首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rhoeo spathacea (Schwartz) Stearn (2n=12) is a complete translocation heterozygote in which a ring of 12 chromosomes is often observed from diakinesis through metaphase I. A new hypotonie bursting technique on primary microsporocytes made possible visualization of the complete pattern of pachytene synapsis in R. spathacea by light and electron microscopy. Analysis showed that most of the length of a chromosome never synapsed and that relational twisting of the lateral elements was prominent in the distal segments of most synaptonemal complexes (SCs). The most common situation was 12 relatively short SCs representing the 24 synapsed terminal segments of the 12 chromosomes; 11 and 10 SCs were also observed but less frequently, indicating one and two synaptic failures, respectively. Similarly, in diakinesis a ring of 12 chromosomes was most common, but a chain of 12 chromosomes and two chains of chromosomes could also occur. These situations indicated zero, one, and two chiasma failures, respectively. The frequencies of synaptic failure (0.021) and of chiasma failure (0.022) were essentially the same as were the distributions of cells with different numbers of synaptic and chiasma failures. These comparisons indicate that if synapsis occurs between two distal segments of the chromosomes of R. spathacea, a chiasma will almost certainly follow. A diagram to illustrate the arrangement of mid-pachytene chromosomes and a model to explain the origin of relational twisting of lateral elements in SCs are presented.  相似文献   

2.
Differences in length of the heterochromatic short arms of the X and Y chromosomes in individuals ofPeromyscus beatae are hypothesized to result from unequal crossing over. To test this hypothesis, we examined patterns of synapsis, chiasma formation, and segregation for maleP. beatae which were either heterozygous or homozygous for the amount of short-arm sex heterochromatin. Synaptonemal complex analysis demonstrated that mitotic differences in heterochromatic shortarm lengths between the X and Y chromosomes were reflected in early pachynema as corresponding differences in axial element lengths within the pairing region of the sex bivalent. These length differences were subsequently eliminated by synaptic adjustment such that by late pachynema, the synaptonemal complex configurations of the XY bivalent of heterozygotes were not differentiable from those of homozygotes. Crossing over between the heterochromatic short arms of the XY bivalent was documented by the routine appearance of a single chiasma in this region during diakinesis/metaphase I. Sex heterochromatin heterozygotes were characterized by the presence of asymmetrical chiasma between the X and Y short arms at diakinesis/metaphase I and sex chromosomes with unequal chromatid lengths at metaphase II. These data corroborate our hypothesis on the role of unequal crossing over in the production and propagation of X and Y heterochromatin variation and suggest that, in some cases, crossing over can occur during the process of synaptic adjustment.  相似文献   

3.
The morphological sequence of the twelve chromosomes around the ring as worked out by Sax is reaffirmed with slight corrections of the centromere position on three chromosomes: Aa, fA, and Dd. Adjacent distribution was found in 53/120 MI PMC (44.2%). Ring-position analysis was achieved in 34 of the 53. There were 127 chromosomes and 66 arm-pairs involved in adjacent distribution in these 34 MI PMC. Adjacent distributions occurred at random among the twelve chromosome positions and among the twelve arm-pair positions. There were eleven instances among the 66 arm-pairs (16.7%) of adjacent distribution despite free ends due to chiasma failure. Up to four consecutive chromosomes may pass to the same pole. Not all cells with 6–6 distribution are genetically balanced. Distribution of 7–5 occurred in 24/120 AI PMC (20.0%). Another nine (7.5%) in the same sample had one or more lagging chromosomes. At MI, three PMC had 8–4 distribution, but none such were seen at AI.  相似文献   

4.
Detailed meiotic studies were conducted on ten haploid plants representing six different genotypes of barley (Hordeum vulgare, 2n=14). At pachytene stages the non-homologous chromosomes were observed to pair as intimately as homologous chromosomes in many cells. Foldback pairing, involving single chromosomes, and multivalent associations were common. At diplotene, up to 4 chiasmatalike structures were observed in paired chromosomes but it is not likely that they resulted from crossing over. At diakinesis the bivalent frequency mean was from 1 to 1.3 per cell whereas by metaphase I the paired associations were rare with a single rod bivalent being observed in 3 to 5% of the cells. The frequencies of various types of secondary associations at metaphase were also recorded. — The origin and significance of bivalents and secondary associations in haploids is reviewed and discussed. Caution is urged in the interpretation that low levels of chromosome pairing in haploids is evidence of homology. It is concluded that very little chromosome duplication is likely to be found within the haploid set of barley chromosomes and that the basic chromosome number is seven.  相似文献   

5.
Summary Equations have been derived for two different models of chromosome pairing and chiasmata distribution. The first model represents the normal condition and assumes complete synapsis of homologous bivalents and the arms of interchange quadrivalents. This is followed by a nonrandom distribution of chiasmata among bivalents and multivalents such that each bivalent or bivalent-equivalent always has at least one chiasma. Univalents occur only as part of a III, I configuration at diakinesis or metaphase I. The second model assumes that a hologenomic mutation is present in which all chromosomes of a genome are equally affected. Two different assumptions can be made for such a mutation, and both give the same results: (1) homologous or homoeologous chromosome arms may be randomly paired or unpaired, but synapsis always leads to a crossover; (2) homologous or homoeologous arms always pair, but chiasmata are randomly distributed among the arms. The meiotic configurations at diakinesis or metaphase I are the same for both assumptions. Meiotic configurations of normal diploid interchange heterozygotes show good agreement with numbers predicted by the equations for nonrandom chiasmata distribution among configurations. Inter-specific hybrids with supernumerary chromosomes produced meiotic configurations frequencies in agreement with predictions of equations for random chiasmata distribution, but a hybrid without supernumeraries fitted the nonrandom expectations.  相似文献   

6.
M Wagenvoort 《Génome》1995,38(1):140-147
Meiosis was studied in two diploid (2n = 2x = 24) siblings of Solanum phureja Juz. et Buk. and in 11 disomic and 2 trisomic descendants. The diploid siblings carry the same heterozygous interchange and either one or two inversions. The frequency of quadrivalents at diakinesis/metaphase I in these clones was 0.56 and 0.62 per pollen mother cell. In two plants from the first inbred generation (I1) this frequency was about the same but in some other I1 plants and a full sib the frequency was substantially lower, varying from 0.00 to 0.16. Most quadrivalents, 78-83%, were rings. A variety of quadrivalent configurations at diakinesis and metaphase I was observed, giving rise to balanced and unbalanced gametes. The absence of ring quadrivalents in trisomic descendants of one of the siblings implied that tertiary trisomics or primaries being homozygous for the interchange were present in the I1 generation. Regular chromosome distribution (12-12) at anaphase I occurred in 46.5 and 73.2% of the pollen mother cells studied in the two original clones. Irregularities, such as 11-13 distribution, lagging chromosomes, and a bridge and fragment, were detected on average in 2.7, 3.3, and 32.5%, respectively, of the anaphase I cells analysed. In hybrids from crosses between 6 primary trisomics as females with the interchange heterozygote, the involvement in the interchange of chromosomes 3 and 12 was clearly demonstrated.  相似文献   

7.
Electron-microscopic analysis of synaptonemal complexes (SC) spread on the surface of hypophase was carried out to study chromosome rearrangements in sterile and semisterile F1 offsprings of mice exposed to gamma-radiation at a dose of 5 Gy. Chromosome rearrangements were microscopically scored at diakinesis - metaphase I in the same animals. SC analysis at pachytene revealed chromosome rearrangements in 63% spermatocytes. Analysis of chromosomes at diakinesis - metaphase I in the same animals only revealed chromosome rearrangements in 32% cells. SC analysis permits detecting chromosome rearrangements undetectable at diakinesis - metaphase I.  相似文献   

8.
Summary A translocation heterozygote in tomato (Lycopersicon esculentum) is shown to have a cyclical type of interchange between the long arms of chromosomes 1, 2 (nucleolar) and 3. A study of chromosome association in this plant at metaphase I has indicated that in 21% of the cells a ring of six chromosomes is present. Since an open ring hexavalent can occur only if there is chiasma formation in all the translocated segments and in all the short arms of the three chromosomes, it is concluded that there is considerable frequency of chiasma formation in the short arm of the nucleolar chromosome. This conclusion contradicts the previous observations that chiasma formation is either absent or very rare in the entirely dark staining chromatic, sometimes referred to as heterochromatic, short arm of the nucleolar chromosome.Part of this investigation was carried out at the Department of Genetics, Agricultural University, Wageningen, when the author was serving a contract between the EURATOM-I.T.A.L. and the Agricultural University.  相似文献   

9.
Fu TK  Sears ER 《Genetics》1973,75(2):231-246
Telocentrics for the β arm of chromosome 4A and the long arm of 6B were used as cytological markers for the determination of chiasma frequency. In concomitant studies of recombination, terminal segments of rye and T. umbellulatum chromatin carrying Hp (Hairy peduncle) and Lr9 (Leaf-rust resistance), respectively, marked 4A and 6B. Two temperatures, 21° and 32°, were used for both the 4A and 6B experiments.—Only one chiasma was observed in each heteromorphic bivalent. Because there was a substantial reduction in pairing between diakinesis and metaphase I, all determinations of chiasma frequency were made at diakinesis. In the 21° experiments, agreement was good between genetic recombination and cytological prediction on the basis of the partial chiasmatypy hypothesis that each chiasma represents a crossover. At 32° both chiasma frequency and crossing over, but particularly the latter, were strongly reduced. The fewer crossovers than expected are explained in part by stickiness of chromosomes at the high temperature, sometimes resulting in adjacent chromosomes being wrongly scored as having a chiasma, and in part by premetaphase disjunction of some recombined bivalents and subsequent independent behavior of the two resulting univalents.—Male transmission of the 4A telocentric from the heteromorphic bivalent was unusually high: 51% at 21° and 31% at 32°.  相似文献   

10.
The meiotic behaviour of chromosomes 1R, 2R and 5R was studied in C-banded preparations of autotetraploid rye. Analysis of pairing and chiasma formation was based on metaphase I configurations, using the model designed by Sybenga, with slight modifications. Frequencies of two modes of pairing (one quadrivalent or two bivalents) differed from those expected for random pairing. Although preferential pairing for some arm pairs of chromosome 2R was detected, this did not seem to be the cause of the increased bivalent pairing. This increase was attributed to either the spatial separation of the four homologous chromosomes in some premeiotic cells into two groups of two, or a correction of the synaptonemal complex, or both. The number of chiasmate associations showed variation between chromosomes and between arms within the same chromosome. It was closely related to arm length, but different after quadrivalent and bivalent pairing. This is suggested to be a consequence of partner exchange interfering with pairing and, consequently, with chiasma formation, and a different chiasma distribution after quadrivalent pairing. Variation between chromosomes in the frequencies of alternate and adjacent co-orientation in metaphase I quadrivalents without interstitial chiasmata suggests that the relative positions of the centromeres in the quadrivalent influence their co-orientation.  相似文献   

11.
The existing XYY meiotic data for mice present a very heterogeneous picture with respect to the relative frequencies of different sex chromosome associations, both at pachytene and diakinesis/metaphase I. Furthermore, where both pachytene and diakinesis/MI data are available for the same males, the frequencies of the different configurations at the two stages are very different. In the present paper we utilise "XYY" and "XY/XYY" mosaic mice with cytologically distinguishable Y chromosomes to investigate the factors responsible for this heterogeneity between different males and between the two meiotic stages. It is concluded (1) that the initial pattern of synapsis is driven by the relatedness of the three pseudoautosomal regions (PARs); (2) that the order and extent of PAR synapsis within radial trivalents are also affected by PAR relatedness and that this leads to chiasmata being preferentially formed between closely related PARs; (3) that trivalents with a single chiasma resolve into a bivalent + univalent by the diakinesis stage; (4) that although many spermatocytes with asynapsed sex chromosomes are eliminated between pachytene and diakinesis, those that survive this phase of elimination progress to the first meiotic metaphase (MI) and accumulate in large numbers, leading to an over-representation of those with univalents as compared to radial trivalents; and (5) that the arrested MI cells are eventually eliminated, so that very few "XYY" cells contribute products to MII.  相似文献   

12.
Dr. E. Jost  H. Laven 《Chromosoma》1971,35(2):184-205
Adult Culex pipiens males irradiated with both X-rays and neutrons were crossed to untreated females and F1-egg rafts were checked for dominant lethality. F1-progenies were outcrossed with normal individuals in order to obtain lines with inherited semisterility. From a total of 120 lines that showed a certain amount of sterility 12 lines were studied cytologically. 10 lines showed reciprocal chromosome exchanges.—At late pachytene and diplotene cross configurations with large asynaptic regions at the center of the cross are obligatory. Bivalents, chains of three, chains of four, and ring configurations are present at metaphase and anaphase I. The different frequencies of the occurrence of such multiples are dependent on the chromosomes involved in the exchange, the length of the pairing segments and the chiasma frequencies in these segments. Chiasma frequency in the interstitial segments is reduced by means of chiasma interference over the centromere and by asynapsis near the breakage points. — Alternate, adjacent-1- and adjacent-2-distributions are present to a different extent. Alternate distribution is most, adjacent-2-distribution least frequent. — The role of translocations and the probability of their becoming effective in pest eradication programs is discussed.  相似文献   

13.
While many studies have provided significant insight into homolog pairing during meiosis, information on non-homologous pairing is much less abundant. In the present study, fluorescence in situ hybridization (FISH) was used to investigate non-homologous pairing in haploid rice during meiosis. At pachytene, non-homologous chromosomes paired and formed synaptonemal complexes. FISH analysis data indicated that chromosome pairing could be grouped into three major types: (1) single chromosome paired fold-back as the univalent structure, (2) two non-homologous chromosomes paired as the bivalent structure, and (3) three or more non-homologous chromosomes paired as the multivalent structure. In the survey of 70 cells, 65 contained univalents, 45 contained bivalents, and 49 contained multivalent. Moreover, chromosomes 9 and 10 as well as chromosomes 11 and 12 formed non-homologous bivalents at a higher frequency than the other chromosomes. However, chiasma was always detected in the bivalent only between chromosomes 11 and 12 at diakinesis or metaphase I, indicating the pairing between these two chromosomes leads non-homologous recombination during meiosis. The synaptonemal complex formation between non-homologs was further proved by immunodetection of RCE8, PAIR2, and ZEP1. Especially, ZEP1 only loaded onto the paired chromosomes other than the un-paired chromosomes at pachytene in haploid.  相似文献   

14.
The nature of the centromere and the orientation in meiosis of silkworm chromosomes were investigated using the trivalent of the F1 hybrid between the wild and domestic silkworm and X-ray-induced aberrant chromosomes as well as normal silkworm chromosomes. The results of the experiments were as follows: (1) Pro-metaphase chromosomes showed no distinct primary constriction even after treatment with hypotonic solution, (2) sister chromatids separated in parallel along the entire length of the chromosome at mitotic anaphase, (3) chiasmata underwent complete terminalization during diakinesis and thus chromosome dyads were always connected end-to-end by a terminal chiasma at metaphase I, (4) radiation-induced aberrant chromosomes were stably transmitted throughout a number of cell generations, and (5) although the homomorphic bivalents generally orientated axially at metaphase I and equatorially at metaphase II, this normal sequence tended to be inverted or modified in the X-ray-induced aberrant chromosomes and in the trivalent of the F1 hybrid silkworms. These observations may be best interpreted by assuming the holocentric nature of silkworm chromosomes.  相似文献   

15.
The nature of the chiasma as a cytological parameter for analysing cross-over was reexamined quantitatively by an improved chiasma graph method. It was reconfirmed in Mus platythrix (n =13) that interstitial chiasmata at diakinesis are distributed randomly and almost uniformly along bivalents except for the centromere and telomere regions. The size of these chiasma blank regions was consistently 0.8% of the total length of haploid autosomes in all chromosomes. There was a minimum value of chiasma interference distance between two adjacent chiasmata, which was constantly 1.8% in all chromosomes. The chiasma frequency at diakinesis was 20.1+/-2. 0 by the conventional method including terminal chiasmata. However, the primed in situ labeling technique revealed that terminal chiasmata were mostly telomere-telomere associations. From these data and also from recent molecular data we concluded that the terminal chiasma is cytologically functional for ensuring the normal disjunction of bivalents at anaphase I, but genetically non-functional for shuffling genes. The chiasma frequency excluding terminal chiasmata was 14.6+/-1.8. Reexamination of the chiasma frequency of 106 animal species revealed that the chiasma frequency increased linearly in proportion to the haploid chromosome number in spite of remarkable difference in their genome size. The increase in chiasma frequency would be evolution-adaptive, because gene shuffling is expected to be accelerated in species with high chromosome numbers.  相似文献   

16.
Chromosome pairing and chiasma frequency were studied in meiocytes at diakinesis of Lilium speciosum cv. Rosemede fixed up to 21 days after the start of either continuous or 3 day pulse colchicine treatment. The two treatments gave similar results. In pulse treated pollen mother cells (PMCs) the mean chiasma frequency per cell fell from 26.4 in controls to 8.5 after fourteen days while the mean number of univalents per cell increased from 0.05 to 17.58. There was a negative correlation between mean chiasma frequency per bivalent and per PMC in colchicine treated buds; univalents were preferentially induced in bivalents with one chiasma, and preferentially excluded in bivalents with 4 chiasmata. Some chiasmata were redistributed to surviving bivalents despite the concurrent reduction in chiasma frequency per meiocyte. — Colchicine sensitivity began in premeiotic interphase and extended to mid or late zygotene in PMCs; ongoing synapsis was unaffected. However, susceptibility to univalency was asynchronous between bivalents occurring at zygotene in short chromosomes but at late premeiotic interphase in the longest chromosomes. The number of chiasmata per bivalent could be altered by colchicine without inducing univalents, but the ultimate effect was to reduce the number of chiasmata per bivalent (or per chromosome arm) directly to zero. The major factors determining the order and extent of reduced pairing and chiasma number were total chromosome length and arm length. Pairing and chiasma formation in embryo sac mother cells were less sensitive to colchicine than in PMCs, but their behavior was otherwise similar.  相似文献   

17.
In Crotalaria juncea (n=8) a plant exhibiting partial asynapsis was isolated in the M1 of a combined treatment of 50 kR gamma rays +0.2% EMS. The majority (48.14%) of PMCs at diplotene, diakinesis and metaphase I had 16 univalents. The bivalents in the asynaptic mutant were always rod-shaped with one terminal chiasma. In comparison, controls had on the average 7.08 ring bivalents. The asynapsis is genetically controlled, monofactorially recessive, and it is concluded that chromosome pairing is interrupted at a very early stage. There is a possible correlation between the number of bivalents and the arrangement of the univalents at metaphase I. When there were less than four bivalents, the univalents tended to be polar, and when there were more than four, the univalents were more equatorial in arrangement. The arrangement of univalents was random and apparently not influenced by the bivalents, when their number (4) was exactly half the zygotic number.  相似文献   

18.
The patterns of synapsis and chiasma formation of the B chromosomes of male collared lemmings (Dicrostonyx groenlandicus) were analyzed by light and electron microscopy and compared to expectations for various hypotheses for the intragenomic origin of supernumerary chromosomes. Pachytene analysis revealed a variety of synaptic configurations including B-chromosome univalents, bivalents and trivalents. In approximately one-half of the pachytene nuclei examined, B chromosomes were in synaptic associations with the normally unpaired portion of the Y chromosome. The B-chromosome configurations at pachynema, including those involving the Y chromosome, were maintained into diakinesis and metaphase I. The meiotic behavior of the B chromosomes was inconsistent with their derivation from centric-fusion products, isochromosome formation, small-autosome polysomy, or the X chromosome. However, the frequent synapsis and apparent recombination between B chromosomes and the Y chromosome implicate this sex chromosome as a possible source of the B chromosomes in collared lemmings.  相似文献   

19.
Chiasma frequency,distribution and interference maps of mouse autosomes   总被引:11,自引:0,他引:11  
Chiasma frequencies were analysed and chiasma positions measured in diakinesis/metaphase I autosomal bivalents from oocytes and spermatocytes of F1 hybrid C3H/HeH×101/H mice. Twenty chromosome size ranks, including the presumptive X bivalent, could be distinguished in oocytes, and nineteen autosomal ranks plus the XY pair spermatocytes. Overall, mean cell chiasma frequencies of the two sexes did not differ significantly once the contribution of the presumptive X bivalent and the XY pair were taken into account. Sex related differences in chiasma distribution patterns were evident, however. In monochiasmate bivalents, the chiasma was most commonly located interstitially in oocytes while in spermatocytes it could be either interstitial or distal. In dichiasmate bivalents, the chiasmata tended to be more centrally located in oocytes than in spermatocytes. Minimum inter-chiasma distances did not appear to show any great variation in chromosome pairs of different sizes, however, mean inter-chiasma distances did increase with the bivalent length. The minimum-inter chiasma distance data suggest that chiasma interference is complete over a chromosomal segment equating to approximately 60 Mb. Measurement of the positions of chiasmata along chromosome arms open up the possibility of producing chiasma-based genetic maps for all the autosomes of the mouse.  相似文献   

20.
Metaphase I bound arms and crossing over frequency in rye   总被引:2,自引:1,他引:1  
Using a Giemsa C-banding procedure it has been possible to identify at meiosis three chromosome pairs of a local Spanish rye cultivar. Two of these chromosomes (3 and 5) were heterozygous for an interstitial C-band in the long arm and the other (chromosome 7) was heterozygous for a telomeric C-band, also in the long arm. From the frequency of being bound at metaphase I and the frequency of recombined chromatids at anaphase I in the arms considered, estimates of actual chiasma frequencies have been derived. The results have been compared with those obtained in a Fl between two inbred lines. It is concluded that: (i) Although the frequency of bound arms analyzed was similar in all cases, the chiasma frequency was higher in the cultivar than in the Fl plants. Cultivar plants showed a variation in chiasma frequency for the bivalent arms studied which was correlated with the frequency of bound arms per cell, indicating that the estimation for chiasma frequency by means of bound arm frequency has an error that increases with increasing number of bound arms per cell, (ii) Evidence of chiasma terminalization has not been found, (iii) It is suggested that the different rye chromosomes have different chiasma localization patterns, which, in turn, are related with the chiasma frequency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号