首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Like numerous other eukaryotic organelles, the vacuole of the yeast Saccharomyces cerevisiae undergoes coordinated cycles of membrane fission and fusion in the course of the cell cycle and in adaptation to environmental conditions. Organelle fission and fusion processes must be balanced to ensure organelle integrity. Coordination of vacuole fission and fusion depends on the interactions of vacuolar SNARE proteins and the dynamin-like GTPase Vps1p. Here, we identify a novel factor that impinges on the fusion-fission equilibrium: the vacuolar H(+)-ATPase (V-ATPase) performs two distinct roles in vacuole fission and fusion. Fusion requires the physical presence of the membrane sector of the vacuolar H(+)-ATPase sector, but not its pump activity. Vacuole fission, in contrast, depends on proton translocation by the V-ATPase. Eliminating proton pumping by the V-ATPase either pharmacologically or by conditional or constitutive V-ATPase mutations blocked salt-induced vacuole fragmentation in vivo. In living cells, fission defects are epistatic to fusion defects. Therefore, mutants lacking the V-ATPase display large single vacuoles instead of multiple smaller vacuoles, the phenotype that is generally seen in mutants having defects only in vacuolar fusion. Its dual involvement in vacuole fission and fusion suggests the V-ATPase as a potential regulator of vacuolar morphology and membrane dynamics.  相似文献   

2.
While it is now recognised that transport within the endomembrane system may occur via membranous tubules, spatial regulation of this process is poorly understood. We have investigated the role of the cytoskeleton in regulating the motility and morphology of the motile vacuole system in hyphae of the fungus Pisolithus tinctorius by studying (1) the effects of anti-microtubule (oryzalin, nocodazole) and anti-actin drugs (cytochalasins, latrunculin) on vacuolar activity, monitored by fluorescence microscopy of living cells; and (2) the ultrastructural relationship of microtubules, actin microfilaments, and vacuoles in hyphae prepared by rapid-freezing and freeze-substitution. Anti-microtubule drugs reduced the tubular component of the vacuole system in a dose-dependent and reversible manner, the extent of which correlated strongly with the degree of disruption of the microtubule network (monitored by immunofluorescence microscopy). The highest doses of anti-microtubule drugs completely eliminated tubular vacuoles, and only spherical vacuoles were observed. In contrast, anti-actin drugs did not reduce the frequency of tubular vacuoles or the motility of these vacuoles, even though immunofluorescence microscopy confirmed perturbation of microfilament organisation. Electron microscopy showed that vacuoles were always accompanied by microtubules. Bundles of microtubules were found running in parallel along the length of tubular vacuoles and individual microtubules were often within one microtubule diameter of a vacuole membrane. Our results strongly support a role for microtubules, but not actin microfilaments, in the spatial regulation of vacuole motility and morphology in fungal hyphae.  相似文献   

3.
Ultrastructural changes of Golgi apparatus of frog urinary granular cells at antidiuretic hormone (ADH) stimulation of water transport were studied. During a short-time ADH action (5 min) the fragmentation of the complex on single dictyosomes and dilution of certain cisternae is discovered. A conclusion is made that the granular cell giant vacuoles may originate from the Golgi cisternae. It is suggested that the microtubules may be involved in the translocation of dictyosomes and migration of formed vacuoles. The quantity of microtubules increases during ADH action very significantly. Moreover, the involvement of the Golgi apparatus is shown in the maintenance of the cell membrane balance due to budding of tubular structures from transcisternae and shuttling between luminal and vacuolar membranes.  相似文献   

4.
Small guanine triphosphatases (GTPases) of the Rab family are key regulators of membrane trafficking events between the various subcellular compartments in eukaryotic cells. Rab7 is a conserved protein required in the late endocytic pathway and in lysosome biogenesis. A Schizosaccharomyces pombe ( S. pombe ) homolog of Rab7, Ypt7, is necessary for trafficking from the endosome to the vacuole and for homotypic vacuole fusion. Here, we identified and characterized a second fission yeast Rab7 homolog, Ypt71. Ypt71 is localized to the vacuolar membrane. Cells deleted for ypt71 + exhibit normal growth rates and morphology. Interestingly, a ypt71 null mutant contains large vacuoles in contrast with the small fragmented vacuoles found in the ypt7 null mutant. Furthermore, the ypt71 mutation does not enhance or alleviate the temperature sensitivity or vacuole fusion defect of ypt7 Δ cells. Like ypt7 Δ cells, overexpression of ypt71 + caused fragmentation of vacuoles and inhibits vacuole fusion under hypotonic conditions. Thus, the two S. pombe Rab7 homologs act antagonistically in regulating vacuolar morphology. Analysis of a chimeric Ypt7/Ypt71 protein showed that Rab7-directed vacuole dynamics, fusion versus fission, largely depends on the medial region of the protein, including a part of RabSF3/α3-L7.  相似文献   

5.
Over 60 genes have been identified that affect protein sorting to the lysosome-like vacuole in Saccharomyces cerevisiae. Cells with mutations in these vacuolar protein sorting (vps) genes fall into seven general classes based upon their vacuolar morphology. Class A mutants have a morphologically wild type vacuole, while Class B mutants have a fragmented vacuole. There is no discernable vacuolar structure in Class C mutants. Class D mutants have a slightly enlarged vacuole, but Class E mutants have a normal looking vacuole with an enlarged prevacuolar compartment (PVC), which is analogous to the mammalian late endosome. Class F mutants have a wild type appearing vacuole as well as fragmented vacuolar structures. vps mutants have also been found with a tubulo-vesicular vacuole structure. vps mutant morphology is pertinent, as mutants of the same class may work together and/or have a block in the same general step in the vacuolar protein sorting pathway. We probed PVC morphology and location microscopically in live cells of several null vps mutants using a GFP fusion protein of Nhx1p, an Na(+)/H(+) exchanger normally localized to the PVC. We show that cell strains deleted for VPS proteins that have been previously shown to work together, regardless of VPS Class, have the same PVC morphology. Cell strains lacking VPS genes that have not been implicated in the same pathway show different PVC morphologies, even if the mutant strains are in the same VPS Class. These new studies indicate that PVC morphology is another tier of classification that may more accurately identify proteins that function together in vacuolar protein sorting than the original vps mutation classes.  相似文献   

6.
We have isolated four yeast mutants that are unable to partition maternal vacuoles into growing buds. Three of these vacuole segregation (vac) mutants also mislocalize the vacuolar protease carboxypeptidase Y (CPY) to the cell surface, a phenotype previously reported for vac strains. A fourth mutant, vac2-1, exhibits a temperature-sensitive defect in vacuole segregation but does not show a defect in protein targeting from the Golgi apparatus to the vacuole. Haploid vac2-1 cells grown at the non-permissive temperature do not secrete CPY or a second vacuolar protease, proteinase A (PrA). Furthermore, newly synthesized precursors of CPY are converted to mature forms with similar kinetics in both vac2-1 and wild-type cells. In addition, invertase is secreted normally from vac2-1 cells, indicating that post-Golgi steps in the secretory pathway are not blocked in this mutant. These results suggest that VAC2 function is necessary for vacuole division and segregation in yeast but is not involved in vacuole protein sorting events at the Golgi apparatus.  相似文献   

7.
Phosphoinositides direct membrane trafficking, facilitating the recruitment of effectors to specific membranes. In yeast phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) isproposed to regulate vacuolar fusion; however, in intact cells this phosphoinositide can only be detected at the plasma membrane. In Saccharomyces cerevisiae the 5-phosphatase, Inp54p, dephosphorylates PtdIns(4,5)P2 forming PtdIns(4)P, a substrate for the phosphatase Sac1p, which hydrolyzes (PtdIns(4)P). We investigated the role these phosphatases in regulating PtdIns(4,5)P2 subcellular distribution. PtdIns(4,5)P2 bioprobes exhibited loss of plasma membrane localization and instead labeled a subset of fragmented vacuoles in Deltasac1 Deltainp54 and sac1ts Deltainp54 mutants. Furthermore, sac1ts Deltainp54 mutants exhibited vacuolar fusion defects, which were rescued by latrunculin A treatment, or by inactivation of Mss4p, a PtdIns(4)P 5-kinase that synthesizes plasma membrane PtdIns(4,5)P2. Under these conditions PtdIns(4,5)P2 was not detected on vacuole membranes, and vacuole morphology was normal, indicating vacuolar PtdIns(4,5)P2 derives from Mss4p-generated plasma membrane PtdIns(4,5)P2. Deltasac1 Deltainp54 mutants exhibited delayed carboxypeptidase Y sorting, cargo-selective secretion defects, and defects in vacuole function. These studies reveal PtdIns(4,5)P2 hydrolysis by lipid phosphatases governs its spatial distribution, and loss of phosphatase activity may result in PtdIns(4,5)P2 accumulation on vacuole membranes leading to vacuolar fragmentation/fusion defects.  相似文献   

8.
The yeast vacuole is equivalent to the mammalian lysosome and, in response to diverse physiological and environmental stimuli, undergoes alterations both in size and number. Here we demonstrate that vacuoles fragment in response to stress within the endoplasmic reticulum (ER) caused by chemical or genetic perturbations. We establish that this response does not involve known signaling pathways linked previously to ER stress but instead requires the rapamycin-sensitive TOR Complex 1 (TORC1), a master regulator of cell growth, together with its downstream effectors, Tap42/Sit4 and Sch9. To identify additional factors required for ER stress–induced vacuolar fragmentation, we conducted a high-throughput, genome-wide visual screen for yeast mutants that are refractory to ER stress–induced changes in vacuolar morphology. We identified several genes shown previously to be required for vacuolar fusion and/or fission, validating the utility of this approach. We also identified a number of new components important for fragmentation, including a set of proteins involved in assembly of the V-ATPase. Remarkably, we find that one of these, Vph2, undergoes a change in intracellular localization in response to ER stress and, moreover, in a manner that requires TORC1 activity. Together these results reveal a new role for TORC1 in the regulation of vacuolar behavior.  相似文献   

9.
The absence of the antioxidant enzyme Cu,Zn-superoxide dismutase (SOD1) is shown here to cause vacuolar fragmentation in Saccharomyces cerevisiae. Wild-type yeast have 1-3 large vacuoles whereas the sod1Delta yeast have as many as 50 smaller vacuoles. Evidence that this fragmentation is oxygen-mediated includes the findings that aerobically (but not anaerobically) grown sod1Delta yeast exhibit aberrant vacuoles and genetic suppressors of other oxygen-dependent sod1 null phenotypes rescue the vacuole defect. Surprisingly, iron also is implicated in the fragmentation process as iron addition exacerbates the sod1Delta vacuole defect while iron starvation ameliorates it. Because the vacuole is reported to be a site of iron storage and iron reacts avidly with reactive oxygen species to generate toxic side products, we propose that vacuole damage in sod1Delta cells arises from an elevation of iron-mediated oxidation within the vacuole or from elevated pools of "free" iron that may bind nonproductively to vacuolar ligands. Furthermore, additional pleiotropic phenotypes of sod1Delta cells (including increased sensitivity to pH, nutrient deprivation, and metals) may be secondary to vacuolar compromise. Our findings support the hypothesis that oxidative stress alters cellular iron homeostasis which in turn increases oxidative damage. Thus, our findings may have medical relevance as both oxidative stress and alterations in iron homeostasis have been implicated in diverse human disease processes. Our findings suggest that strategies to decrease intracellular iron may significantly reduce oxidatively induced cellular damage.  相似文献   

10.
Vacuoles of Saccharomyces cerevisiae were visualized by phase-contrast microscopy. Visualization was enhanced by adding polyvinylpyrrolidone. Vacuolar segregation during the cell cycle was analysed in 42 individual cells of strain X2180 by time-lapse photomicrography. Within 15 min of bud emergence, more than 80% of the cells contained a vacuolar segregation structure in the form of either a tubule or an alignment of vesicles. The structure emerged from one point of the mother vacuole, then elongated and moved into the bud in a few minutes. The vacuolar segregation structure disappeared, usually within 20 min, before nuclear migration, leaving a separate vacuole in the bud. To test the generality of this observation several strains were grown in the presence of the vacuolar vital dye fluorescein isothiocyanate. The bud size was used to measure progress in the cell cycle. All strains formed vacuolar segregation structures in cells with small buds, although with variations in duration and timing in the cell cycle. In the presence of nocodazole vacuolar segregation occurred normally, thus, microtubules seem not to be essential in this process.  相似文献   

11.
We identified VTA1 in a screen for mutations that result in altered vacuole morphology. Deletion of VTA1 resulted in delayed trafficking of the lipophilic dye FM4-64 to the vacuole and altered vacuolar morphology when cells were exposed to the dye 5-(and 6)-carboxy-2',7'-dichlorofluorescein diacetate (CDCFDA). Deletion of class E vacuolar protein sorting (VPS) genes, which encode proteins that affect multivesicular body formation, also showed altered vacuolar morphology upon exposure to high concentrations of CDCFDA. These results suggest a VPS defect for Deltavta1 cells. Deletion of VTA1 did not affect growth on raffinose and only mildly affected carboxypeptidase S sorting. Turnover of the surface protein Ste3p, the a-factor receptor, was affected in Deltavta1 cells with the protein accumulating on the vacuolar membrane. Likewise the alpha-factor receptor Ste2p accumulated on the vacuolar membrane in Deltavta1 cells. We demonstrated that many class E VPS deletion strains are hyper-resistant to the cell wall disruption agent calcofluor white. Deletion of VTA1 or VPS60, another putative class E gene, resulted in calcofluor white hypersensitivity. A Vta1p-green fluorescent protein fusion protein transiently associated with a Pep12p-positive compartment. This localization was altered by deletion of many of the class E VPS genes, indicating that Vta1p binds to endosomes in a manner dependent on the assembly of the endosomal sorting complexes required for transport. Membrane-associated Vta1p co-purified with Vps60p, suggesting that Vta1p is a class E Vps protein that interacts with Vps60p on a prevacuolar compartment.  相似文献   

12.
Yeast-hypha differentiation is believed to be necessary for the normal progression of Candida albicans infections. The emergence and extension of a germ tube from a parental yeast cell are accompanied by dynamic changes in vacuole size and morphology. Although vacuolar function is required during this process, it is unclear if it is vacuolar expansion or some other vacuolar function that is important. We previously described a C. albicans vps11Delta mutant which lacked a recognizable vacuole compartment and with defects in multiple vacuolar functions. These include sensitivities to stress, reduced proteolytic activities, and severe defects in filamentation. Herein we utilize a partially functional VPS11 allele (vps11hr) to help define which vacuolar functions are required for differentiation and which influence interaction with macrophages. Mutant strains harboring this allele are not osmotically or temperature sensitive and have normal levels of secreted aspartyl protease and carboxypeptidase Y activity but have a fragmented vacuole morphology. Moreover, this mutant is defective in filamentation, suggesting that the major role the vacuole plays in yeast-hypha differentiation may relate directly to its morphology. The results of this study support the hypothesis that vacuole expansion is required during germ tube emergence. Both vps11 mutants were severely attenuated in their ability to kill a macrophage cell line. The viability of the vps11delta mutant was significantly reduced during macrophage interaction compared to that in the control strains, while the vps11hr mutant was unaffected. This implies some vacuolar functions are required for Candida survival within the macrophage, while additional vacuolar functions are required to inflict injury on the macrophage.  相似文献   

13.
Many intracellular vesicle transport pathways involve GTP hydrolysis by the ADP-ribosylation factor (ARF) type of monomeric G proteins, under the control of ArfGAP proteins. Here we show that the structurally related yeast proteins Gcs1 and Age2 form an essential ArfGAP pair that provides overlapping function for TGN transport. Mutant cells lacking the Age2 and Gcs1 proteins cease proliferation, accumulate membranous structures resembling Berkeley bodies, and are unable to properly process and localize the vacuolar hydrolase carboxypeptidase (CPY) and the vacuolar membrane protein alkaline phosphatase (ALP), which are transported from the TGN to the vacuole by distinct transport routes. Immunofluorescence studies localizing the proteins ALP, Kex2 (a TGN resident protein), and Vps10 (the CPY receptor for transport from the TGN to the vacuole) suggest that inadequate function of this ArfGAP pair leads to a fragmentation of TGN, with effects on secretion and endosomal transport. Our results demonstrate that the Gcs1 + Age2 ArfGAP pair provides overlapping function for transport from the TGN, and also indicate that multiple activities at the TGN can be maintained with the aid of a single ArfGAP.  相似文献   

14.
15.
Earlier studies have shown that the Golgi apparatus was fragmented and dispersed in herpes simplex virus 1-infected Vero and HEp-2 cells but not in human 143TK- cells, that the fragmentation and dispersal required viral functions expressed concurrently with or after the onset of DNA synthesis (G. Campadelli-Fiume, R. Brandimarti, C. Di Lazzaro, P. L. Ward, B. Roizman, and M. R. Torrisi, Proc. Natl. Acad. Sci. USA 90:2798-2802, 1993), and that in 143TK- cells, but not Vero or HEp-2 cells, infected with viral mutants lacking the UL20 gene virions were glycosylated and transported to extracellular space (J. D. Baines, P. L. Ward, G. Campadelli-Fiume, and B. Roizman, J. Virol. 65:6414-6424, 1991; E. Avitabile, P. L. Ward, C. Di Lazzaro, M. R. Torrisi, B. Roizman, and G. Campadelli-Fiume, J. Virol. 68:7397-7405, 1994). Experiments designed to elucidate the role of the microtubules and of intact or fragmented Golgi apparatus in the exocytosis of virions showed the following. (i) In all cell lines tested (Vero, 143TK-, BHK, and Hep-2) microtubules underwent fragmentation particularly evident at the cell periphery and then reorganized into bundles which circumvent the nucleus. This event was not affected by inhibitors of viral DNA synthesis. We conclude that redistribution of microtubules may be required but is not sufficient for the fragmentation and dispersal of the Golgi apparatus. (ii) In all infected cell lines tested, nocodazole caused fragmentation and dispersal of the Golgi and a far more extensive depolymerization of the microtubules than was seen in untreated, infected Vero or HEp-2 cells. Taxol precluded the depolymerization of the microtubules and fragmentation of the Golgi in both infected cell lines. Neither nocodazole nor taxol affected the exocytosis of infectious virus from Vero, HEp-2, or 143TK- cells infected with wild-type virus. We conclude that the effects of nocodazole or of taxol are dominant over the effects of viral infection in the cell lines tested and that viral exocytosis is independent of the organization of microtubules or of the integrity of the Golgi apparatus. Lastly, the data suggest that herpes simplex viruses have evolved an exocytic pathway for which the UL20 protein is a component required in some cells but not others and in which this protein does not merely compensate for the fragmentation and dispersal of the Golgi apparatus.  相似文献   

16.
Disintegration of the vacuolar membrane (VM) has been proposed to be a crucial event in various types of programmed cell death (PCD) in plants. However, its regulatory mechanisms are mostly unknown. To obtain new insights on the regulation of VM disintegration during hypersensitive cell death, we investigated the structural dynamics and permeability of the VM, as well as cytoskeletal reorganization during PCD in tobacco BY-2 cells induced by a proteinaceous elicitor, cryptogein. From sequential observations, we have identified the following remarkable events during PCD. Stage 1: bulb-like VM structures appear within the vacuolar lumen and the cortical microtubules are disrupted, while the cortical actin microfilaments are bundled. Simultaneously, transvacuolar strands including endoplasmic microtubules and actin microfilaments are gradually disrupted and the nucleus moves from the center to the periphery of the cell. Stage 2: cortical actin microfilament bundles and complex bulb-like VM structures disappear. The structure of the large central vacuole becomes simpler, and small spherical vacuoles appear. Stage 3: the VM is disintegrated and a fluorescent dye, BCECF, leaks out of the vacuoles just prior to PCD. Application of an actin polymerization inhibitor facilitates both the disappearance of bulb-like vacuolar membrane structures and induction of cell death. These results suggest that the elicitor-induced reorganization of actin microfilaments is involved in the regulation of hypersensitive cell death via modification of the vacuolar structure to induce VM disintegration.  相似文献   

17.
Yeast vacuole protein targeting (vpt) mutants exhibit defects in the sorting and processing of multiple vacuolar hydrolases. To evaluate the impact these vpt mutations have on the biogenesis and functioning of the lysosome-like vacuole, we have used light and electron microscopic techniques to analyze the vacuolar morphology in the mutants. These observations have permitted us to assign the vpt mutants to three distinct classes. The class A vpt mutants (26 complementation groups) contain 1-3 large vacuoles that are morphologically indistinguishable from those in the parental strain, suggesting that only a subset of the proteins destined for delivery to this compartment is mislocalized. One class A mutant (vpt13) is very sensitive to low pH and exhibits a defect in vacuole acidification. Consistent with a potential role for vacuolar pH in protein sorting, we found that bafilomycin A1, a specific inhibitor of the vacuolar ATPase, as well as the weak base ammonium acetate and the proton ionophore carbonyl cyanide m-chlorophenylhydrazone, collapse the pH gradient across the vacuolar membrane and cause the missorting and secretion of two vacuolar hydrolases in wild-type cells. Mutants in the three class B vpt complementation groups exhibit a fragmented vacuole morphology. In these mutants, no large normal vacuoles are observed. Instead, many (20-40) smaller vacuole-like organelles accumulate. The class C vpt mutants, which constitute four complementation groups, exhibit extreme defects in vacuole biogenesis. The mutants lack any organelle resembling a normal vacuole but accumulate other organelles including vesicles, multilamellar membrane structures, and Golgi-related structures. Heterozygous class C zygotes reassemble normal vacuoles rapidly, indicating that some of the accumulated aberrant structures may be intermediates in vacuole formation. These class C mutants also exhibit sensitivity to osmotic stress, suggesting an osmoregulatory role for the vacuole. The vpt mutants should provide insights into the normal physiological role of the vacuole, as well as allowing identification of components required for vacuole protein sorting and/or vacuole assembly.  相似文献   

18.
Lead is an important environmental pollutant. The role of vacuole, in Pb detoxification, was studied using a vacuolar protein sorting mutant strain (vps16Δ), belonging to class C mutants. Cells disrupted in VPS16 gene, did not display a detectable vacuolar-like structure. Based on the loss of cell proliferation capacity, it was found that cells from vps16Δ mutant exhibited a hypersensitivity to Pb-induced toxicity, compared to wild type (WT) strain. The function of vacuolar H+-ATPase (V-ATPase), in Pb detoxification, was evaluated using mutants with structurally normal vacuoles but defective in subunits of catalytic (vma1Δ or vma2Δ) or membrane domain (vph1Δ or vma3Δ) of V-ATPase. All mutants tested, lacking a functional V-ATPase, displayed an increased susceptibility to Pb, comparatively to cells from WT strain. Modification of vacuolar morphology, in Pb-exposed cells, was visualized using a Vma2p-GFP strain. The treatment of yeast cells with Pb originated the fusion of the medium size vacuolar lobes into one enlarged vacuole. In conclusion, it was found that vacuole plays an important role in the detoxification of Pb in Saccharomyces cerevisiae; in addition, a functional V-ATPase was required for Pb compartmentalization.  相似文献   

19.
The vacuole of the yeast Saccharomyces cerevisiae was visualized with three unrelated fluorescent dyes: FITC-dextran, quinacrine, and an endogenous fluorophore produced in ade2 yeast. FITC-dextran, which enters cells by endocytosis, had been previously developed as a vital stain for yeast vacuoles. Quinacrine, which diffuses across membranes and accumulates in acidic compartments in mammalian cells, can also be used as a marker for yeast vacuoles. ade2 yeast accumulate an endogenous fluorophore in their vacuoles. Using these stains, yeast were examined for vacuole morphology throughout the cell division cycle. In both the parent cell and the bud, a single vacuole was the most common morphology at every stage. Two or more vacuoles could also be found in the mother cell or in the bud; however, this morphology was not correlated with any stage of the cell division cycle. Even small buds (in early S phase) often contained a small vacuole. By the time the bud was half the diameter of the mother cell, it almost always bore a vacuole. This picture of vacuole division and segregation differs from what is seen with synchronized cultures. In ade2 yeast, the bud usually inherits a substantial portion of its vacuole contents from the mother cell. We propose that vacuolar segregation is accomplished by vesicular traffic between the parent cell and the bud.  相似文献   

20.
In complex with the immunophilin FKBP12, the natural product rapamycin inhibits signal transduction events required for G1 to S phase cell cycle progression in yeast and mammalian cells. Genetic studies in yeast first implicated the TOR1 and TOR2 proteins as targets of the FKBP12-rapamycin complex. We report here that the TOR2 protein is membrane associated and localized to the surface of the yeast vacuole. Immunoprecipitated TOR2 protein contains readily detectable phosphatidylinositol-4 (PI-4) kinase activity attributable to either a TOR2 intrinsic activity or to a PI-4 kinase tightly associated with TOR2. Importantly, we find that rapamycin stimulates FKBP12 binding to wild-type TOR2 but not to a rapamycin-resistant TOR2-1 mutant protein. Surprisingly, FKBP12-rapamycin binding does not markedly inhibit the PI kinase activity associated with TOR2, but does cause a delocalization of TOR2 from the vacuolar surface, which may deprive the TOR2-associated PI-4 kinase activity of its in vivo substrate. Several additional findings indicate that vacuolar localization is important for TOR2 function and, conversely, that TOR2 modulates vacuolar morphology and segregation. These studies demonstrate that TOR2 is an essential, highly conserved component of a signal transduction pathway regulating cell cycle progression conserved from yeast to man.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号