首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Small subunit rRNA gene sequences (18S rDNA), cell wall carbohydrate composition and ubiquinone components were analysed within a larger number of ascomycetous yeasts and dimorphic fungi to validate their congruence in predicting phylogenetic relationships. The glucose-mannose pattern distinguishes the Hemiascomycetes from the Euascomycetes and the Protomycetes which are characterised with the glucose-mannose-galactose-rhamnose-(fucose) profile. The glucose-mannose-galactose pattern was found in the cell walls of all the three classes. Different coenzyme Q component (CoQ5 to CoQ10) were found within the representatives of the Hemiascomycetes. Whereas CoQ9, CoQ10 and CoQ10H2 predominate within the Euascomycetes, CoQ9 and CoQ10 characterise the Protomycetes. Chemotaxonomic studies coupled with additional molecular and co-evolution studies support the idea that the Hemiascomycetes occupy a basal position in the phylogeny of Ascomycota. These results are not in line with the phylogenetic studies based on the sequences of 18S rRNA encoding gene. The maximum parsimony analysis indicated that Hemiascomycetes and Protomycetes might represent sister groups, opposing to the earlier reported results, where the Archiascomycetes (Protomycetes) or the Hemiascomycetes had been considered to be the most primitive ascomycetous fungi. Instead of the class Archiascomycetes, the term Protomycetes was introduced reflecting much better the properties of the whole class.  相似文献   

2.
Molecular phylogenies for the fungi in the Ascomycota rely heavily on 18S rRNA gene sequences but this gene alone does not answer all questions about relationships. Particularly problematical are the relationships among the first ascomycetes to diverge, the Archiascomycetes, and the branching order among the basal filamentous ascomycetes, the Euascomycetes. Would more data resolve branching order? We used the jackknife and bootstrapping resampling approach that constitutes the "pattern of resolved nodes" method to address the relationship between number of variable sites in a DNA sequence alignment and support for taxonomic clusters. We graphed the effect of increasing sizes of subsamples of the 18S rRNA gene sequences on bootstrap support for nodes in the Ascomycota tree. Nodes responded differently to increasing data. Some nodes, those uniting the filamentous ascomycetes for example, would still have been well supported with only two thirds of the 18S rRNA gene. Other nodes, like the one uniting the Archiascomycetes as a monophyletic group, would require about double the number of variable sites available in the 18S gene for 95% neighbor-joining bootstrap support. Of the several groups emerging at the base of the filamentous ascomycetes, the Pezizales receive the most support as the first to diverge. Our analysis suggests that we would also need almost three times as much sequence data as that provided by the 18S gene to confirm the basal position for the Pezizales and more than seven times as much data to resolve the next group to diverge. If more data from other genes show the same pattern, the lack of resolution for the filamentous ascomycetes may indicate rapid radiation within this clade.  相似文献   

3.
Calicioid or mazaediate fungi constitute a heterogeneous assemblage of fungi sharing the presence of a mazaedium. These fungi were once treated as an order (Caliciales) of the Ascomycota but many are now known to be nested within the Arthoniomycetes, Eurotiomycetes, Lecanoromycetes and Leotiomycetes. In this study we employ multigene phylogenetic analyses of main mazaediate groups (based on nuclear 18S, 28S, 5.8S rDNA, mitochondrial 16S, and the protein coding RPB1 and Mcm7) of 116 taxa corresponding to most major groups of the inoperculate ascomycetes (“Leotiomyceta”) and a selection of Pezizomycetes, to trace the evolution of the mazaedium in the Pezizomycotina (the “Euascomycetes”). In particular, we studied the placement of three calicioid groups of uncertain position, Calycidiaceae, Coniocybaceae and Microcaliciaceae. Here, we show that the Calycidiaceae is closely related to the Sphaerophoraceae in the Lecanoromycetidae (Lecanoromycetes), as supported by overall morphology and the production of sphaerophorin. The Coniocybaceae constitute an early divergent line in the inoperculate ascomycetes and here we propose to recognize this group formally as the new class and order Coniocybomycetes, Coniocybales. The Microcaliciaceae is nested within the Ostropomycetidae (Lecanoromycetes). Both Coniocybaceae and Microcaliciaceae, although highly distinctive, lack morphological similarities to related main fungal groups. Ancestral state reconstruction suggests that the ancestor of all inoperculate ascomycetes and the ancestor of all main inoperculate ascomycete groups, with the exception of the Coniocybomycetes, was non‐mazediate, and thus confirms the large amount of parallel evolution and independent gains of the mazaedium in the history of the Ascomycota.  相似文献   

4.
Sugiyama J  Hosaka K  Suh SO 《Mycologia》2006,98(6):996-1005
The early diverging Ascomycota lineage, detected primarily from nSSU rDNA sequence-based phylogenetic analyses, includes enigmatic key taxa important to an understanding of the phylogeny and evolution of higher fungi. At the moment six representative genera of early diverging ascomycetes (i.e. Taphrina, Protomyces, Saitoella, Schizosaccharomyces, Pneumocystis and Neolecta) have been assigned to "Archiascomycetes" sensu Nishida and Sugi ama (1994) or the subphylum "Taphrinomycotina" sensu Eriksson and Winka (1997). The group includes fungi that are ecologically and morphologically diverse, and it is difficult therefore to define the group based on common phenotypic characters. Bayesian analyses of nSSU rDNA or combined nSSU and nLSU rDNA sequences supported previously published Ascomycota frameworks that consist of three major lineages (i.e. a group of early diverging Ascomycota. [Taphrinomycotina], Saccharomycotina and Pezizomycotina); Taphrinomycotina is the sister group of Saccharomycotina and Pezizomycotina. The 50% majority rule consensus of 18000 Bayesian MCMCMC-generated trees from multilocus gene sequences of nSSU rDNA, nLSU rDNA (D1/D2), RPB2 and beta-tubulin also showed the monophyly of the three subphyla and the basal position of Taphrinomycotina in Ascomycota with significantly higher statistical support. However to answer controversial questions on the origin, monophyly and evolution of the Taphrinomycotina, additional integrated phylogenetic analyses might be necessary using sequences of more genes with broader taxon sampling from the early diverging Ascomycota.  相似文献   

5.
Kuramae EE  Robert V  Snel B  Boekhout T 《Genomics》2006,88(4):387-393
The phylogenetic position of the fission yeast Schizosaccharomyces pombe in the fungal Tree of Life is still controversial. Three alternative phylogenetic positions have been proposed in the literature, namely (1) a position basal to the Hemiascomycetes and Euascomycetes, (2) a position as a sister group to the Euascomycetes with the Hemiascomycetes as a basal branch, or (3) a sister group to the Hemiascomycetes with Euascomycetes as a basal branch. Here we compared 91 clusters of orthologous proteins containing a single orthologue that are shared by 19 eukaryote genomes. The major part of these 91 orthologues supports a phylogenetic position of S. pombe as a basal lineage among the Ascomycota, thus supporting the second proposition. Interestingly, part of the orthologous proteins supported a fourth, not yet described alternative, in which S. pombe is basal to both Basidiomycota and Ascomycota. Both topologies of phylogenetic trees are well supported. We believe that both reflect correctly the phylogenetic history of the species concerned. This apparent paradox may point to a heterogeneous nuclear genome of the fungi. Importantly, this needs to be taken in consideration for a correct understanding of the fungal Tree of Life.  相似文献   

6.
Analysis of the monosaccharide composition of purified cell walls of unicellular and filamentous ascomycetous fungi shows three patterns: (1) the mannose glucose type (for most hemiascomycetous yeasts) (2) the mannose glucose galactose type (for several members of all three main ascomycetous clades) and (3) the mannose glucose galactose rhamnose type (for members of the Euascomycetes and the Protomyces/ Schizosaccharomyces group).In order to estimate the usefulness of the carbohydrate patterns for phylogenetic analysis we compared them with a phylogenetic tree based on 18SrRNA-gene sequences using the Neighbor-Joining Method. In contrast with the situation for basidiomycetous fungi, the Ascomycota show no fixed cell wall type for the three classes. Based on cell wall carbohydrates, sequence data and molecular characters the Hemiascomycetes appear as the first branch within the Ascomycota. A second clade, comprising the genera Schizosaccharomyces, Pneumocystis, Taphrina, Protomyces, Neolecta and Saitoella, appears as a sister group of the Euascomycetes. We discuss the erection of a new class for this group of ascomycetous fungi for which we propose the name Protomycetes.  相似文献   

7.
The resolving power and statistical support provided by two protein-coding (RPB1 and RPB2) and three ribosomal RNA-coding (nucSSU, nucLSU, and mitSSU) genes individually and in various combinations were investigated based on maximum likelihood bootstrap analyses on lichen-forming fungi from the class Lecanoromycetes (Ascomycota). Our results indicate that the optimal loci (single and combined) to use for molecular systematics of lichen-forming Ascomycota are protein-coding genes (RPB1 and RPB2). RPB1 and RPB2 genes individually were phylogenetically more efficient than all two- and three-locus combinations of ribosomal loci. The 3rd codon position of each of these two loci provided the most characters in support of phylogenetic relationships within the Lecanoromycetes. Of the three ribosomal loci we used in this study, mitSSU contributed the most to phylogenetic analyses when combined with RPB1 and RPB2. Except for the mitSSU, ribosomal genes were the most difficult to recover because they often contain many introns, resulting in PCR bias toward numerous and intronless co-extracted contaminant fungi (mainly Dothideomycetes, Chaetothyriomycetes, and Sordariomycetes in the Ascomycota, and members of the Basidiomycota), which inhabit lichen thalli. Maximum likelihood analysis on the combined five-locus data set for 82 members of the Lecanoromycetes provided a well resolved and well supported tree compared to existing phylogenies. We confirmed the monophyly of three recognized subclasses in the Lecanoromycetes, the Acarosporomycetidae, Ostropomycetidae, and Lecanoromycetideae; the latter delimited as monophyletic for the first time, with the exclusion of the family Umbilicariaceae and Hypocenomyce scalaris. The genus Candelariella (formerly in the Candelariaceae, currently a member of the Lecanoraceae) represents the first evolutionary split within the Lecanoromycetes, before the divergence of the Acarosporomycetidae. This study provides a foundation necessary to guide the selection of loci for future multilocus phylogenetic studies on lichen-forming and allied ascomycetes.  相似文献   

8.
Relatedness, phylogeny, and evolution of the fungi   总被引:3,自引:0,他引:3  
Junta Sugiyama 《Mycoscience》1998,39(4):487-511
Recent advances in fungal systematics are reviewed in relation to our previous studies. The usefulness of the integrated analysis of genotypic (especially 18S rRNA gene sequence comparisons) and phenotypic (especially ultrastructural and chemotaxonomic data) characters has been emphasized for the major groups and selected taxa of the fungi, and the impact to fungal systematics and evolution is discussed. Our noteworthy studies and findings are: 1) polyphyly of the chytridiomycetes and zygomycetes, 2) phylogenetic origin of the entomophthoralean fungi includingBasidiobolus, 3) detection of a major new lineage “Archiascomycetes,” comprisingTaphrina, Protomyces andSaitoella, Schizosaccharomyces, andPneumocystis, within the Ascomycota, and its phylogenetic and evolutionary significance, 4) polyphyletic origins of species in the anamorphic genusGeosmithia, and 5) phylogenetic placement ofMixia osmundae, species correctly and incorrectly assigned to the genusTaphrina, and basidiomyceotus yeasts. The newest 18S rDNA sequence-based neighbor-joining trees of the Ascomycota are demonstrated. “Traditional studies of evolution have amply demonstrated that evolution at the phenotypic level is characterized by adaptation and opportunism, irregularity in pace, and inequality of rates among lineages. In contrast, studies of molecular evolution have revealed quite different features characterized by changes that are conservative in nature, random in pattern (independent of phenotypic characters), and quite regular in pace with equal rates among diverge [sic] lineages for a given protein”. (Kimura, M. 1983. The neutral theory of molecular evolution, pp. 308–309, Cambridge University Press, Cambridge.) Recipient of the 2nd Mycological Society of Japan's Excellent Achievement Award, 1998; the awarding lecture was given at the 42nd Annual Meeting of the Mycological Society of Japan, 16 May, 1998, Kyoto University, Kyoto. This review is based mainly on the publications intended for the Award.  相似文献   

9.
Based on an overview of progress in molecular systematics of the true fungi (Fungi/Eumycota) since 1990, little overlap was found among single-locus data matrices, which explains why no large-scale multilocus phylogenetic analysis had been undertaken to reveal deep relationships among fungi. As part of the project "Assembling the Fungal Tree of Life" (AFTOL), results of four Bayesian analyses are reported with complementary bootstrap assessment of phylogenetic confidence based on (1) a combined two-locus data set (nucSSU and nucLSU rDNA) with 558 species representing all traditionally recognized fungal phyla (Ascomycota, Basidiomycota, Chytridiomycota, Zygomycota) and the Glomeromycota, (2) a combined three-locus data set (nucSSU, nucLSU, and mitSSU rDNA) with 236 species, (3) a combined three-locus data set (nucSSU, nucLSU rDNA, and RPB2) with 157 species, and (4) a combined four-locus data set (nucSSU, nucLSU, mitSSU rDNA, and RPB2) with 103 species. Because of the lack of complementarity among single-locus data sets, the last three analyses included only members of the Ascomycota and Basidiomycota. The four-locus analysis resolved multiple deep relationships within the Ascomycota and Basidiomycota that were not revealed previously or that received only weak support in previous studies. The impact of this newly discovered phylogenetic structure on supraordinal classifications is discussed. Based on these results and reanalysis of subcellular data, current knowledge of the evolution of septal features of fungal hyphae is synthesized, and a preliminary reassessment of ascomal evolution is presented. Based on previously unpublished data and sequences from GenBank, this study provides a phylogenetic synthesis for the Fungi and a framework for future phylogenetic studies on fungi.  相似文献   

10.
The depiction of evolutionary relationships within phylum Ascomycota is still controversial because of unresolved branching orders in the radiation of major taxa. Here we generated a dataset of 166 small subunit (18S) rDNA sequences, representative of all groups of Fungi and used as input in a Bayesian phylogenetic analysis. This phylogeny suggests that Discomycetes are a basal group of filamentous Ascomycetes and probably maintain ancestor characters since their representatives are intermingled among other filamentous fungi. Also, we show that the evolutionary rate heterogeneity within Ascomycota precludes the assumption of a global molecular clock. Accordingly, we used the penalized likelihood method, and for calibration we included a 400 million-year-old Pyrenomycete fossil considering two distinct scenarios found in the literature, one with an estimated date of 1576 Myr for the plant–animal–fungus split and the other with an estimated date of 965 Myr for the animal–fungus split. Our data show that the current classification of the fossil as a Pyrenomycete is not compatible with the second scenario. Estimates under the first scenario are older than dates proposed in previous studies based on small subunit rDNA sequences but support estimates based on multiprotein analysis, suggesting that the radiation of the major Ascomycota groups occurred into the Proterozoic era. Reviewing Editor: Dr. Nicolas Galtier  相似文献   

11.
The phylogenetic relationships among major eukaryotic protist lineages are largely uncertain. Two significant obstacles in reconstructing eukaryotic phylogeny are long-branch attraction (LBA) effects and poor taxon sampling of free-living protists. We have obtained and analyzed gene sequences encoding the largest subunit of RNA Polymerase II (RPB1) from Naegleria gruberi (a heterolobosean), Cercomonas ATCC 50319 (a cercozoan), and Ochromonas danica (a heterokont); we have also analyzed the RPB1 gene from the nucleomorph (nm) genome of Guillardia theta (a cryptomonad). Using a variety of phylogenetic methods our analysis shows that RPB1s from Giardia intestinalis and Trichomonas vaginalis are probably subject to intense LBA effects. Thus, the deep branching of these taxa on RPB1 trees is questionable and should not be interpreted as evidence favoring their early divergence. Similar effects are discernable, to a lesser extent, with the Mastigamoeba invertens RPB1 sequence. Upon removal of the outgroup and these problematic sequences, analyses of the remaining RPB1s indicate some resolution among major eukaryotic groups. The most robustly supported higher-level clades are the opisthokonts (animals plus fungi) and the red algae plus the cryptomonad nm-the latter result gives added support to the red algal origin of cryptomonad chloroplasts. Clades comprising Dictyostelium discoideum plus Acanthamoeba castellanii (Amoebozoa) and Ochromonas plus Plasmodium falciparum (chromalveolates) are consistently observed and moderately supported. The clades supported by our RPB1 analyses are congruent with other data, suggesting that bona fide phylogenetic relationships are being resolved. Thus, the RPB1 gene has apparently retained some phylogenetically meaningful signal, making it worthwhile to obtain sequences from more diverse protist taxa. Additional RPB1 data, especially in combination with other genes, should provide further resolution of branching orders among protist groups within the apparently rapid early divergence of eukaryotes.  相似文献   

12.
Earlier molecular phylogenetic analyses based on nuclear small subunit ribosomal DNA (nSSU rDNA) suggest that the Zygomycota are polyphyletic within the Chytridiomycota. However, these analyses failed to resolve almost all interordinal relationships among basal fungi (Chytridiomycota and Zygomycota), due to lack of sufficient characters within the nSSU rDNA. To further elucidate the higher-level phylogeny of Zygomycota, we have sequenced partial RPB1 (DNA dependent RNA polymerase II largest subunit) and EF-1alpha (translation elongation factor 1 alpha) genes from 10 and 3 zygomycete fungi, respectively. Independent molecular phylogenetic analyses were performed based on each sequence by distance and maximum likelihood methods. Although deep phylogenetic relationships among basal fungi still remain poorly resolved using either gene, the RPB1-based phylogeny identified a novel monophyletic clade consisting of the Dimargaritales, Harpellales, and Kickxellales. This result suggests that regularly formed septa (cross walls that divide hyphae into segments) with a lenticular cavity are plesiomorphic for this clade, and indicates the importance of septal pore ultrastructure in zygomycete phylogeny. In addition, a peculiar mucoralean genus Mortierella, which was considered to be distantly related to the other Mucorales based on previous nSSU rDNA analyses, was resolved as the basal most divergence within the Mucorales, consistent with traditional phenotypic-based taxonomy. Although the taxa included in our analysis are restricted, the monophyly of each order suggested by nSSU rDNA phylogeny is supported by the present RPB1-based analysis. These results support the potential use of RPB1 as an alternative marker for fungal phylogenetic studies. Conversely, the overall fungal phylogeny based on EF-1alpha sequence is poorly resolved. A comparison of numbers of observed substitutions versus inferred substitutions within EF-1alpha indicates that this gene is much more saturated than RPB1. This result suggests that the EF-1alpha gene is unsuitable for resolving higher-level phylogenetic relationships within the Fungi.  相似文献   

13.
14.
Aime MC  Phillips-Mora W 《Mycologia》2005,97(5):1012-1022
The two most devastating diseases of cacao (Theobroma cacao)--the source of chocolate--in tropical America are caused by the fungi Crinipellis perniciosa (witches' broom disease) and Moniliophthora roreri (frosty pod rot or moniliasis disease). Despite the agricultural, socio-economic and environmental impact of these fungi, most aspects of their life cycles are unknown, and the phylogenetic relationships of M. roreri have yet to be conclusively established. In this paper, extensive phylogenetic analyses of five nuclear gene regions (28S rDNA, 18S rDNA, ITS, RPB1, and EF1-alpha) confirm that C. perniciosa and M. roreri are sister taxa that belong in the Marasmiaceae (euagarics). Furthermore, these taxa form part of a separate and distinct lineage within the family. This lineage includes the biotrophic fungi Moniliophthora perniciosa comb. nov. and M. roreri, as well as one undescribed endophytic species. The sister genera to Moniliophthora are Marasmius, Crinipellis and Chaetocalathus, which consist mainly of saprotrophic litter fungi.  相似文献   

15.
Phylogeny of the Zygomycota based on nuclear ribosomal sequence data   总被引:4,自引:0,他引:4  
  相似文献   

16.
RPB1 and RPB2, which encode the largest and second largest subunits of RNA polymerase II, respectively, are essential single copy genes in fungi, animals and most plants. Two paralogs of the RPB2 gene have been found in some groups of angioperms [Oxelman, B., Yoshikawa, N., McConaughy, B.L., Luo, J., Denton, A.L., Hall, B.D., 2004. RPB2 gene phylogeny in flowering plants, with particular emphasis on asterids. Mol. Phylogenet. Evol. 32, 462-479]. Here, we report the results of experiments designed to identify the evolutionary origin of the RPB2 duplicate copies. Through careful sampling and phylogenetic analysis, we were able to construct the RPB2 gene tree in angiosperms and infer the phylogenetic positions of the gene duplication and gene loss events that occurred. Our study shows that an RPB2 gene duplication occurred early in core eudicot evolution, at or near the time of the Buxaceae/Trochodendraceae divergence. Subsequently, multiple gene duplication and paralog sorting events happened independently in different core eudicot taxa. Differential expression of the two RPB2 gene paralogs may explain the preservation of both paralogs in the asterids. One gene (RPB2-i) accounts for most of the RPB2 mRNA made in the flower organs while the other gene (RPB2-d) is predominantly used in the vegetative tissues. We also found two paralogs of the RPB1 gene in some core eudicot species. The RPB1 gene duplication occurred before core eudicot divergence, around the time of RPB2 gene duplication. Several independent RPB1 paralog sorting events happened in different core eudicot taxa; their occurrence was independent of the RPB2 paralog sorting events. Our results suggest that a polyploidization event happened at or near the time of the Buxaceae/Trochodendraceae divergence. We propose that this polyploidization and the partial diploidization processes thereafter may have been the driving force of core eudicot radiation.  相似文献   

17.
A phylogenetic study of marine ascomycetes was initiated to test and refine evolutionary hypotheses of marine-terrestrial transitions among ascomycetes. Taxon sampling focused on the Halosphaeriales, the largest order of marine ascomycetes. Approximately 1050 base pairs (bp) of the gene that codes for the nuclear small subunit (SSU) and 600 bp of the gene that codes for the nuclear large subunit (LSU) ribosomal RNAs (rDNA) were sequenced for 15 halosphaerialean taxa and integrated into a data set of homologous sequences from terrestrial ascomycetes. An initial set of phylogenetic analyses of the SSU rDNA from 38 taxa representing 15 major orders of the phylum Ascomycota confirmed a close phylogenetic relationship of the halosphaerialean species with several other orders of perithecial ascomycetes. A second set of analyses, which involved more intensive taxon sampling of perithecial ascomycetes, was performed using the SSU and LSU rDNA data in combined analyses. These second analyses included 15 halosphaerialean taxa, 26 terrestrial perithecial fungi from eight orders, and five outgroup taxa from the Pezizales. In these analyses the Halosphaeriales were polyphyletic and comprised two distinct lineages. One clade of Halosphaeriales comprised 12 taxa from 11 genera and was most closely related to terrestrial fungi of the Microascales. The second clade of halosphaerialean fungi comprised taxa from the genera Lulworthia and Lindra and was an isolated lineage among the perithecial fungi. Both the main clade of Halosphaeriales and the Lulworthia/Lindra clade are supported by the data as being independently derived from terrestrial ancestors.  相似文献   

18.
The Sordariomycetes is an important group of fungi whose taxonomic relationships and classification is obscure. There is presently no multi-gene molecular phylogeny that addresses evolutionary relationships among different classes and orders. In this study, phylogenetic analyses with a broad taxon sampling of the Sordariomycetes were conducted to evaluate the utility of four gene regions (LSU rDNA, SSU rDNA, beta-tubulin and RPB2) for inferring evolutionary relationships at different taxonomic ranks. Single and multi-gene genealogies inferred from Bayesian and Maximum Parsimony analyses were compared in individual and combined datasets. At the subclass level, SSU rDNA phylogenies demonstrate their utility as a marker to infer phylogenetic relationships at higher levels. All analyses with SSU rDNA alone, combined LSU rDNA and SSU rDNA, and the combined 28 S rDNA, SSU rDNA and RPB2 datasets resulted in three subclasses: Hypocreomycetidae, Sordariomycetidae and Xylariomycetidae, which correspond well to established morphological classification schemes. At the ordinal level, the best resolved phylogeny was obtained from the combined LSU rDNA and SSU rDNA datasets. Individually, the RPB2 gene dataset resulted in significantly higher number of parsimony informative characters. Our results supported the recent separation of Boliniaceae, Chaetosphaeriaceae and Coniochaetaceae from Sordariales and placement of Coronophorales in Hypocreomycetidae. Microascales was found to be paraphyletic and Ceratocystis is phylogenetically associated to Faurelina, while Microascus and Petriella formed another clade and basal to other members of Halosphaeriales. In addition, the order Lulworthiales does not appear to fit in any of the three subclasses. Congruence between morphological and molecular classification schemes is discussed.  相似文献   

19.
Numerous species of microscopic fungi inhabit mosses and hepatics. They are severely overlooked and their identity and nutritional strategies are mostly unknown. Most of these bryosymbiotic fungi belong to the Ascomycota. Their fruit‐bodies are extremely small, often reduced and simply structured, which is why they cannot be reliably identified and classified by their morphological and anatomical characters. A phylogenetic hypothesis of bryosymbiotic ascomycetes is presented. New sequences of 78 samples, including 61 bryosymbionts, were produced, the total amount of terminals being 206. Of these, 202 are Ascomycetes. Sequences from the following five gene loci were used: rDNA SSU, rDNA LSU, RPB2, mitochondrial rDNA SSU, and rDNA 5.8S. The program TNT was used for tree search and support value estimation. We show that bryosymbiotic fungi occur in numerous lineages, one of which represents a newly discovered lineage among the Ascomycota and exhibits a tripartite association with cyanobacteria and sphagna. A new genus Trizodia is proposed for this basal clade. Our results demonstrate that even highly specialized life strategies can be adopted multiple times during evolution, and that in many cases bryosymbionts appear to have evolved from saprobic ancestors. © The Willi Hennig Society 2009.  相似文献   

20.
Approximately 3000 bp across 84 taxa have been analyzed for variable regions of RPB1, RPB2, and nLSU-rDNA to infer phylogenetic relationships in the large ectomycorrhizal mushroom genus Inocybe (Agaricales; Basidiomycota). This study represents the first effort to combine variable regions of RPB1 and RPB2 with nLSU-rDNA for low-level phylogenetic studies in mushroom-forming fungi. Combination of the three loci increases non-parametric bootstrap support, Bayesian posterior probabilities, and resolution for numerous clades compared to separate gene analyses. These data suggest the evolution of at least five major lineages in Inocybe-the Inocybe clade, the Mallocybe clade, the Auritella clade, the Inosperma clade, and the Pseudosperma clade. Additionally, many clades nested within each major lineage are strongly supported. These results also suggest the family Crepiodataceae sensu stricto is sister to Inocybe. Recognition of Inocybe at the family level, the Inocybaceae, is recommended.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号