首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of NaCl concentration, pH, and water activity (aw) on the ability of vegetative cells of Bacillus cereus to initiate aerobic growth in brain heart infusion broth at 30 C were studied in a factorial design experiment. By using multiple regression techniques, equations were derived which related the decimal reduction of the bacterial population to the concentration of NaCl and pH of broth to which the population was exposed. From these equations, the percentage of inoculated cells capable of initiating growth could be calculated. The reliability of these equations in foods was tested in laboratory-processed meat and rice media. The foods were less inhibitory than the broths, so that accurate prediction of growth initiation in foods was not possible by using the developed formulas. The impact of this type of quantitative study on the development of specific microbial standards for foods is discussed. When the NaCl concentration is increased, the aw is decreased and, with increased deviation of pH from optimum, more concentrated inoculum of B. cereus cells is needed to assure initiation of growth in culture media and foods.  相似文献   

2.
The interaction of temperature, pH, and NaCl concentration on the growth and survival of several strains of salmonellae has been determined in broth and ground pork. Growth of 23 strains occurred in broth at 30 C over a wide range of pH-NaCl combinations; at 10 C, growth was limited to only a few combinations. Cultures which would not grow at 10 C because of the pH-NaCl effect survived for long periods, however. In contrast, cultures which would not grow at 30 C remained viable for only a short time. Results in fresh ground pork were in close agreement with the broth studies. Salmonellae would not grow in ground pork stored at 4 C but would grow in pork containing 3.5% salt stored at 10 C. Salmonellae grew competitively with the natural background flora at 10 C even when the salmonellae constituted less than 5% of the initial flora, and the background flora would grow at a lower temperature than the salmonellae. The data show that, whereas decreasing temperatures increase the inhibitory effects of pH and NaCl, they decrease the lethal effects.  相似文献   

3.
The growth of 2 strains of Campylobacter jejuni/coli was investigated in 0–2.0 % NaCl in Brucella broth at 35° G and 30° C. Both strains tolerated more NaCl in the growth medium at 35° C than at 30° C. 2 % NaCl was bacteriocidic at both temperatures. The strains also grew in the medium without added NaCl. At 35° C, low concentrations of NaCl stimulated the growth of strain 5616, but not the growth of strain B33. At 30° C, strain 5616 grew in NaCl concentrations up to 1.0 % and strain B33 in 0 % and at the control concentration (0.5 % NaCl). The survival of 22 C. jejuni/coli strains in 2.0 % NaCl at 4° C and 35° C was also investigated. Human strains showed significantly greater tolerance to 2.0 % NaCl at both temperatures than did the strains isolated from animals. These findings suggest that the salting of food can be effective in preventing the growth or survival of C. jejuni/coli.  相似文献   

4.
The effect of the acid and the osmotic stress on the heat resistance of Escherichia coli (EC1 and EC2) was studied at 63 degrees C in tryptic soy broth adjusted to various pHs (2.5, 4.5 and 6) and various NaCl concentrations (2, 4 and 8%). In the second study, the effect of pretreatment on thermotolerance of E. coli cells was determined. The heat resistance of both strains was low at pH 2.5, but strain EC1 was more resistant than strain EC2. On the contrary, the heat resistance increased with increasing the pH values. Addition of NaCl (2%) to TSB medium, was involved in the protection of cells against heat inactivation, this protective effect was, however, not observed by increasing the NaCl concentration up to 8%. The combined effect of the pH and NaCl on the thermal resistance of both strains was significantly lower at pH 2.5 and NaCl 8%, the number of viable cells decreased from approximately 10(8) CFU/ml to an undetectable number within 20 min for strain EC1 and 15 min for strain EC2, respectively. This study indicates that heat resistance of strain EC1 was enhanced after acid or thermal adaptation. Heat resistance of strain EC2 was, however, enhanced only after thermal adaptation. For both strains no relationship was found between salt adaptation and the ability to resist thermal stress.  相似文献   

5.
AIMS: To examine the relationship between the growth and pH gradients of Debaryomyces hansenii at a single-cell level. METHODS AND RESULTS: Using bioimaging techniques, the cell areas and early pH gradients (Delta pH(10)), i.e. the pH gradients determined 10 min after initiation of experiments, were determined for single cells of two D. hansenii strains in fluid and on solid (agar) substrate with and without 8% (w/v) NaCl. The combination of NaCl and solid substrate prolonged the growth initiation of both D. hansenii strains additively. In all our experiments, primarily two groups of cells existed; a vital group consisting of growing single cells with intact early pH gradients, and a group of dead cells without early pH gradients. CONCLUSIONS: Our results show that growth initiation of the D. hansenii cells is severely affected by NaCl and to a lesser extent by the type of substrate in an additive and strain dependent way. Moreover, the early pH gradient of a vital D. hansenii cell cannot be correlated with the rate of its subsequent growth. SIGNIFICANCE AND IMPACT OF THE STUDY: Our study reveals new knowledge on the growth and pH gradients of D. hansenii on solid surfaces in the presence of NaCl.  相似文献   

6.
The purpose of the present work was to study the potential biotechnological use of Dunaliella species isolated from a hypersaline lake in Turkey. Dunaliella spp. grown in Johnson's medium were isolated and their glycerol production was studied in a batch system in order to determine the optimal conditions required for the highest glycerol accumulation. In the experiments performed with four newly isolated Dunaliella spp., the maximum glycerol accumulation was obtained at 20% NaCl concentration, and pH 6 (for strains T1 and T2) and pH 9 (for strains T3 and T4). Biomass production by strain T2 was significantly higher that by the other strains but the highest glycerol production in broth was obtained by strain T1 followed by strain T2. Strain T1 showed high glycerol production, i.e. 452.57microg/ml of culture broth at 20% NaCl concentration. The highest glycerol accumulation on both dry weight and cell basis was obtained with strain T1, followed by strains T3 and T4 (55.01, 50.16, and 40.23microg/10(6) cells (or pg/cell), respectively) at 25% NaCl concentration. When the high initial inoculum concentration was used at 25% NaCl concentration, strain T1 had the shortest (approximately 10-15days) lag period. This study shows that the isolated strains T1 and T2 can be used for glycerol production because of their high productivity.  相似文献   

7.
Human illness and death have resulted from the consumption of milk, cheese, and cole slaw contaminated with Listeria monocytogenes. Since the effects of temperature, NaCl, and pH on the growth of the organism in cabbage were unknown, a series of experiments was designed to investigate these factors. Two strains (LCDC 81-861 and Scott A, both serotype 4b) were examined. At 30 degrees C, the viable population of the LCDC 81-861 strain increased in sterile unclarified cabbage juice (CJ) containing 0 to 1.5% NaCl; a decrease in the population of both strains occurred in juice containing greater than or equal to 2% NaCl. At 5 degrees C, the population of the Scott A strain in CJ containing up to 5% NaCl was reduced by about 90% over a 70-day period; the LCDC 81-861 strain was more sensitive to refrigeration but remained viable in CJ containing less than or equal to 3.5% NaCl for 70 days. Growth in CJ at 30 degrees C resulted in a decrease in pH from 5.6 to 4.1 within 8 days. Death of L. monocytogenes occurred at 30 degrees C when the organism was inoculated into sterile CJ adjusted to pH less than or equal to 4.6 with lactic acid. No viable cells were detected after 3 days at pH less than or equal to 4.2. At 5 degrees C, the rate of death at pH less than or equal to 4.8 was slower than at 30 degrees C.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Human illness and death have resulted from the consumption of milk, cheese, and cole slaw contaminated with Listeria monocytogenes. Since the effects of temperature, NaCl, and pH on the growth of the organism in cabbage were unknown, a series of experiments was designed to investigate these factors. Two strains (LCDC 81-861 and Scott A, both serotype 4b) were examined. At 30 degrees C, the viable population of the LCDC 81-861 strain increased in sterile unclarified cabbage juice (CJ) containing 0 to 1.5% NaCl; a decrease in the population of both strains occurred in juice containing greater than or equal to 2% NaCl. At 5 degrees C, the population of the Scott A strain in CJ containing up to 5% NaCl was reduced by about 90% over a 70-day period; the LCDC 81-861 strain was more sensitive to refrigeration but remained viable in CJ containing less than or equal to 3.5% NaCl for 70 days. Growth in CJ at 30 degrees C resulted in a decrease in pH from 5.6 to 4.1 within 8 days. Death of L. monocytogenes occurred at 30 degrees C when the organism was inoculated into sterile CJ adjusted to pH less than or equal to 4.6 with lactic acid. No viable cells were detected after 3 days at pH less than or equal to 4.2. At 5 degrees C, the rate of death at pH less than or equal to 4.8 was slower than at 30 degrees C.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
F H Grau 《Applied microbiology》1981,42(6):1043-1050
At 5 degrees C four strains of fermentative, gram-negative bacteria (Serratia liquefaciens, Yersinia enterocolitica, Enterobacter cloacae, and Aeromonas hydrophila) grew aerobically and anaerobically on adipose tissue removed from beef muscle of low pH (5.4 to 5.6). All four strains also grew aerobically and anaerobically on muscle tissue of high pH (6.0 to 6.3). However, none of the four grew anaerobically on beef muscle of low pH, and the aeromonad strain also failed to grow aerobically on such muscle. Growth of S. liquefaciens and E.cloacae on vacuum-packaged beef muscle was dependent on the pH of the tissue and the oxygen transmission rate of the packaging film. Although the four strains grew in broth buffered at pH 5.55, L-lactate, at the concentration found in muscle of low pH (ca. 100 mM), prevented anaerobic growth of all four isolates and prevented the aerobic growth of th aeromonad. At pH 6.1 in buffered broth, the concentration of L-lactate occurring in muscle of high pH did not prevent aerobic or anaerobic growth of any of the strains.  相似文献   

10.
AIM: To evaluate the effect of NaCl, growth medium and temperature on the antimicrobial activity of bovine lactoferrin (LF) against Escherichia coli O157:H7 in the presence of different chelating agents. METHODS AND RESULTS: LF (32 mg ml(-1)) was tested against E. coli O157:H7 strain 3081 in Luria broth (LB) and All Purpose Tween (APT) broth with metal ion chelators sodium bicarbonate (SB), sodium lactate (SL), sodium hexametaphosphate (SHMP), ethylene diamine tetraacetic acid (EDTA) or quercetin at 0.5 and 2.5% NaCl at 10 and 37 degrees C. LF and the chelators were tested against four other E. coli O157:H7 strains in LB at 2.5% NaCl and 10 degrees C. LF alone was bacteriostatic against strains 3081 and LCDC 7283 but other strains grew. Antimicrobial effectiveness of LF was reduced in APT broth but enhanced by SB at 2.5% NaCl and 10 degrees C where 4.0 log(10) CFU ml(-1) inoculated cells were killed. EDTA enhanced antimicrobial action of the LF-SB combination. SL alone was effective against E. coli O157:H7 but a reduction in its activity at 2.5% NaCl and 10 degrees C was reversed by LF. The combinations LF-SHMP and LF-quercetin were more effective at 37 degrees C and NaCl effects varied. CONCLUSIONS: LF plus SB or SL were bactericidal toward the same 3/5 E. coli O157:H7 strains and inhibited growth of the others at 2.5% NaCl and 10 degrees C. SIGNIFICANCE AND IMPACT OF THE STUDY: The combination of LF with either SL or SB shows potential for reducing viability of E. coli O157:H7 in food systems containing NaCl at reduced, but growth permissive temperature.  相似文献   

11.
The effect of various acidulants on the growth of Listeria monocytogenes   总被引:4,自引:3,他引:1  
The ability of four Listeria monocytogenes strains to initiate growth in brain heart infusion broth adjusted to various pH values with either acetic, lactic, citric or hydrochloric acid was investigated. Acetic acid was the most effective inhibitor tested, since in broth adjusted with this acid a higher minimum pH was required for growth of the various strains at both 4 and 30°C, as compared with broth adjusted with the other acidulants. The minimum pH value required for the initiation of growth of L. monocytogenes ranged from 5·0 to 5·7 at 4°C, and from 4·3 to 5·2 at 30°C, depending upon the acidulant used.  相似文献   

12.
Streptococcus faecium var. casselifavus, nov. var   总被引:7,自引:1,他引:6  
Streptococcus faecium var. casseliflavus is a gram-positive, spherical cell. The cells occur chiefly as pairs within chains and elongate to ogive-shaped cells during growth. Growth is good on 5% bile salts-agar and in broth at 10 C, and in broth adjusted to pH 9.6 or containing 6.5% NaCl, but many strains fail to grow at 45 C. Litmus is reduced rapidly prior to formation of an acid curd. Few strains release ammonia from arginine or serine. The organism is not proteolytic and does not produce H(2)S or acetylmethylcarbinol, reduce nitrate, decarboxylate tyrosine, or produce slime on sucrose-agar. Most strains survive heating to 60 C for 30 min. It produces gray colonies on potassium tellurite agar, reduces 2,3,5-triphenyltetrazolium-HCl to a pink color, and ferments cellobiose, dextrin, maltose, mannose, and sorbitol, thus resembling S. faecalis. Like S. faecium, it produces peroxidase but not catalase on heated blood media, dissimilates malate, and ferments arabinose, melibiose, and salicin, but not melezitose. Like both species, it ferments dextrose, galactose, lactose, mannitol, sucrose, trehalose, and citrate. Properties peculiar to the variant include the high pH limiting initiation and termination of growth; the fermentation of alpha-methyl-d-glucoside, raffinose, and xylose; motility; and growth without blue button formation in ethyl violet broth. The water-soluble, pale lemon-yellow pigment is released into the aqueous phase only after the cell envelope is altered by fat solvents. The bacterium thrives as an epiphyte on plants.  相似文献   

13.
Studies were done to determine the interacting effects of pH, NaCl, temperature, and time on growth, survival, and death of two strains of Listeria monocytogenes. Viable population of the organism steadily declined in heat-sterilized cabbage stored at 5 degrees C for 42 days. In contrast, the organism grew on raw cabbage during the first 25 days of a 64-day storage period at 5 degrees C. Growth was observed in heat-sterilized unclarified cabbage juice containing less than or equal to 5% NaCl and tryptic phosphate broth containing less than or equal to 10% NaCl. Rates of thermal inactivation increased as pH of clarified cabbage juice heating medium was decreased from 5.6 to 4.0. At 58 degrees C (pH 5.6), 4 X 10(6) cells/mL were reduced to undetectable levels within 10 min. Thermal inactivation rates in clarified cabbage juice (pH 5.6) were not significantly influenced by the presence of up to 2% NaCl; however, heat-stressed cells had increased sensitivity to NaCl in tryptic soy agar recovery medium. Cold enrichment of heat-stressed cells at 5 degrees C for 21 days enhanced resuscitation. Results indicate that L. monocytogenes can proliferate on refrigerated (5 degrees C) raw cabbage which, in turn, may represent a hazard to health of the consumer. Heat pasteurization treatments normally given to cabbage juice or sauerkraut would be expected to kill any L. monocytogenes cells which may be present.  相似文献   

14.
Strains of Halobacteria from an Algerian culture collection were screened for their lipolytic activity against p-nitrophenyl butyrate (PNPB) and p-nitrophenyl palmitate (PNPP). Most strains were active on both esters and 12% hydrolyzed olive oil. A strain identified as Natronococcus sp. was further studied. It grew optimally at 3.5 M NaCl, pH 8 and 40 degrees C. An increase in temperature shifted the optimum salt concentration range for growth from a wider range of 2-4 M, obtained at 25-30 degrees C, to a narrower range of 3.5-4 M, obtained at 35-40 degrees C. At 45 degrees C the optimum salt concentration was 2 M. These results show a clear correlation between salt and temperature requirement. The optimum conditions for the production of hydrolytic activity during growth were: 3.5 M NaCl and pH 8 for PNPB hydrolytic activity and 4 M NaCl and pH 7.5 for PNPP hydrolytic activity; both at 40 degrees C. The clear supernatant of cells grown at 4 M NaCl showed olive oil hydrolysis activity (in presence of 4 M NaCl) demonstrating the occurrence of a lipase activity in this strain. To our knowledge, this is the first report of a lipase activity at such high salt concentration.  相似文献   

15.
The effect of temperature and NaCl concentration on the growth kinetics of Vibrio anguillarum and V. anguillarum -related (VAR) strains was studied.
For one wild VAR strain, NaCl concentration interfered with growth temperature parameters, in particular, with the maximum growth temperature but also with the optimum temperature (defined as the temperature at which μmax equals its maximal value μopt), and with μopt itself. For the same strain, optimal growth required the adding of NaCl to the medium to a final concentration of 1·5%. These results were not confirmed by tests on a V. anguillarum collection strain.
When the NaCl concentration in the culture media was 1.5%, the optmum temperature for the nine strains studied ranged from 29.7°C to 34°C whereas the maximum temperature ranged between 35.3°C and 38.5°C.
Hence, antbiotic susceptibility testing as well as biochemical identification might be carried out at 30°C in the presence of 1.5% NaCl, which corresponded to a suboptimal growth.  相似文献   

16.
The form of a previously developed Bělehrádek type of growth rate model was used to develop a probability model for defining the growth/no growth interface as a function of temperature (10 to 37°C), pH (pH 2.8 to 6.9), lactic acid concentration (0 to 500 mM), and water activity (0.955 to 0.999; NaCl was used as the humectant). Escherichia coli was unable to grow in broth in which the undissociated lactic acid concentration exceeded 11 mM or, with two exceptions, at a pH of 3.9 or less with no lactic acid present. Under experimental conditions at which the pH and the undissociated acid concentrations were the major growth-limiting factors, the growth/no growth interface was essentially independent of temperature at temperatures ranging from 15 to 37°C. The interface between conditions that allowed growth and conditions at which growth did not occur was abrupt. The inhibitory effect of combinations of water activity and pH varied with temperature. Predictions of the model for the growth/no growth interface were consistent with 95% of the experimental data set.  相似文献   

17.
AIMS: To investigate the effects of the salt concentration, incubation temperature and initial pH of the medium on the fermentative ability of the halophilic lactic acid bacteria, Tetragenococcus muriaticus and T. halophilus. METHOD AND RESULTS: The growth, lactic acid production and pH reduction ability of five strains of T. muriaticus and T. halophilus in MRS broth medium under various culture conditions such as salt concentration (3, 7, 15 and 23% NaCl), temperature (20, 30 and 40 degrees C), and initial medium pH (5.8, 6.5 and 7.5) were investigated. Those of T. halophilus were seriously affected by a high salinity (23% NaCl); in contrast, those of T. muriaticus were affected by a low initial pH (5.8). CONCLUSIONS: The results indicate that high saline concentrations and low pH values have significant impact on the growth, lactic acid production and pH reduction ability of T. halophilus and T. muriaticus, respectively. SIGNIFICANCE AND IMPACT OF THE STUDY: This study appears to be important in biopreservation during the manufacture of fermented food products. Both T. muriaticus and T. halophilus may support each other in reducing pH in hypersaline or low pH environment. To our knowledge, this is the first report on the fermentation ability of T. muriaticus.  相似文献   

18.
Vibrio parahaemolyticus was grown at 36 C in tryptic soy broth (pH 7.8) containing added levels of NaCl ranging from 0.5 to 7.9% (wt/wt). The fastest generation time was 16.4 min in tryptic soy broth containing 2.9% NaCl (TSBS) which corresponded to a water activity (a(w)) of 0.992 (+/-0.005). Tryptic soy broth containing lower or higher levels of NaCl resulted in higher or lower a(w), respectively, and slower generation times. Growth was measured turbidimetrically at 36 C in TSBS containing added amounts of NaCl, KCl, glucose, sucrose, glycerol, or propylene glycol. The solutes used to reduce a(w) to comparable levels resulted in extended lag times of varied magnitude, dissimilar growth rates, and different cell numbers. Reduction of a(w) with glycerol was less inhibitory to growth than similar a(w) reductions with NaCl and KCl. Sucrose, glucose, and propylene glycol generally had the greatest effect on extending the lag times of V. parahaemolyticus when the addition of these solutes was made to establish similar a(w) levels lower than 0.992. Minimal a(w) for growth at 15, 21, 29, and 36 +/- 0.2 C for each of four strains of V. parahaemolyticus was tested in TSBS containing added solutes. Reduced a(w) was generally most tolerable at 29 C, whereas higher minimal a(w) for growth was required at 15 C. Solutes added to TSBS to achieve reduction in a(w), minimal a(w) for growth after 20 days, and incubation temperatures were as follows: glycerol, 0.937, 29 C; KCl, 0.945, 29 C; NaCl, 0.948, 29 C; sucrose, 0.957, 29 and 36 C; glucose, 0.983, 21 C; and propylene glycol, 0.986, 29 C. Each of the four strains tested responded similarly to investigative conditions. It appears that minimal a(w) for growth of V. parahaemolyticus depends upon the solute used to control a(w).  相似文献   

19.
Two strains of Aeromonas hydrophila (the type strain ATCC 7966 and a food-derived strain JAH4) were pre-incubated at 5°C in Brain Heart Infusion (BHI) broth with pH adjusted to 6.0 or 7.0, and then incubated at the same temperature in BHI broth with pH adjusted to 6.0, 6.5, 7.0 and 7.5. Growth kinetics during incubation were determined by two methods: viable count (VC) and measurement of optical density (O.D.). Pre-incubation at different pH values did not significantly affect the maximum specific growth rates of the strains during incubation, but the lag phases were shorter after pre-incubation at pH 6.0 than at pH 7.0. The VC method was more sensitive than O.D. measurements for assessing lag phase.  相似文献   

20.
AIM: In this study, the growth characteristics of Yersinia enterocolitica biotype 4, GER O:3 plasmid bearing (P+) and plasmid cured (P-) strain types were evaluated in brain heart infusion broth supplemented with cefsulodin, irgasan, and novobiocin alone or in combination. METHODS AND RESULTS: Growth curves were obtained for the two strain types in broth supplemented with selective agents at 25 or 37 degrees C for 32 h to obtain data on the lag phase durations and growth rates of the strains. Generally, the lag times and growth rates of the P+ and P- strains were similar for cultures incubated at 25 degrees C regardless of the selective agent added and where plasmid replication and expression were not under any significant burden. However, where the lag times and growth rates of the strains were examined at 37 degrees C, significant differences were observed in the lag phase durations of the plasmid bearing strain type compared the plasmid cured strain, an effect that was due to the burden of the plasmid and the influence of selective agents. Generally, when two or more agents were present, lag phase durations were longer for the plasmid bearing strain. Some exceptions noted where in the presence of irgasan or full selective agent (CIN) the opposite case was observed. When growth rates were compared, the plasmidless strain type was typically faster than the plasmid bearing strain in the presence of most selective agents at 37 degrees C and the growth rates of both strain types at 25 degrees C were similar where the temperature appeared to negate the effects of plasmid. CONCLUSIONS: The data obtained in these studies suggest that selective agents (in particular irgasan) and incubation temperature play a significant role in influencing the growth characteristics of plasmid bearing and plasmid cured strains of Y. enterocolitica. SIGNIFICANCE AND IMPACT OF THE STUDY: This data presented in this study has significant implications for enrichment methods used in the detection or recovery of plasmid bearing Y. enterocolitica strains from food, environmental or clinical samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号