首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
Post-operative C5 palsies are among the most common complications seen after cervical surgery for ossification of the posterior longitudinal ligament (OPLL). Although C5 palsy is a well-known complication of cervical spine surgery, its pathogenesis is poorly understood and depends on many other factors. In this study, a finite element model of the cervical spine and spinal cord-nerve roots complex structures was developed. The changes in stress in the cord and nerve roots, posterior shift of the spinal cord, and displacement and elongation of the nerve roots after laminectomy for cervical OPLL were analyzed for three different cervical sagittal alignments (lordosis, straight, and kyphosis). The results suggest that high stress concentrated on the nerve roots after laminectomy could be the main cause of C5 palsy because ossification of ligaments increases spinal cord shifting and root displacement. The type of sagittal alignment had no influence on changes in cord stress after laminectomy, although cases of kyphosis with a high degree of occupying ratio resulted in greater increases in nerve root stress after laminectomy. Therefore, kyphosis with a high OPLL occupying ratio could be a risk factor for poor surgical outcomes or post-operative complications and should be carefully considered for surgical treatment.  相似文献   

3.
黄枫  曾志奎  黄学员  曾展鹏 《生物磁学》2011,(23):4478-4480
目的:探讨膝关节不稳对骨折愈合的影响。方法:回顾性分析我院收治3例患者因早期未能准确诊治膝关节交叉韧带损伤,而导致同侧股骨干骨折术后不愈合的临床资料。我们从生物力学角度分析,交叉韧带对膝关节生理性制导及稳定作用,反之损伤后膝关节的生理运动一定程度的丧失,以及随之而来的载荷传导紊乱,从而导致膝关节不稳。膝关节不稳所引起骨折端应力改变,其对骨折愈合将产生怎样的影响。结果:如未能及时修复交叉韧带在患者股骨干骨折术后行CPM锻炼及部分负重行走时将传导以骨折断端以一种剪切、旋转的应力,同时下肢垂直的纵向压应力将难以传导至骨折端,可能导致股骨干骨折术后的延缓愈合甚至不愈合。结论:膝关节不稳定可引起同侧肢体骨折端的应力改变,可能导致骨折的延缓愈合甚至不愈合。  相似文献   

4.
Ultrasound-based methods have shown promise in their ability to characterize non-uniform deformations in large energy-storing tendons such as the Achilles and patellar tendons, yet applications to other areas of the body have been largely unexplored. The noninvasive quantification of collateral ligament strain could provide an important clinical metric of knee frontal plane stability, which is relevant in ligament injury and for measuring outcomes following total knee arthroplasty. In this pilot cadaveric experiment, we investigated the possibility of measuring collateral ligament strain with our previously validated speckle-tracking approach, but encountered a number of challenges during both data acquisition and processing. Given the clinical interest in this type of tool, and the fact that this is a developing area of research, the goal of this article is to transparently describe this pilot study, both in terms of methods and results, while also identifying specific challenges to this work and areas for future study. Some challenges faced relate generally to speckle-tracking of soft tissues (e.g. the limitations of using a 2D imaging modality to characterize 3D motion), while others are specific to this application (e.g. the small size and complex anatomy of the collateral ligaments). This work illustrates a clear need for additional studies, particularly relating to the collection of ground-truth data and more thorough validation work. These steps will be critical prior to the translation of ultrasound-based measures of collateral ligament strains into the clinic.  相似文献   

5.
目的:研究改良腹腔镜下子宫悬吊术加圆韧带缩短术治疗子宫脱垂的临床效果。方法:将从2014年1月至2015年8月在我院妇科接受手术治疗的子宫脱垂患者60例作为研究对象,其中接受改良腹腔镜辅助下实施子宫悬吊术联合圆韧带缩短术者30例纳入观察组,接受阴式子宫切除术者30例纳入对照组,观察并对比两组治疗前后的盆腔器官脱垂定量(POP-Q)分度情况、手术相关指标及手术并发症。结果:与治疗前比,治疗后两组的POP-Q分度均显著改善(P0.05)。观察组的手术时间、术中出血量以及术后留院时长分别显著少于对照组(P0.05)。观察组的手术并发症总发生率是10.00%,显著低于对照组的33.33%(P0.05)。结论:在改良腹腔镜辅助下实施子宫悬吊术联合圆韧带缩短术对子宫脱垂患者的疗效显著,且有利于患者尽快康复,安全性高,值得临床推广应用。  相似文献   

6.
The meniscofemoral ligaments (MFLs) of 28 human cadaveric knees were studied to determine their incidence, structural and material properties. Using the Race–Amis casting method for measurement, the mean cross-sectional area for the anterior MFL (aMFL) was 14.7 mm2 (±14.8 mm2) whilst that of the posterior MFL (pMFL) was 20.9 mm2 (±11.6 mm2). The ligaments were isolated and tensile tested in a materials testing machine. The mean loads to failure were 300.5 N (±155.0 N) for the aMFL and 302.5 N (±157.9 N) for the pMFL, with elastic moduli of 281 (±239 MPa) and 227 MPa (±128 MPa), respectively. These significant anatomical and material properties suggest a function for the MFL in the biomechanics of the knee, and should be borne in mind when considering hypotheses on MFL function. Such hypotheses include roles for the ligaments in knee stability and guiding meniscal motion.  相似文献   

7.
Knee laxity, defined as the net translation or rotation of the tibia relative to the femur in a given direction in response to an applied load, is highly variable from person to person. High levels of knee laxity as assessed during routine clinical exams are associated with first-time ligament injury and graft reinjury following reconstruction. During laxity exams, ligaments carry force to resist the applied load; however, relationships between intersubject variations in knee laxity and variations in how ligaments carry force as the knee moves through its passive envelope of motion, which we refer to as ligament engagement, are not well established. Thus, the objectives of this study were, first, to define parameters describing ligament engagement and, then, to link variations in ligament engagement and variations in laxity across a group of knees. We used a robotic manipulator in a cadaveric knee model (n = 20) to quantify how important knee stabilizers, namely the anterior and posterior cruciate ligaments (ACL and PCL, respectively), as well as the medial collateral ligament (MCL) engage during respective tests of anterior, posterior, and valgus laxity. Ligament engagement was quantified using three parameters: (1) in situ slack, defined as the relative tibiofemoral motion from the neutral position of the joint to the position where the ligament began to carry force; (2) in situ stiffness, defined as the slope of the linear portion of the ligament force–tibial motion response; and (3) ligament force at the peak applied load. Knee laxity was related to parameters of ligament engagement using univariate and multivariate regression models. Variations in the in situ slack of the ACL and PCL predicted anterior and posterior laxity, while variations in both in situ slack and in situ stiffness of the MCL predicted valgus laxity. Parameters of ligament engagement may be useful to further characterize the in situ biomechanical function of ligaments and ligament grafts.  相似文献   

8.
The purposes were twofold: (a) to ascertain the inter-session reliability of hamstrings total reaction time, pre-motor time and motor time; and (b) to examine sex-related differences in the hamstrings reaction times profile. Twenty-four men and 24 women completed the study. Biceps femoris and semitendinosus total reaction time, pre-motor time and motor time measured during eccentric isokinetic contractions were recorded on three different occasions. Inter-session reliability was examined through typical percentage error (CVTE), percentage change in the mean (CM) and intraclass correlations (ICC). For both biceps femoris and semitendinosus, total reaction time, pre-motor time and motor time measures demonstrated moderate inter-session reliability (CVTE < 10%; CM < 3%; ICC > 0.7). The results also indicated that, although not statistically significant, women reported consistently longer hamstrings total reaction time (23.5 ms), pre-motor time (12.7 ms) and motor time (7.5 ms) values than men. Therefore, an observed change larger than 5%, 9% and 8% for total reaction time, pre-motor time and motor time respectively from baseline scores after performing a training program would indicate that a real change was likely. Furthermore, while not statistically significant, sex differences were noted in the hamstrings reaction time profile which may play a role in the greater incidence of ACL injuries in women.  相似文献   

9.
To elucidate the compositional change of ligaments with aging, the authors investigated both age-related changes of elements and relationships among elements in the round ligaments of the uterus (round ligaments) by inductively coupled plasma-atomic emission spectrometry. The bilateral round ligaments were resected from 20 cadavers and also from the uteri removed surgically from 11 patients bearing uterine myoma or cancer. Thirty-one subjects ranged in age from 34 to 92 yr. It was found that both S and Mg decreased gradually in the round ligaments with aging, but Ca, P, Zn, Fe, and Al did not change significantly with aging. Regarding the relationships among elements, very significant direct correlations were found among the contents of Ca, P, S, and Mg in the round ligaments, whereas significant inverse correlations were found between the contents of Zn and elements, such as Ca, P, S, and Mg. It should be noted that there was an extremely significant direct correlation between Ca and P contents in the round ligaments.  相似文献   

10.
The human knee joint has a three-dimensional geometry with multiple body articulations that produce complex mechanical responses under loads that occur in everyday life and sports activities. Understanding the complex mechanical interactions of these load-bearing structures is of use when the treatment of relevant diseases is evaluated and assisting devices are designed. The anterior cruciate ligament (ACL) in the knee is one of four main ligaments that connects the femur to the tibia and is often torn during sudden twisting motions, resulting in knee instability. The objective of this work is to study the mechanical behavior of the human knee joint and evaluate the differences in its response for three different states, i.e., intact, ACL-deficient, and surgically treated (reconstructed) knee. The finite element models corresponding to these states were developed. For the reconstructed model, a novel repair device was developed and patented by the author in previous work. Static load cases were applied, as have already been presented in a previous work, in order to compare the calculated results produced by the two models the ACL-deficient and the surgically reconstructed knee joint, under the exact same loading conditions. Displacements were calculated in different directions for the load cases studied and were found to be very close to those from previous modeling work and were in good agreement with experimental data presented in literature. The developed finite element model for both the intact and the ACL-deficient human knee joint is a reliable tool to study the kinematics of the human knee, as results of this study show. In addition, the reconstructed human knee joint model had kinematic behavior similar to the intact knee joint, showing that such reconstruction devices can restore human knee stability to an adequate extent.  相似文献   

11.
肌腱韧带的损伤修复是临床医学实践中的热点和难点,其近几年的进展很大一部分应归功于生物医学工程与临床实践结合。本文主要介绍了当前生物医学工程领域对于韧带肌腱损伤研究的几大热点问题,并介绍了作者在膝关节前交叉韧带损伤的生物工程修复研究方面所取得的初步成果,后者对于临床实践具有重要意义。  相似文献   

12.
13.
The purpose of this study was to describe kinematic and kinetic differences between a group of ACL deficient subjects who were grouped according to functional ability. Sixteen patients with complete ACL rupture were studied; eight subjects had instability with activities of daily living (non-copers) and eight subjects had returned to all pre-injury activity without limitation (copers). Three-dimensional joint kinematics and kinetics were collected from the knee and ankle during walking, jogging and going up and over a step. Results showed that both groups mitigated the force with which they contacted the floor but non-copers consistently demonstrated less knee flexion in the involved limb. The copers used joint kinematics similar to those of their uninvolved knees and similar to knee motions reported in uninjured subjects. The reduced knee motion in the involved knee of the non-copers did not correlate directly with quadriceps femoris muscle weakness.

The data suggest that the non-copers utilize a stabilization strategy which stiffens the knee joint which not only is unsuccessful but may lead to excessive joint contact forces which have the potential to damage articular structures. The copers use a strategy which permits normal knee kinematics and bodes well for joint integrity.  相似文献   


14.
Vertebral neural spine bifurcation has been historically treated as largely restrictive to sauropodomorph dinosaurs; wherein it is inferred to be an adaptation in response to the increasing weight from the horizontally extended cervical column. Because no extant terrestrial vertebrates have massive, horizontally extended necks, extant forms with large cranial masses were examined for the presence of neural spine bifurcation. Here, I report for the first time on the soft tissue surrounding neural spine bifurcation in a terrestrial quadruped through the dissection of three Ankole‐Watusi cattle. With horns weighing up to a combined 90 kg, the Ankole‐Watusi is unlike any other breed of cattle in terms of cranial weight and presence of neural spine bifurcation. Using the Ankole‐Watusi as a model, it appears that neural spine bifurcation plays a critical role in supporting a large mobile weight adjacent to the girdles. In addition to neural spine bifurcation being recognized within nonavian dinosaurs, this vertebral feature is also documented within many members of temnospondyls, captorhinids, seymouriamorphs, diadectomorphs, Aves, marsupials, artiodactyls, perissodactyls, and Primates, amongst others. This phylogenetic distribution indicates that spine bifurcation is more common than previously thought, and that this vertebral adaptation has contributed throughout the evolutionary history of tetrapods. Neural spine bifurcation should now be recognized as an anatomical component adapted by some vertebrates to deal with massive, horizontal, mobile weights adjacent the girdles. J. Morphol. 275:1053–1065, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

15.
Knee soft tissue structures are frequently injured, leading to the development of osteoarthritis even with treatment. Understanding how these structures contribute to knee function during activities of daily living (ADLs) is crucial in creating more effective treatments. This study was designed to determine the role of different knee structures during a simulated ADL in both human knees and ovine stifle joints. A six degree-of-freedom robot was used to reproduce each species’ in vivo gait while measuring three-dimensional joint forces and torques. Using a semi-randomized selective cutting method, we determined the primary and secondary structures contributing to the forces and torques along and about each anatomical axis. In both species, the bony interaction, ACL, and medial meniscus provided most of the force contributions during stance, whereas the ovine MCL, human bone, and ACLs of both species were the key contributors during swing. This study contributes to our overarching goal of establishing functional tissue engineering parameters for knee structures by further validating biomechanical similarities between the ovine model and the human to provide a platform for measuring biomechanics during an in vivo ADL. These parameters will be used to develop more effective treatments for knee injuries to reduce or eliminate the incidence of osteoarthritis.  相似文献   

16.
This study examines the real-time intracellular calcium concentration, [Ca2+]i, response of canine medial collateral ligament (MCL) and anterior cruciate ligament (ACL) fibroblasts subjected to a fluid-induced shear stress of 25 dynes/cm2. In experiments using a modified Hanks' Balanced Salt Solution (HBSS) perfusate, both cell types demonstrated a significant increase in peak [Ca2+]i compared to respective no-flow controls, the response of MCL fibroblasts being nearly 2-fold greater than that of ACL fibroblasts. In studies where the cells were bathed in a medium of HBSS supplemented with 2% newborn bovine serum (NBS) and then introduced to flow with the same medium, ACL fibroblasts responded nearly 3-fold greater than MCL fibroblasts. Neomycin (10 mM), thapsigarigin (1 μM) and Ca2+-free media supplemented with EGTA (1 mM) were able to inhibit significantly the [Ca2+]i response to flow with HBSS in both fibroblasts. Thapsigargin also blocked the NBS flow response in both cell types, while neomycin and Ca2+-free media significantly inhibited the ACL response. Our findings demonstrate that ACL and MCL cells are not the same. These differences may be related to the disparate healing capacity of the ACL and MCL observed clinically.  相似文献   

17.
目的:评估关节镜下膝关节前交叉韧带(ACL)与后交叉韧带(PCL)同时重建的技术和临床效果。方法:自2003年6月~2009年10月,27例病人(28膝)经MRI检查及关节镜检查证实ACL和PCL均断裂,其中9膝伴内侧副韧带损伤(MCL),8膝伴后外侧角损伤(PLC),5膝伴内侧半月板破裂,4膝伴外侧半月板损伤。27例患者于伤后3~10周在关节镜下行膝关节前、后交叉韧带联合重建。结果:本组术后早期均未发生严重并发症。术后随访12~88个月,平均(42.67±3.34)个月,Lysholm膝关节功能评分为78~93分,平均(86.67±5.21)分。国际膝关节文件编制委员会(IKDC)综合评定由术前显著异常(D级)28膝,改进为随访时正常(A级)9膝、接近正常(B级)16膝、异常(C级)3膝。结论:关节镜下膝关节前交叉韧带(ACL)与后交叉韧带(PCL)同时重建创伤小、手术操作精细,术后膝关节功能恢复满意。  相似文献   

18.
Periodontitis is characterized by the chronic inflammation and destruction of tooth-supporting tissues. Periodontal ligament stem cell (PDLSC) is the mesenchymal stem cell (MSC) population isolated from periodontal ligament, which is the key tissue for regeneration of periodontal tissues. Although transplantation of PDLSCs is proposed as novel regenerative therapy, limited information is available, regarding the characteristic change of PDLSCs during ex vivo expansion. In this study, we encountered morphological change of PDLSCs during standard cell culture and aimed to investigate the change of PDLSCs in stem cell characteristics and to search for the culture condition to maintain stem cell properties. Characteristics of PDLSCs were examined using in vitro osteoblast and adipocyte differentiation. Myofibroblast differentiation was confirmed using immunohistochemistry and collagen gel contraction assay. Replicative senescence was examined by β-gal staining. PDLSCs changed their morphology from spindle to flat and wide during ex vivo expansion. After the morphological change, PDLSCs showed several features of myofibroblast including extensive stress fiber formation, contraction activity, and myofibroblast marker expression. Upon the morphological change, osteoblastic and adipocyte differentiation capacity were reduced and expression of stem cell-related genes were decreased. β-Gal staining was not always correlated with the morphological change of PDLSCs. Moreover, exogenous addition of bFGF and PDGF-BB served to maintain spindle shape and osteoblastic differentiation potential of PDLSCs. This study demonstrates that spontaneous differentiation of PDLSCs during ex vivo expansion and may provide the important information of cell culture condition of PDLSCs for clinical use.  相似文献   

19.
Physiologic evidence for the sensory role of the knee joint ligaments are reviewed. The cruciate and collateral ligaments accomodate morphologically different sensory nerve endings with different capabilities of providing the central nervous system (CNS) with information not only about noxious and chemical stimuli but also about mechanical events, e.g., movement- and position-related stretches of the ligaments. Available data show that low-threshold joint/ligament receptor (i.e., mechanoreceptor) afferents evoke only weak and rare effects in skeletomotor neurons (α-motoneurons), whereas they frequently and powerfully influence fusimotor neurons (γ-motoneurons). The effects on the γ-muscle-spindle system in the muscles around the knee are so potent that even stretches of the cruciate ligaments at relatively moderate loads (not noxious) may induce major changes in responses of the muscle spindle afferents. As the activity in the primary muscle spindle afferents modifies stiffness in the muscles, the cruciate ligament receptors may, through the γ-muscle-spindle system, participate in regulation and preparatory adjustment of the stiffness of the muscles around the knee joint and thereby of knee joint stiffness. Thus, the sensory system of the cruciate ligaments is able to contribute significantly to the functional stability of the knee joint. The possible role of (ligamentous) joint receptors in genesis and spread of muscular tension in occupational muscle pain and in chronic musculoskeletal pain syndromes is also discussed.  相似文献   

20.
海南植物区系的多样性   总被引:6,自引:0,他引:6  
张宏达 《生态科学》2001,20(1):1-10
记载海南维管束植物的多样性,表明蕨类植物区系已有古生代和中生代的孑遗,又有白垩纪以来的现代蕨类,它们都存在着许多特有种;裸子植物则以泛热带成分及华夏成分为主;有花植物包括全球植物区系8个植物区的成分,而以热带成分全球性分布成分最多。最后,文章分析了海南植物区系多样性的地史背景及自然条件的因素。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号