiosperms, cyclic electron transport (CET) around photosystem I (PSI) consists of two pathways, depending on PGR5/PGRL1 proteins and the chloroplast NDH complex. In single mutants defective in chloroplast NDH, photosynthetic electron transport is only slightly affected at low light intensity, but in double mutants impaired in both CET pathways photosynthesis and plant growth are severely affected. The question is whether this strong mutant phenotype observed in double mutants can be simply explained by the additive effect of defects in both CET pathways. In this study, we used the weak mutant allele of pgr5-2 for the background of double mutants to avoid possible problems caused by the secondary effects due to the strong mutant phenotype. In two double mutants, crr2-2 pgr5-2 and ndhs-1 pgr5-2, the plant growth was unaffected and linear electron transport was only slightly affected. However, NPQ induction was more severely impaired in the double mutants than in the pgr5-2 single mutant. A similar trend was observed in the size of the proton motive force. Despite the slight reduction in photosystem II parameters, PSI parameters were severely affected in the pgr5-2 single mutant, the phenotype that was further enhanced by adding the NDH defects. Despite the lack of ?pH-dependent regulation at the cytochrome b6f complex (donor-side regulation of PSI), the plastoquinone pool was more reduced in the double mutants than in the pgr5-2 single mutants. This phenotype suggests that both PGR5/PGRL1- and NDH-dependent CET contribute to supply sufficient acceptors from PSI by balancing the ATP/NADPH production ratio.  相似文献   

3.
Photoinhibition of photosystem II (PS II) activity was studied in thylakoid membranes illuminated in the presence of the inhibitor of the cytochrome b(6)f complex 2'iodo-6-isopropyl-3-methyl-2',4, 4'-trinitrodiphenylether (DNP-INT). DNP-INT was found to decrease photoinhibition. In the absence of DNP-INT, anaerobosis, superoxide dismutase and catalase protected against photoinhibition. No effect of these treatments was observed in the presence of DNP-INT. These data demonstrate that photoinhibition under these conditions is caused by reactive oxygen species which are formed most probably by the reduction of oxygen at photosystem I. The results are discussed in terms of the importance of photosynthetic control in protection against photoinhibition in vivo.  相似文献   

4.
Munekage Y  Hojo M  Meurer J  Endo T  Tasaka M  Shikanai T 《Cell》2002,110(3):361-371
During photosynthesis, plants must control the utilization of light energy in order to avoid photoinhibition. We isolated an Arabidopsis mutant, pgr5 (proton gradient regulation), in which downregulation of photosystem II photochemistry in response to intense light was impaired. PGR5 encodes a novel thylakoid membrane protein that is involved in the transfer of electrons from ferredoxin to plastoquinone. This alternative electron transfer pathway, whose molecular identity has long been unclear, is known to function in vivo in cyclic electron flow around photosystem I. We propose that the PGR5 pathway contributes to the generation of a Delta(pH) that induces thermal dissipation when Calvin cycle activity is reduced. Under these conditions, the PGR5 pathway also functions to limit the overreduction of the acceptor side of photosystem I, thus preventing photosystem I photoinhibition.  相似文献   

5.
Recent molecular genetics studies have revealed that cyclic electron transport around photosystem I is essential for normal photosynthesis and growth of plants. Chloroplastic NAD(P)H dehydorgenase (NDH) complex, a homologue of the complex I in respiratory electron transport, is involved in one of two cyclic pathways. Recent studies on the function and structure of the NDH complex are reviewed.  相似文献   

6.
The cytochrome b(6)f complex is an obligatory electron transfer and proton-translocating enzyme in all oxygenic photosynthesis. Its operation has been described by the "Q-cycle." This model proposes that electrons are transferred from plastoquinol to plastocyanin (the reductant of P700 in Photosystem I) through, obligatorily in series, the iron-sulfur and the cytochrome f redox centers in the cytochrome b(6)f complex. However, here we demonstrate that (a) the iron-sulfur center-dependent reductions of plastocyanin and P700 are much faster than cytochrome f reduction, both in Chlamydomonas reinhardtii cytochrome f mutants and in the wild type, and (b) the steady-state photosynthetic electron transport does not correlate with strongly inhibited cytochrome f reduction kinetics in the mutants. Thus, cytochrome f is not an obligatory intermediate for electrons flowing through the cytochrome b(6)f complex. The oxidation equivalents from Photosystem I are delivered to the high potential chain of the cytochrome b(6)f complex both at the cytochrome f level and, independently, at another site connected to the quinol-oxidizing site, possibly the iron-sulfur center.  相似文献   

7.
  1. Download : Download high-res image (195KB)
  2. Download : Download full-size image
  相似文献   

8.
Photosystem I (PSI) is a pigment-protein complex required for the light-dependent reactions of photosynthesis and participates in light-harvesting and redox-driven chloroplast metabolism. Assembly of PSI into supercomplexes with light harvesting complex (LHC) II, cytochrome b6f (Cytb6f) or NAD(P)H dehydrogenase complex (NDH) has been proposed as a means for regulating photosynthesis. However, structural details about the binding positions in plant PSI are lacking. We analyzed large data sets of electron microscopy single particle projections of supercomplexes obtained from the stroma membrane of Arabidopsis thaliana. By single particle analysis, we established the binding position of Cytb6f at the antenna side of PSI. The rectangular-shaped Cytb6f dimer binds at the side where Lhca1 is located. The complex binds with its short side rather than its long side to PSI, which may explain why these supercomplexes are difficult to purify and easily disrupted. Refined analysis of the interaction between PSI and the NDH complex indicates that in total up to 6 copies of PSI can arrange with one NDH complex. Most PSI-NDH supercomplexes appeared to have 1–3 PSI copies associated. Finally, the PSI-LHCII supercomplex was found to bind an additional LHCII trimer at two positions on the LHCI side in Arabidopsis. The organization of PSI, either in a complex with NDH or with Cytb6f, may improve regulation of electron transport by the control of binding partners and distances in small domains.  相似文献   

9.
Many of the completely sequenced cyanobacterial genomes contain a gene family that encodes for putative Rieske iron-sulfur proteins. The Rieske protein is one of the large subunits of the cytochrome bc-type complexes involved in respiratory and photosynthetic electron transfer. In contrast to all other subunits of this complex that are encoded by single genes, the genome of the cyanobacterium Synechocystis PCC 6803 contains three petC genes, all encoding potential Rieske subunits. Most interestingly, any of the petC genes can be deleted individually without altering the Synechocystis phenotype dramatically. In contrast, double deletion experiments revealed that petC1 and petC2 cannot be deleted in combination, whereas petC3 can be deleted together with any of the other two petC genes. Further results suggest a different physiological function for each of the Rieske proteins. Whereas PetC2 can partly replace the dominating Rieske isoform PetC1, PetC3 is unable to functionally replace either PetC1 or PetC2 and may have a special function involving a special donor with a lower redox potential than plastoquinone. A predominant role of PetC1, which is (partly) different from PetC2, is suggested by the mutational analysis and a detailed characterization of the electron transfer reactions in the mutant strains.  相似文献   

10.
Cytochrome b6 can be both photooxidized and photoreduced by Photosystem I in a cell-free preparation from the blue-green alga Nostoc muscorum. The cytochrome appears to have an oxidation-reduction potential near 0.0 V. The reduction of cytochrome b6 when ferredoxin is added during Photosystem I illumination suggests that the cytochrome may function as a component of a ferredoxin-catalyzed cyclic electron transport pathway. In the presence of ferredoxin, the addition of ADP in the light results in oxidation of cytochrome b6 and reduction of cytochrome f, suggesting the existence of a coupling site between the two cytochromes. An acceleration of the rate of the dark reduction of photooxidized cytochrome b6 also observed on addition of ADP raises the possibility of a second coupling site on the reducing side of cytochrome b6.  相似文献   

11.
The light-dependent control of photosynthetic electron transport from plastoquinol (PQH(2)) through the cytochrome b(6)f complex (Cyt b(6)f) to plastocyanin (PC) and P700 (the donor pigment of Photosystem I, PSI) was investigated in laboratory-grown Helianthus annuus L., Nicotiana tabaccum L., and naturally-grown Solidago virgaurea L., Betula pendula Roth, and Tilia cordata P. Mill. leaves. Steady-state illumination was interrupted (light-dark transient) or a high-intensity 10 ms light pulse was applied to reduce PQ and oxidise PC and P700 (pulse-dark transient) and the following re-reduction of P700(+) and PC(+) was recorded as leaf transmission measured differentially at 810-950 nm. The signal was deconvoluted into PC(+) and P700(+) components by oxidative (far-red) titration (V. Oja et al., Photosynth. Res. 78 (2003) 1-15) and the PSI density was determined by reductive titration using single-turnover flashes (V. Oja et al., Biochim. Biophys. Acta 1658 (2004) 225-234). These innovations allowed the definition of the full light response curves of electron transport rate through Cyt b(6)f to the PSI donors. A significant down-regulation of Cyt b(6)f maximum turnover rate was discovered at low light intensities, which relaxed at medium light intensities, and strengthened again at saturating irradiances. We explain the low-light regulation of Cyt b(6)f in terms of inactivation of carbon reduction cycle enzymes which increases flux resistance. Cyclic electron transport around PSI was measured as the difference between PSI electron transport (determined from the light-dark transient) and PSII electron transport determined from chlorophyll fluorescence. Cyclic e(-) transport was not detected at limiting light intensities. At saturating light the cyclic electron transport was present in some, but not all, leaves. We explain variations in the magnitude of cyclic electron flow around PSI as resulting from the variable rate of non-photosynthetic ATP-consuming processes in the chloroplast, not as a principle process that corrects imbalances in ATP/NADPH stoichiometry during photosynthesis.  相似文献   

12.
13.
We have investigated the photosynthetic properties of Acaryochloris marina, a cyanobacterium distinguished by having a high level of chlorophyll d, which has its absorption bands shifted to the red when compared with chlorophyll a. Despite this unusual pigment content, the overall rate and thermodynamics of the photosynthetic electron flow are similar to those of chlorophyll a-containing species. The midpoint potential of both cytochrome f and the primary electron donor of photosystem I (P(740)) were found to be unchanged with respect to those prevailing in organisms having chlorophyll a, being 345 and 425 mV, respectively. Thus, contrary to previous reports (Hu, Q., Miyashita, H., Iwasaki, I. I., Kurano, N., Miyachi, S., Iwaki, M., and Itoh, S. (1998) Proc. Natl. Acad. Sci. U. S. A. 95, 13319-13323), the midpoint potential of the electron donor P(740) has not been tuned to compensate for the decrease in excitonic energy in A. marina and to maintain the reducing power of photosystem I. We argue that this is a weaker constraint on the engineering of the oxygenic photosynthetic electron transfer chain than preserving the driving force for plastoquinol oxidation by P(740), via the cytochrome b(6)f complex. We further show that there is no restriction in the diffusion of the soluble electron carrier between cytochrome b(6)f and photosystem I in A. marina, at variance with plants. This difference probably reflects the simplified ultrastructure of the thylakoids of this organism, where no segregation into grana and stroma lamellae is observed. Nevertheless, chlorophyll fluorescence measurements suggest that there is energy transfer between adjacent photosystem II complexes but not from photosystem II to photosystem I, indicating spatial separation between the two photosystems.  相似文献   

14.
To investigate the function of the PetM subunit of the cytochrome b6f complex, the petM gene encoding this subunit was inactivated by insertional mutagenesis in the cyanobacterium Synechocystis PCC 6803. Complete segregation of the mutant reveals a nonessential function of PetM for the structure and function of the cytochrome b6f complex in this organism. Photosystem I, photosystem II, and the cytochrome b6f complex still function normally in the petM- mutant as judged by cytochrome f re-reduction and oxygen evolution rates. In contrast to the wild type, however, the content of phycobilisomes and photosystem I as determined from 77 K fluorescence spectra is reduced in the petM- strain. Furthermore, whereas under anaerobic conditions the kinetics of cytochrome f re-reduction are identical, under aerobic conditions these kinetics are slower in the petM- strain. Fluorescence induction measurements indicate that this is due to an increased plastoquinol oxidase activity in the mutant, causing the plastoquinone pool to be in a more oxidized state under aerobic dark conditions. The finding that the activity of the cytochrome b6f complex itself is unchanged, whereas the stoichiometry of other protein complexes has altered, suggests an involvement of the PetM subunit in regulatory processes mediated by the cytochrome b6f complex.  相似文献   

15.
Thin three-dimensional crystals of the cytochrome b6 f complex from the unicellular algae Chlamydomonas reinhardtii have been grown by BioBeads-mediated detergent removal from a mixture of protein and lipid solubilized in Hecameg. Frozen-hydrated crystals, exhibiting p22121 plane group symmetry, were studied by electron crystallography and a projection map at 9 A resolution was calculated. The crystals (unit cell dimensions of a=173.5 A, b=70.0 A and gamma=90.0 degrees) showed the presence of dimers, and within each monomer 14 domains of electron density were observed. The combination of the projection map obtained from ice-embedded crystals of cytochrome b6 f with a previous map obtained from negatively stained samples brings new insight in the organization of the complex. For example, it distinguishes some peaks and/or domains that are only extramembrane or transmembrane, and reveals the possible localization of single-stranded transmembrane alpha-helices (Pet subunits). Furthermore, the cross-correlation of our projection map from frozen hydrated samples with the atomic model of the transmembrane part of the cytochrome bc1 complex has allowed us to localize the cytochrome b6 at the dimer interface and to reveal structural differences between the two complexes.  相似文献   

16.
The orientation of the g-tensors of the Rieske iron-sulfur protein subunit was determined in a single crystal of the bovine mitochondrial cytochrome bc1 complex with stigmatellin in the Qo quinol binding site. The g-tensor principal axes are skewed with respect to the Fe-Fe and S-S atom direction in the 2Fe2S cluster, which is allowed by the lack of rigorous symmetry of the cluster. The asymmetric unit in the crystal is the active dimer, and the g-tensor axes have slightly different orientations relative to the iron-sulfur cluster in the two halves of the dimer. The g approximately 1.79 axis makes an average angle of 30 degrees with respect to the Fe-Fe direction and the g approximately 2.024 axis an average angle of 26 degrees with respect to the S-S direction. This assignment of the g-tensor axis directions indicates that conformations of the Rieske protein are likely the same in the cytochrome bc1 and b6f complexes and that the extent of motion of the Rieske head domain during the catalytic cycle has been highly conserved during evolution of these distantly related complexes.  相似文献   

17.
Structure analysis of the cytochrome bc1 complex in the presence and absence of Qp quinol analog inhibitors implied that a large amplitude motion of the Rieske iron-sulfur protein (ISP) is required to mediate electron transfer from ubiquinol to cytochrome c1. Studies of the functional consequences of mutagenesis of an 8-residue ISP "hinge" region in the bc1 complex showed it to be sensitive to structure perturbation, implying that optimum flexibility and length are required for the large amplitude motion. Mutagenesis-function analysis carried out on the ISP hinge region of the cytochrome b6 f complex using the cyanobacterium Synechococcus sp. PCC 7002 showed the following. (i) Of three petC genes, only that in the petCA operon codes for functional ISP. (ii) The function of the complex was insensitive to changes in the hinge region that increased flexibility, decreased flexibility by substitutions of 4-6 Pro residues, shortened the hinge by a 1-residue deletion, or elongated it by insertion of 4 residues. The latter change increased sensitivity to Qp inhibitors, whereas deletion of 2 residues resulted in a loss of inhibitor sensitivity and a decrease in activity, indicating a minimum hinge length of 7 residues required for optimum binding of ISP at the Qp site. Thus, in contrast to the bc1 complex, the function of the b6 f complex was insensitive to sequence changes in the ISP hinge that altered its length or flexibility. This implies that either the barriers to motion or the amplitude of ISP motion required for function is smaller than in the bc1 complex.  相似文献   

18.
19.
Breyton C  Nandha B  Johnson GN  Joliot P  Finazzi G 《Biochemistry》2006,45(45):13465-13475
We have investigated the occurrence of cyclic electron flow in intact spinach leaves. In particular, we have tested the hypothesis that cyclic flow requires the presence of supercomplexes in the thylakoid membrane or other strong associations between proteins. Using biochemical approaches, we found no evidence of the presence of supercomplexes related to cyclic electron flow, making previous structural explanations for the modulation of cyclic flow rather unlikely. On the other hand, we found that the fraction of photosystem I complexes engaged in cyclic flow could be modulated by changes in the redox state of the chloroplast stroma. Our findings support therefore a dynamic model for the occurrence of linear and cyclic electron flow in C3 plants, based on the competition between cytochrome b(6)f and FNR for electrons carried by ferredoxin. This would be ultimately regulated by the balance between the redox state of PSI acceptors and donors during photosynthesis, in a diffusing system.  相似文献   

20.
Purified detergent-soluble cytochrome b6f complex from chloroplast thylakoid membranes (spinach) and cyanobacteria (Mastigocladus laminosus) was highly active, transferring 300-350 electrons per cyt f/s. Visible absorbance spectra showed a red shift of the cytochrome f alpha-band and the Qy chlorophyll a band in the cyanobacterial complex and an absorbance band in the flavin 450-480-nm region of the chloroplast complex. An additional high molecular weight (M(r) approximately 35,000) polypeptide in the chloroplast complex was seen in SDS-polyacrylamide gel electrophoresis at a stoichiometry of approximately 0.9 (cytochrome f)(-1). The extra polypeptide did not stain for heme and was much more accessible to protease than cytochrome f. Electrospray ionization mass spectrometry of CNBr fragments of the 35-kDa polypeptide was diagnostic for ferredoxin:NADP+ oxidoreductase (FNR), as were antibody reactivity to FNR and diaphorase activity. The absence of FNR in the cyanobacterial complex did not impair decyl-plastoquinol-ferricyanide activity. The activity of the FNR in the chloroplast b6f complex was also shown by NADPH reduction, in the presence of added ferredoxin, of 0.8 heme equivalents of the cytochrome b6 subunit. It was inferred that the b6f complex with bound FNR, one equivalent per monomer, provides the membrane protein connection to the main electron transfer chain for ferredoxin-dependent cyclic electron transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号