首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The solid phase peptide synthesis (SPPS) of the amphiphilic peptide Ac-(Leu-Ala-Arg-Leu)(3)-linker, which is modified at the C-terminus with 1,8-diamino-3,6-dioxaoctane as linker moiety, has been investigated. Two different approaches that allow for the synthesis of C-terminally modified, side-chain protected peptides were examined. The solid phase peptide synthesis using aliphatic safety-catch resin followed by activation and aminolysis with the mono-Boc protected linker was compared with the synthesis on 1,8-diamino-3,6-dioxaoctane loaded 2-chlorotrityl resin.  相似文献   

2.
3-(Carboxymethyl)-3-azapentanedioic acid (NTA), 3,12-bis(carboxymethyl)-6,9-dioxa-3,12-diazatetradecanedioic acid (EGTA), and 1,4,7,10-tetraazacyclododecane-N,N',N",N'-tetraacetic acid (DOTA) structures having a 4-nitrophenyl substituent attached via an alkyl spacer to the methylene carbon atom of one carboxymethyl arm of the chelator were obtained by alkylation of 4-nitrophenylalanine with bromoacetic acid (NTA), by reductive alkylation of 1,8-diamino-3,6-dioxaoctane with (4-nitrophenyl)-pyruvic acid followed by alkylation with bromoacetic acid (EGTA), and by alkylation of the trimethyl ester of 1,4,7,10-tetraazacyclododecane-N,N',N"-triacetic acid with the methyl ester of alpha-bromo-4-(4-nitrophenyl)pentanoic acid and subsequent saponification (DOTA). The nitrophenyl-substituted chelators were converted to the corresponding amines by hydrogenation then reacted with thiophosgene to give the protein-reactive aryl isothiocyanate derivatives.  相似文献   

3.
Methods were developed for binding a glycosaminoglycan (GAG, a 50 kDa chondroitin sulfate) to thin agarose membranes using 1-cyano-4-(dimethylamino)pyridinium tetrafluoroborate (CDAP) as the activating agent. Process conditions were optimized to achieve high yields and spatially uniform concentrations of bound ligand. Yields were varied mainly by manipulating the duration and temperature of the aqueous washes prior to coupling, which affected the concentration of active sites available for subsequent GAG binding. The rate constants for degradation of the active cyanate esters in 0.1M bicarbonate solutions were 0.24+/-0.02 h(-1) at 4 degrees C and 0.08+/-0.03 h(-1) at 0 degrees C. Steric limitations in the 3% agarose gels severely restricted binding, with only about 0.1% of active sites being accessible to GAG molecules. The GAG binding occurred primarily in the outer 50-70 microm of the membranes, so that coupling was homogeneous only for thin gels. A model of GAG diffusion and reaction in the coupling step was developed to explain the observed effects of parameters such as the GAG concentration in solution and the membrane thickness. An analysis of the key time scales in the synthesis provides design principles that should be useful also for other cyanylating agents, other ligands, and for beads as well as membranes.  相似文献   

4.
A new metal ion chelator has been developed for use in the immobilised metal ion affinity chromatography (IMAC) of proteins. The aromatic tridentate ligand 2,6-diaminomethylpyridine (bisampyr), 1, was prepared as the dihydrochloride salt, via a two step synthesis from 2,6-pyridinedimethanol, 2, and immobilised onto Sepharose CL-4B through an epoxide coupling procedure. The resulting sorbent was chelated with Cu2+ ions to a density of 420 micromol Cu2+ ions per g gel and then characterised by frontal analysis using the protein, horse heart myoglobin (HMYO), at pH 7.0 and 9.0. From the resulting adsorption isotherms, the adsorption capacity, qm, for HMYO at pH 7.0 and pH 9.0 with the immobilised Cu2+-bisampyr Sepharose sorbent was found to be 1.27 micromol protein/g gel and 1.43 micromol protein/g gel, whilst the corresponding dissociation constants, K(D)s, were 18.0 x 10(-6) M and 16.0 x 10(-6) M respectively. The results confirm that the HMYO-Cu2+-bisampyr complex had similar stability at these pH values. This finding is in contrast with the situation observed with some other commonly used IMAC chelating ligates such as Cu2+-iminodiacetic acid (Cu2+-IDA) or Cu2+-nitrilotriacetic acid (Cu2+-NTA). Using human serum proteins, the interactive properties of the immobilised Cu2+-bisampyr Sepharose sorbent were further characterised at pH 5.0, 7.0 and 9.0 with specific reference to the binding behaviour of albumin, transferrin, and alpha2-macroglobulin.  相似文献   

5.
Changes in extrinsic fluorescence intensity, associated with step changes in membrane potential, have been studied in intracellularly or extracellularly stained squid axons, and in lipid bilayers, using six different aminonaphthalene dyes: 1,8-TNS; 2,6-TNS; 1,8-MANS; 2,6-MANS; 2,6-ANS and NPN. In all preparations the optical signals were found to be roughly proportional to the voltage applied. All signals had a very fast initial component, which was followed in some case by a slower change in the same direction. The slow component was observed only in intracellularly stained axons, and not for all chromophores studied. 1,8-TNS, 1,8-MANS and 2,6-MANS yielded the largest fluorescence signals in all preparations. The sign of these signals was independent of the type of membrane studied. However, the fluorescence changes of 2,6-MANS were opposite to those of 1,8-TNS and 1,8 MANS. Staining of both sides of the axolemma with 1,8-MANS or 2,6-MANS showed that these dyes yield larger signals when applied to the extracellular face. The changes in fluorescence light intensity of 2,6-TNS, 2,6-ANS and NPN were smaller and their sign depended on the membrane preparation studied. The comparison of the extrinsic fluorescence signals from the nerve membrane and the phosphatidylcholine bilayer suggests strong similarities between the basic structures of the two systems. The variety of observed signals cannot be easily interpreted in terms of changes in membrane structure. A possible alternative interpretation in terms of electrically induced displacements, rotations and changes in partition coefficient of bound chromophores, is discussed.Abbreviations 1,8-TNS 1-toluidinonaphthalene-8-sulfonate, and similarly, 2,6-TNS - 1,8-MANS 1-N-methylanilinonaphthalene-8-sulfonate, and similarly, 2,6-MANS - 1,8-ANS 1-anilinonaphthalene-8-sulfonate, and similarly, 2,6-ANS - NPN N-phenyl-1-naphthylamine  相似文献   

6.
Oxidation of hydrogen sulfide to thiosulfate is one of the best-characterized mechanisms by which animals adapted to sulfide minimize its toxicity, but the mechanism of thiosulfate elimination in these animals has remained unclear. In this study, we examined the accumulation and elimination of thiosulfate in the sulfide-adapted marine worm Urechis caupo. The coelomic fluid of U. caupo exposed to 50-100 micromol L-1 sulfide in hypoxic seawater (Po2 ca. 10 kPa) accumulated (mean+/-SD) 132+/-41 micromol L-1 thiosulfate after 2 h, reaching 227+/-113 micromol L-1 after an additional 4 h in aerated, sulfide-free seawater. In whole-animal thiosulfate clearance studies, the rate of thiosulfate elimination from the coelomic fluid followed a single exponential time course with a half-life of 6 h. The thiosulfate permeability coefficient of isolated preparations mounted in diffusion chambers was 7.6x10-5+/-7. 7x10-5 cm s-1 for the hindgut and 5.5x10-7+/-2.7x10-7 cm s-1 for the body wall. These rates were independent of the direction of net efflux (mucosal-to-serosal or serosal-to-mucosal). Using a simple mathematical model of U. caupo that incorporates the thiosulfate permeability coefficients, the thiosulfate half-life was calculated to be 23 h without hindgut ventilation but less than 1 h with normal hindgut ventilation. Based on this information, we propose that passive thiosulfate diffusion across the hindgut is adequate to explain the observed rates of thiosulfate elimination.  相似文献   

7.
In order to throw light on the mechanisms responsible for the enzyme-dependent absorption of disaccharides membrane hydrolysis of maltose and trehalose and the absorption of glucose (free and that derived from disaccharides) were studied in isolated loops (20 cm) of the rat small intestine in chronic experiments. The rates of glucose absorption were 0.26-0.81 micromol x min(-1) x cm(-1) when the loop was perfused with a 12.5 to 75.0 mmol/l free glucose solution, which is only insignificantly higher than the rates observed during perfusion with equivalent maltose solutions. The coupling coefficient (the ratio of glucose absorption rate to the rate of disaccharide hydrolysis) decreased from 0.90 to 0.60 with the increasing maltose concentrations in the infusate from 6.25 to 37.5 mmol/l, but remained unchanged (approximately 0.95) within the same range of trehalose concentrations. The permeability of the pre-epithelial barrier was equivalent to that of unstirred water layer of less than 40 microm thickness. Fluid absorption was within the range of 0.73-2.55 microl x min(-1) x cm(-1), and it showed a correlation with the rates of glucose absorption. The results agree with a model developed on the assumption that free glucose and that released from disaccharides share the same membrane transporters. It could be concluded that a close coupling of disaccharide hydrolysis with derived glucose absorption in chronic experiments is achieved mainly due to a high activity of glucose transporters, which are presumably not associated with membrane disaccharidases. The transcellular active transport is a predominant mechanism of disaccharide-derived glucose absorption under conditions close to physiological.  相似文献   

8.
There is increasing interest in supported membranes as models of biological membranes and as a physiological matrix for studying the structure and function of membrane proteins and receptors. A common problem of protein-lipid bilayers that are directly supported on a hydrophilic substrate is nonphysiological interactions of integral membrane proteins with the solid support to the extent that they will not diffuse in the plane of the membrane. To alleviate some of these problems we have developed a new tethered polymer-supported planar lipid bilayer system, which permitted us to reconstitute integral membrane proteins in a laterally mobile form. We have supported lipid bilayers on a newly designed polyethyleneglycol cushion, which provided a soft support and, for increased stability, covalent linkage of the membranes to the supporting quartz or glass substrates. The formation and morphology of the bilayers were followed by total internal reflection and epifluorescence microscopy, and the lateral diffusion of the lipids and proteins in the bilayer was monitored by fluorescence recovery after photobleaching. Uniform bilayers with high lateral lipid diffusion coefficients (0.8-1.2 x 10(-8) cm(2)/s) were observed when the polymer concentration was kept slightly below the mushroom-to-brush transition. Cytochrome b(5) and annexin V were used as first test proteins in this system. When reconstituted in supported bilayers that were directly supported on quartz, both proteins were largely immobile with mobile fractions < 25%. However, two populations of laterally mobile proteins were observed in the polymer-supported bilayers. Approximately 25% of cytochrome b(5) diffused with a diffusion coefficient of approximately 1 x 10(-8) cm(2)/s, and 50-60% diffused with a diffusion coefficient of approximately 2 x 10(-10) cm(2)/s. Similarly, one-third of annexin V diffused with a diffusion coefficient of approximately 3 x 10(-9) cm(2)/s, and two-thirds diffused with a diffusion coefficient of approximately 4 x 10(-10) cm(2)/s. A model for the interaction of these proteins with the underlying polymer is discussed.  相似文献   

9.
外源甜菜碱对水分胁迫下桃树生理响应的影响   总被引:7,自引:0,他引:7  
以4年生盆栽“庆丰”桃树为试材,研究了水分胁迫下桃树叶片中甜菜碱含量的变化规律及叶面喷施甜菜碱对水分胁迫下桃树生理响应的影响.结果表明:正常供水情况下,桃树叶片中甜菜碱含量为75.9~80.5 μg·g-1FM , 随着水分胁迫程度的加深,甜菜碱含量逐渐增加,停水第16 天时达278.9 μg·g-1FM ;正常供水时桃叶片细胞质膜透性为8.06%~8.61%,水分胁迫下增至28.62%,叶面喷施100和500 mg·L-1甜菜碱16d后分别为26.25%和21.79%;过氧化氢(H2O2)含量由正常情况下的27.2~32.5 μmol·g-1FM 增至胁迫后的76.4 μmol·g-1FM,叶面喷施100和500 mg·L-1甜菜碱后分别为73.2和68.5 μmol·g-1 FM;水分胁迫下,抗坏血酸过氧化物酶(AsA-POD)活性峰值为0.435 mg·g-1 FM,甜菜碱处理后峰值达到0.490 mg·g-1 FM;游离脯氨酸与可溶性糖在干旱胁迫下逐渐累积, 500 mg·L-1甜菜碱处理分别为2.878 mg·g-1 FM和37.6 mg·g-1 FM,均低于单纯胁迫及100 mg·L-1甜菜碱处理;可溶性蛋白质含量在水分胁迫下呈下降趋势,甜菜碱处理后最小值为4.03 mg·g-1 FM,较单纯胁迫下的最低值(3.14 mg·g-1 FM)高20.3%.表明叶面喷施甜菜碱能在一定程度上减轻桃树的受害程度,提高其抗旱性.  相似文献   

10.
Plasma membrane calcium pumps (PMCAs) are integral membrane proteins that actively expel Ca(2+) from the cell. Specific Ca(2+)-ATPase activity of erythrocyte membranes increased steeply up to 1.5-5 times when the membrane protein concentration decreased from 50 microg/ml to 1 microg/ml. The activation by dilution was also observed for ATP-dependent Ca(2+) uptake into vesicles from Sf9 cells over-expressing the PMCA 4b isoform, confirming that it is a property of the PMCA. Dilution of the protein did not modify the activation by ATP, Ca(2+) or Ca(2+)-calmodulin. Treatment with non-ionic detergents did not abolish the dilution effect, suggesting that it was not due to resealing of the membrane vesicles. Pre-incubation of erythrocyte membranes with Cytochalasin D under conditions that promote actin polymerization abolished the dilution effect. Highly-purified, micellar PMCA showed no dilution effect and was not affected by Cytochalasin D. Taken together, these results suggest that the concentration-dependent behavior of the PMCA activity was due to interactions with cytoskeletal proteins. The dilution effect was also observed with different PMCA isoforms, indicating that this is a general phenomenon for all PMCAs.  相似文献   

11.
This paper describes the development of a highly sensitive competitive immunoassay with the piezoelectric sensor. The immobilized derivative of cocaine was benzoylecgonine-1,8-diamino-3,4-dioxaoctane (BZE-DADOO). For the immobilization of BZE-DADOO, the conjugate BZE-DADOO with 11-mercaptomonoundecanoic acid (MUA) was synthesized via 2-(5-norbornen-2,3-dicarboximide)-1,1,3,3-tetramethyluronium-tetrafluoroborate (TNTU), followed by the creation of the conjugate monolayer on the piezosensor electrodes. For the optimization of the competitive assay we used electrodes with rough or smooth gold areas and for the interaction with immobilized antigen different anti-cocaine sheep polyclonal (pAb, either whole IgG or Fab fragment) and mouse monoclonal (mAb, whole IgG) antibodies. The assay of cocaine developed achieved a detection limit (LOD) of 100 pmol/l (34 ng/l) using the sheep antibody (IgG) and piezoelectric sensors with a smooth gold surface. The total time of one analysis was 15 min and the measuring area of the sensor could be used more than 40 times without losing its sensitivity.  相似文献   

12.
Sensors for the simultaneous determinations of sucrose and glucose, lactose and glucose, and starch and glucose were prepared by a combination of the enzyme system shown below and an oxygen electrode: The mechanism for separating the substrates with the proposed sensors is based on the time lag arising from reaction and diffusion. Invertase, beta-galactosidase, amyloglucosidase, mutarotase, and glucose oxidase were covalently immobilized on triacetyl cellulose membranes containing 1,8-diamino-4-aminomethyloctane. A glucose oxidase membrane, mutarotase membrane, three sheets of triacetyl cellulose membranes, and invertase, or beta-galactosidase or amyloglucosidase membrane were placed in that order on the tip of the oxygen electrode. Calibration curves for sucrose, lactose, and starch were linear up to 40 mM, 60-180 mM, and 10%, respectively. The simultaneous determination of sucrose and glucose, lactose and glucose, and starch and glucose was possible when the amount of glucose coexised was in the range of 2-16% sucrose, 2.8-8.3% lactose, or 0.1-1% starch. The relative errors were +/-4% for sucrose and +/-3% for lactose in 100 assays. The starch sensor was reused only five times. Each enzyme membrane was fairly stable for more than 10 days.  相似文献   

13.
Summary The fluorescence polarization properties of lecithin bilayers stained with 2,6-MANS and 1,8-ANS under applied potential steps have been studied. The fluorescence signal components of both dyes were found to have different sign and relative amplitude, suggesting that 1,8-ANS and 2,6-MANS behave differently when bound to black lipid membranes. In order to determine the location and the extent of rotational brownian motions of the bound chromophores, the experimental data were analyzed by using a simplified physico-mathematical model. According to it 2,6-MANS appears to have a ratio /gt higher than 1,8-ANS ( being the rotational relaxation of in plane rotations and the lifetime of the excited singlet state of the bound molecules), suggesting that the former chromophore is more tightly held inside the bilayers. Furthermore, 2,6-MANS is found to possess the absorption and emission oscillators more closely oriented to the normal of membrane surface, while 1,8-ANS has both oscillators almost near the plane of the bilayers. The results furnish also a fair estimate of the random molecular motion own by the phospholipid molecules at room temperature. The comparison of the present data with those obtained from squid axon membranes confirms the validity of the proposed physical model, yielding a rough estimate of the axon membrane-area covered by integral protein macromolecules. These preliminary results derived from lecithin model membranes suggest that fluorescence polarization techniques can provide valuable informations if applied to study the macromolecular organization of in vitro reconstituted membranes.Abbreviations 2,6-MANS 2-n-methylanilinonaphthalene-6-sulfonate - 1,8-ANS 1-anilinonaphthalene-8-sulfonate  相似文献   

14.
Chemical sensors utilizing immobilized enzymes and proteins are important for monitoring chemical processes and biological systems. In this study, calcium-cross-linked alginate hydrogel microspheres were fabricated as enzyme carriers by an emulsification technique. Glucose oxidase (GOx) was encapsulated in alginate microspheres using three different methods: physical entrapment (emulsion), chemical conjugation (conjugation), and a combination of physical entrapment and chemical conjugation (emulsion-conjugation). Nano-organized coatings were applied on alginate/GOx microspheres using the layer-by-layer self-assembly technique in order to stabilize the hydrogel/enzyme system under biological environment. The encapsulation of GOx and formation of nanofilm coating on alginate microspheres were verified with FTIR spectral analysis, zeta-potential analysis, and confocal laser scanning microscopy. To compare both the immobilization properties of enzyme encapsulation techniques and the influence of nanofilms with uncoated microspheres, the relationship between enzyme loading, release, and effective GOx activity (enzyme activity per unit protein loading) were studied over a period of four weeks. The results produced four key findings: (1) the emulsion-conjugation technique improved the stability of GOx in alginate microspheres compared to the emulsion technique, reducing the GOx leaching from microsphere from 50% to 17%; (2) the polyelectrolyte nanofilm coatings increased the GOx stability over time, but also reduced the effective GOx activity; (3) the effective GOx activity for the emulsion-conjugation technique (about 3.5 x 10(-)(5) AU microg(-)(1) s(-)(1)) was higher than that for other methods, and did not change significantly over four weeks; and (4) the GOx concentration, when compared after one week for microspheres with three bilayers of poly(allylamine hydrochloride)/sodium poly(styrene sulfonate) ({PAH/PSS}) coating, was highest for the emulsion-conjugation technique. As a result, the comparison of these three techniques showed the emulsion-conjugation technique to be a potentially effective and practical way to fabricate alginate/GOx microspheres for implantable glucose biosensor application.  相似文献   

15.
We developed a dual piezoelectric/amperometric sensor for the detection of two unrelated analytes in one experiment that uses propidium to anchor acetylcholinesterases (AChE) at the surface. This mass-sensitive sensor does not only allow the examination of the interaction between AChE and the modified surface but also the detection of in situ inhibition of the surface-bound AChE. Here we describe the application of the propidium-based sensor in combination with a modified AChE. For this reason the cocaine derivative benzoylecgonine (BZE) was coupled via a 10A long hydrophilic linker - 1,8-diamino-3,4-dioxaoctane - to carboxylic groups of the AChE after EDC/NHS activation. Thus the modified AChE (BZE-AChE) possesses an additional recognition element besides the inhibitor binding site. After the deposition of BZE-AChE on the sensor surface the binding of an anti-BZE-antibody to the BZE-AChE can be monitored. This makes it possible to determine two analytes - cocaine and organophosphate - in one experiment by measuring antibody binding and decrease in enzymatic activity, respectively. Furthermore it was also shown that other cocaine-binding enzymes, e.g., butyrylcholinesterase, can bind to the modified BZE-AChE. The competitive immunoassay allowed the detection of cocaine with a dynamic range from 10(-9) to 10(-7)M. The organophosphate chlorpyrifos-oxon could be detected in concentrations from 10(-6) down to 10(-8)M after 20min of injection time (equals to 500muL sample volume.  相似文献   

16.
Uracil (URA) was selected as a template for preparing molecularly imprinted membranes of poly(acrylonitrile-co-methylacrylic acid) [P(AN-co-MAA)] using the phase inversion technique. This study used Fourier transform infra-red (FT-IR) and (1)H nuclear magnetic resonance (NMR) spectroscopic studies to characterize the polymer-template interaction and scanning electron microscopy (SEM) and atomic force microscopy (AFM) for morphology of the URA imprinted membrane. Resultant membranes had typical ultrafiltration structure with porous morphology and showed a permeation flux of 3.5 x 10 9-5)m(3)/(m(2)s) for 32 microM URA aqueous solution. Permselective binding to the target molecule was observed in permeation experiments with 7.9 micromol/g binding capacity of URA. Binding selectivity was discussed for URA and its analogs, dimethyluracil (DMURA) and caffeine (CAF), with 0.6 and 0.8 micromol/g binding capacity, respectively.  相似文献   

17.
To understand how plasma membranes may limit water flux, we have modeled the apical membrane of MDCK type 1 cells. Previous experiments demonstrated that liposomes designed to mimic the inner and outer leaflet of this membrane exhibited 18-fold lower water permeation for outer leaflet lipids than inner leaflet lipids (Hill, W.G., and M.L. Zeidel. 2000. J. Biol. Chem. 275:30176-30185), confirming that the outer leaflet is the primary barrier to permeation. If leaflets in a bilayer resist permeation independently, the following equation estimates single leaflet permeabilities: 1/P(AB) = 1/P(A) + 1/P(B) (Eq. l), where P(AB) is the permeability of a bilayer composed of leaflets A and B, P(A) is the permeability of leaflet A, and P(B) is the permeability of leaflet B. Using for the MDCK leaflet-specific liposomes gives an estimated value for the osmotic water permeability (P(f)) of 4.6 x 10(-4) cm/s (at 25 degrees C) that correlated well with experimentally measured values in intact cells. We have now constructed both symmetric and asymmetric planar lipid bilayers that model the MDCK apical membrane. Water permeability across these bilayers was monitored in the immediate membrane vicinity using a Na+-sensitive scanning microelectrode and an osmotic gradient induced by addition of urea. The near-membrane concentration distribution of solute was used to calculate the velocity of water flow (Pohl, P., S.M. Saparov, and Y.N. Antonenko. 1997. Biophys. J. 72:1711-1718). At 36 degrees C, P(f) was 3.44 +/- 0.35 x 10(-3) cm/s for symmetrical inner leaflet membranes and 3.40 +/- 0.34 x 10(-4) cm/s for symmetrical exofacial membranes. From, the estimated permeability of an asymmetric membrane is 6.2 x 10(-4) cm/s. Water permeability measured for the asymmetric planar bilayer was 6.7 +/- 0.7 x 10(-4) cm/s, which is within 10% of the calculated value. Direct experimental measurement of P(f) for an asymmetric planar membrane confirms that leaflets in a bilayer offer independent and additive resistances to water permeation and validates the use of.  相似文献   

18.
After treating Bacillus megaterium KM membranes with 0.2% sodium deoxycholate, most of the membrane reduced nicotinamide adenine dinucleotide (NADH) oxidase was inactivated, and all of the membrane NADH-2,6 dichlorophenol indophenol oxidoreductase was solubilized. Dilution of the deoxycholate-treated membranes in the presence of divalent cations restored almost all of the original membrane NADH oxidase. The effectiveness of the divalent cation activation decreased in the order Ba(2+) > Ca(2+) > Mg(2+) > Mn(2+). After centrifugation, the deoxycholate-treated membranes at 100,000 x g for 1 hr, all of the NADH oxidase that was activated by a divalent cation was soluble. Cation-activated oxidase, however, was insoluble. The results show that 0.2% deoxycholate at least partially solubilizes the total electron chain from NADH to O(2) in an inactive from which can be reactivated by divalent cations with the formation of active, insoluble NADH oxidase.  相似文献   

19.
Vascular endothelial surface-related activities may depend on the lateral mobility of specific cell surface macromolecules. Previous studies have shown that cytokines induce changes in the morphology and surface antigen composition of vascular endothelial cells in vitro and at sites of immune and inflammatory reactions in vivo. The effects of cytokines on membrane dynamic properties have not been examined. In the present study, we have used fluorescence photobleaching recovery (FPR) to quantify the effects of the cytokines tumor necrosis factor (TNF) and immune interferon (IFN-gamma) on the lateral mobilities of class I major histocompatibility complex protein, of an abundant 96,000 Mr mesenchymal cell surface glycoprotein (gp96), and of a phospholipid probe in cultured human endothelial cell (HEC) membranes. Class I protein and gp96 were directly labeled with fluorescein-conjugated monoclonal antibodies; plasma membrane lipid mobility was examined with the phospholipid analogue fluorescein phosphatidylethanolamine (Fl-PE). In untreated, confluent HEC monolayers, diffusion coefficients were 30 x 10(-10) cm2 s-1 for class I protein, 14 x 10(-10) cm2 s-1 for gp96, and 80 x 10(-10) cm2 s-1 for Fl-PE. Fractional mobilities were greater than 80% for each probe. Cultures treated at visual confluence for 3-4 d with either 100 U/ml TNF or 200 U/ml IFN-gamma did not exhibit significant changes in protein or lipid mobilities despite significant changes in cell morphology and membrane antigen composition. In HEC cultures treated concomitantly with TNF and IFN-gamma, however, diffusion coefficients decreased by 71-79% for class I protein, 29-55% for gp96, and 23-38% for Fl-PE. Fractional mobilities were unchanged. By immunoperoxidase transmission electron microscopy, plasma membranes of untreated and cytokine-treated HEC were flat and stained uniformly for class I antigen. "Line" FPR measurements on doubly treated HEC demonstrated isotropic diffusion of class I protein, gp96, and Fl-PE. Finally, although TNF and IFN-gamma retarded the growth of HEC cultures and disrupted the organization of cell monolayers, the slow diffusion rates of gp96 and Fl-PE in confluent doubly treated monolayers were not reproduced in sparse or subconfluent untreated monolayers. We conclude that the slowing of protein and lipid diffusion induced by the combination of TNF and IFN-gamma is not due to plasma membrane corrugations, to anisotropic diffusion barriers, or to decreased numbers of cell-cell contacts.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
Two representative compounds from a novel chemical series of potent inhibitors of lipid peroxidation are described. The compounds 21-[4-(2,6-di-1-pyrrolidinyl-4-pyrimidinyl)-1-piperazinyl]-16 alpha-methylpregna-1,4,9(11)-triene-3,20-dione monomethane sulfonate (U74006F) and 21-[4-(3,6-bis(diethylamino)-2-pyridinyl)-1-piperazinyl]-16 alpha-methylpregna-1,4,9(11)triene-3,20-dione hydrochloride (U74500A) inhibited lipid peroxidation in brain homogenates and purified brain synaptosomes under a variety of conditions involving iron. With IC50 values ranging from 2 to 60 microM, U74006F and U74500A were comparable in potency to alpha-tocopherol or butylated hydroxytoluene and were nearly 100 times as potent as desferrioxamine. Some specificity for intact phospholipid membranes is suggested since the ability of U74006F or U74500A to inhibit lipid peroxidation was greatly reduced in methanol solutions of arachidonic acid. Despite close similarities in their structures, their response to increasing concentrations of Fe2+ in lipid peroxidation assays differed qualitatively. One of the compounds, U74500A, may act as a membrane localized chelator of iron.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号