首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cell wall recalcitrance poses a major challenge on cellulosic biofuel production from feedstocks such as switchgrass (Panicum virgatum L.). As lignin is a known contributor of recalcitrance, transgenic switchgrass plants with altered lignin have been produced by downregulation of caffeic acid O‐methyltransferase (COMT). Field trials of COMT‐downregulated plants previously demonstrated improved ethanol conversion with no adverse agronomic effects. However, the rhizosphere impacts of altering lignin in plants are unknown. We hypothesized that changing plant lignin composition may affect residue degradation in soils, ultimately altering soil processes. The objective of this study was to evaluate effects of two independent lines of COMT‐downregulated switchgrass plants on soils in terms of chemistry, microbiology, and carbon cycling when grown in the field. Over the first two years of establishment, we observed no significant differences between transgenic and control plants in terms of soil pH or the total concentrations of 19 elements. An analysis of soil bacterial communities via high‐throughput 16S rRNA gene amplicon sequencing revealed no effects of transgenic plants on bacterial diversity, richness, or community composition. We also did not observe a change in the capacity for soil carbon storage: There was no significant effect on soil respiration or soil organic matter. After five years of establishment, δ13C of plant roots, leaves, and soils was measured and an isotopic mixing model used to estimate that 11.2 to 14.5% of soil carbon originated from switchgrass. Switchgrass‐contributed carbon was not significantly different between transgenic and control plants. Overall, our results indicate that over the short term (two and five years), lignin modification in switchgrass through manipulation of COMT expression does not have an adverse effect on soils in terms of total elemental composition, bacterial community structure and diversity, and capacity for carbon storage.  相似文献   

2.
Rising global carbon dioxide levels may lead to profound changes in plant composition, regardless of the degree of global warming that may result from the accumulation of this greenhouse gas. We studied the interaction of a CO2 doubling and two levels of nitrogen fertilizer on the growth and chemical composition of tall fescue (Festuca arundinacea Schreber cv. KY‐31) when infected and uninfected with the mutualistic fungal endophyte Neotyphodium coenophialum Morgan‐Jones and Gams. Two‐year‐old plants were harvested to 5 cm every 4 weeks, and after 12 weeks of growth plants grown in twice ambient CO2 concentrations: photosynthesized 15% more; produced tillers at a faster rate; produced 53% more dry matter (DM) yield under low N conditions and 61% more DM under high N conditions; the % organic matter (OM) was little changed except under elevated CO2 and high N when %OM increased by 3%; lignin decreased by 14%; crude protein (CP) concentrations (as %DM) declined by 21%; the soluble CP fraction (as %CP) increased by 13%; the acid detergent insoluble CP fraction (as %CP) increased by 12%, and in vitro neutral detergent fiber digestibility declined by 5% under high N conditions but not under low N. Plants infected with the endophytic fungus: photosynthesized 16% faster in high N compared with under low N; flowered earlier than uninfected plants; had 28% less lignin in high N compared with under low N; and had much smaller reductions in CP concentration (as %DM) and smaller increases in the soluble CP fraction (as %CP) and the acid detergent insoluble CP fraction (as %CP) under elevated CO2. Such large and varied changes in plant quality are likely to have large and significant effects on the herbivore populations that feed from these plants.  相似文献   

3.
1. The lack of consistent differences between the traits of native and non‐native plant species makes it difficult to make general predictions about the ecological impact of invasive plants; however, the increasing number of non‐native plants in many habitats makes the assessment of the impact of each individual species impracticable. General knowledge about how specific plant traits are linked to their effects on communities or ecosystems may be more useful for predicting the effect of plant invasions. Specifically, we hypothesised that higher carbon‐to‐nitrogen ratio (C:N) and percent lignin in plant detritus would reduce the rate of development and total mass at metamorphosis of tadpoles, resulting in lower metamorph production (total fresh biomass) and amphibian species richness. 2. To test these hypotheses, we raised five species of tadpoles in mesocosms containing senescent leaves of three common native and three common non‐native wetland plants that varied in C:N ratio and % lignin. 3. Leaf mass loss, total metamorph production and the number of species that metamorphosed declined as a function of increasing C:N ratio of plant leaves. Plant lignin content was not related to the production of metamorphs or the number of species that metamorphosed. The percentage of wood frog (Lithobates sylvaticus) and American toad (Anaxyrus americanus) tadpoles reaching metamorphosis declined as a function of increasing plant C:N ratio. Mean time to metamorphosis increased and mean mass at metamorphosis declined as a function of increasing plant C:N ratio. Tadpole performance and metamorph diversity and production (biomass) were similar between native and non‐native plant species with similar C:N ratio in leaves. Percent lignin was not a significant predictor of tadpole performance. 4. Our results show that the impact of a plant invasion on tadpole performance could depend on differences between the quality of the detritus produced by the invading species and that of the native species it replaces. We suggest that plant community changes that lead to dominance by more recalcitrant plant species (those with higher leaf C:N ratio) may negatively affect amphibian populations.  相似文献   

4.
There is mounting evidence silicon (Si) can alter plant nutrient dynamics and is an important functional trait in plant defence and plant–insect ecology. Despite this, there remains a paucity in our understanding of how Si‐driven changes in nutritional quality can impact herbivore performance across different plant species. We investigated how Si alters plant nutritional quality and the concomitant effects on the performance of the Australian native generalist herbivore Helicoverpa punctigera feeding on three economically significant plant species of varying Si‐uptake ability: Brassica napus (non‐Si accumulator), Cucumis sativus (intermediate Si accumulator) and Sorghum bicolor (high Si accumulator). Si supplementation reduced the nutritional quality of B. napus but increased phosphorus concentrations in S. bicolor. Si reduced herbivore performance in all host–plant species, which correlated directly with Si concentrations in Si‐accumulating host plants C. sativus and S. bicolor. However, on B. napus, Si affected herbivore performance indirectly by reducing nutritional quality (foliar carbon:nitrogen ratio and phosphorus concentration). This suggests Si availability can affect herbivore performance directly via Si concentration on Si‐accumulating hosts, and indirectly via nutritional quality in a non‐Si accumulator. The resistance‐enhancing effects of Si on multiple species offer opportunity for agriculture to utilise this abundant element in sustainable management practices.  相似文献   

5.
This study investigated the effect of silicon (Si) on resistance of bean plants (cv. ‘Peróla’) to anthracnose, caused by Colletotrichum lindemuthianum, grown in a nutrient solution containing 0 (?Si) or 2 mmol Si L?1 (+Si). The concentration of Si in leaf tissue and the incubation period increased by 55.2% and 14.3%, respectively, in +Si plants in relation to ?Si plants. The area under anthracnose progress curve and the severity estimated by the software QUANT significantly decreased by 32.9% and 27%, respectively, for +Si plants. Si did not affect the concentration of total soluble phenolics. Chitinases activity was higher in the advanced stages of infection by C. lindemuthianum for leaves of ?Si plants. β‐1,3‐Glucanase activity increased after C. lindemuthianum infection, but it was not enhanced by Si. Peroxidase and polyphenoloxidase activities had no apparent effect on the resistance of bean plants to anthracnose, regardless of the presence of Si. The increase in lignin concentration as well as on the phenylalanine ammonia‐lyase and lipoxygenase activities were important for the resistance of +Si plants against anthracnose. The results of this study suggest that Si may increase resistance to anthracnose in bean plants by enhancing certain biochemical mechanisms of defence as opposed to just acting as a physical barrier to penetration by C. lindemuthianum.  相似文献   

6.
Rising levels of atmospheric CO2 can alter plant growth and partitioning to secondary metabolites. The protein competition model (PCM) and the extended growth/differentiation balance model (GDBe) are similar but alternative models that address ontogenetic and environmental effects on whole‐plant carbon partitioning to the phenylpropanoid biosynthetic pathway, making many divergent predictions. To test the validity of the models, we compare plant responses to one key prediction: if CO2 enrichment simultaneously stimulates both photosynthesis and growth, then PCM predicts that partitioning to phenolic compounds will decline, whereas GDBe generally predicts the opposite. Elevated CO2 (at 548 ppm) increased the biomass growth (ca 23%) as well as the net photosynthesis (ca 13%) of 1‐year‐old potted paper birch, Betula papyrifera Marsh., in a free air carbon dioxide enrichment study (FACE) in northern Wisconsin. Concomitantly, elevated CO2 increased carbon partitioning to all measured classes of phenolics (Folin‐Denis phenolics, HPLC low molecular weight phenolics (i.e. cinnamic acid derivatives, flavonol glycosides, and flavon‐3‐ols), condensed tannins, and acid‐detergent lignin) in leaves. In stem tissues, tannins and lignin increased, but F‐D phenolics did not. In root tissues, F‐D phenolics, and tannins increased, but lignin did not. The data suggest that CO2 enrichment stimulated pathway‐wide increase in carbon partitioning to phenylpropanoids. High CO2 plants had 11.8% more F‐D phenolics, 19.3% more tannin, and 10% more lignin than ambient plants after adjusting for plant mass via analysis of covariance. In general, the results unequivocally support the predictions of the GDBe model. By way of contrast, results from many parallel studies on FACE trembling aspen, Populus tremuloides Michx., suggest that although CO2 enrichment has consistently stimulated both photosynthesis and growth, it apparently did not generally stimulate pathway‐wide increases, or decreases, in carbon partitioning to phenylpropanoids in leaves and wood, but rather has specifically, though not consistently, increased partitioning to foliar phenolic glycosides. Likewise, in this case, GDBe's predictions better accord with the FACE aspen data than PCM's. If further tests of the two models also support GDB rather than PCM, then PCM's main assumption (whole‐plant N rather than C is limiting partitioning to phenolic synthesis) may be incorrect.  相似文献   

7.
To study the incorporation of carbon and nitrogen in different plant fractions, 3‐year‐old‐beech (Fagus sylvatica L.) seedlings were exposed in microcosms to a dual‐labelling experiment employing 13C and 15N throughout one season. Leaves, stems, coarse and fine roots were harvested 6, 12 and 18 weeks after bud break (June to September) and used to isolate acid‐detergent fibre lignins (ADF lignin) for the determination of carbon and nitrogen and their isotope ratios. Lignin concentrations were also determined with the thioglycolic acid method. The highest lignin concentrations were found in fine roots. ADF lignins of all tissues analysed, especially those of leaves, also contained significant concentrations of nitrogen. This suggests that lignin‐bound proteins constitute an important cell wall fraction and shows that the ADF method is not suitable to determine genuine lignin. ADF lignin should be re‐named as ligno‐protein fraction. Whole‐leaf biomass was composed of 50 to 70% newly assimilated carbon and about 7% newly assimilated nitrogen; net changes in the isotope ratios were not observed during the experimental period. In the other tissues analysed, the fraction of new carbon and nitrogen was initially low and increased significantly during the time‐course of the experiment, whereas the total tissue concentrations of carbon remained almost unaffected and nitrogen declined. At the end of the experiment, the whole‐tissue biomass and ADF lignins of fine roots contained about 65 and 50% new carbon and about 50 and 40% new nitrogen, respectively. These results indicate that significant metabolic activity was related to the formation of structural biopolymers after leaf growth, especially below‐ground and that this activity also led to a substantial binding of nitrogen to structural compounds.  相似文献   

8.
This study investigated the effect of silicon (Si) on the resistance of rice plants of the cv. ‘Primavera’ cultivar that were grown in a nutrient solution with 0 (?Si) or 2 mm (+Si) Si to leaf scald, which is caused by Monographella albescens. The leaf Si concentration increased in the +Si plants (4.8 decag/kg) compared to the ?Si plants (0.9 decag/kg), contributing to a reduced expansion of the leaf scald lesions. The extent of the cellular damage that was caused by the oxidative burst in response to the infection by M. albescens was reduced in the +Si plants, as evidenced by the reduced concentration of malondialdehyde. Higher concentrations of total soluble phenolics and lignin‐thioglycolic acid derivatives and greater activities of peroxidases (POX), polyphenoloxidases (PPO), phenylalanine ammonia‐lyases (PAL) and lipoxygenases (LOX) in the leaves of the +Si plants also contributed to the increased rice resistance to leaf scald. In contrast, the activities of chitinases and β‐1,3‐glucanases were higher in the leaves of the ?Si plants probably due to the unlimited M. albescens growth in the leaf tissues, as indicated by the larger lesions. The results of this study highlight the potential of Si in decreasing the expansion of the leaf scald lesions concomitantly with the potentiation of phenolic and lignin production, and the greater activities of POX, PPO, PAL and LOX rather than simply acting only as a physical barrier to avoid M. albescens penetration.  相似文献   

9.
Cereal straws constitute a considerable source of biomass that can be used for bioenergy applications. Its composition is crucial for the energy value in biological or thermochemical conversion processes. Therefore, this study aimed at (i) exploring the global diversity in the composition of barley (Hordeum vulgare L.) straw; (ii) testing the effect of drought on straw composition; (iii) correlating compositional traits with energy value; and (iv) identifying loci associated with straw composition through genomewide association study (GWAS). A population of 179 barley accessions was grown in control and drought conditions, and straw was analyzed for thioglycolic acid lignin (TGAL), total phenolics (TP), carbon, crude protein (CP), C/N ratio, and ash. Substantial variability was observed in all traits. Moreover, drought treatment affected all traits leading to significant decreases in carbon, CP, ash, TGAL and TP concentrations, and a significant increase in C/N ratio. In vitro incubations in rumen fluid were used to estimate the energy value in biological energy conversion, while calorimetry was used to estimate the energy yield in thermochemical energy conversion. Thioglycolic acid lignin was singled out as the most influential trait determining energy value, as it was negatively correlated with the digestibility of organic matter and metabolizable energy in in vitro incubations, but positively correlated with gross energy measured by calorimetry. The GWAS yielded four loci significantly associated with TGAL irrespective of plant water status, which explained between 22.5% and 38.7% of the phenotypic variation. In addition, three loci significantly affected the response of TGAL to plant water status, and explained between 11.2% and 16.6% of the phenotypic variation. These loci contained plausible candidate genes that could be associated with lignin biosynthesis based on their annotations. In conclusion, this study illustrated great potential for the molecular breeding of barley varieties with enhanced straw quality for bioenergy applications.  相似文献   

10.
Soil amendment with Silicon (Si) can increase plant resistance against insect herbivores, but the underlying mechanisms remain unclear. The mechanical resistance hypothesis (MRH) states that Si accumulated in epidermal cells directly and passively protects against herbivores by creating a mechanical barrier. The physiological resistance hypothesis (PRH) states that Si enhances resistance by activating plant biochemical and physiological processes. We tested both hypotheses by manipulating Si fertilization of the Si non‐accumulator collard, Brassica oleracea L. cv. acephala (Brassicaceae). Then, we assessed functional and ultrastructural plant responses and the developmental and reproductive performance of the leaf‐chewing larvae of the diamondback moth, Plutella xylostella L. (Lepidoptera: Plutellidae), and the sap‐sucking cabbage aphid, Brevicoryne brassicae L. (Hemiptera: Aphididae). There was a 20% increase in leaf Si content. Silicon deposition in epidermal cells was identified by confocal microscopy and directly coincided with lower performance of P. xylostella, but did not affect B. brassicae. On the other hand, we found no unequivocal evidence that Si‐mediated changes in primary and secondary metabolism improved plant resistance against the insects. Negative mechanical effects of Si on the insects may have masked beneficial effects of increased water, nitrogen, and mineral contents in Si‐treated collards. Silicon did not change leaf contents of hemicellulose, cellulose, and lignin. Although Si‐mediated increases in leaf glucosinolates (GLS) correlated with lower larval performance and higher oviposition preference of P. xylostella, both P. xylostella and B. brassicae are highly specialized in overcoming such secondary metabolites. Thus, mechanical resistance may have impaired P. xylostella, rather than the Si‐mediated increase in GLS. We suggest that the PRH may depend on the degree of insect feeding specialization, so that toxic Si‐mediated defenses may be more efficient against unadapted polyphagous herbivores. For them, a toxic barrier may be added to the mechanical resistance.  相似文献   

11.
Silicon (Si) plays important roles in alleviating various abiotic stresses. In rice (Oryza sativa), arsenic (As) is believed to share the Si transport pathway for entry into roots, and Si has been demonstrated to decrease As concentrations. However, the physiological mechanisms through which Si might alleviate As toxicity in plants remain poorly elucidated. We combined detailed gas exchange measurements with chlorophyll fluorescence analysis to examine the effects of Si nutrition on photosynthetic performance in rice plants [a wild‐type (WT) cultivar and its lsi1 mutant defective in Si uptake] challenged with As (arsenite). As treatment impaired carbon fixation (particularly in the WT genotype) that was unrelated to photochemical or biochemical limitations but, rather, was largely associated with decreased leaf conductance at the stomata and mesophyll levels. Indeed, regardless of the genotypes, in the plants challenged with As, photosynthetic rates correlated strongly with both stomatal (r2 = 0.90) and mesophyll (r2 = 0.95) conductances, and these conductances were, in turn, linearly correlated with each other. The As‐related impairments to carbon fixation could be considerably reverted by Si in a time‐ and genotype‐dependent manner. In conclusion, we identified Si nutrition as an important target in an attempt to not only decrease As concentrations but also to ameliorate the photosynthetic performance of rice plants challenged with As.  相似文献   

12.
鄱阳湖湿地优势植物叶片-凋落物-土壤碳氮磷化学计量特征   总被引:15,自引:20,他引:15  
聂兰琴  吴琴  尧波  付姗  胡启武 《生态学报》2016,36(7):1898-1906
2013年11月初在鄱阳湖南矶湿地国家级自然保护区,采集芦苇(Phragmites australis)、南荻(Triarrhena lutarioriparia)、菰(Zizania latifolia(Griseb.))、灰化苔草(Carex cinerascens)、红穗苔草(Carex argyi)和水蓼(Polygonum hydropiper)等6种优势植物新鲜叶片、凋落物及表层0—15cm土壤样品测定了碳(C)、氮(N)、磷(P)含量,以阐明不同物种、不同生活型间C、N、P化学计量差异,探讨化学计量垂直分异。结果表明:1)C、N、P含量变化范围分别为:叶片380.6—432.2 mg/g,15.3—32.6 mg/g和1.3—2.0 mg/g;凋落物345.4—416.1 mg/g,10.8—20.8 mg/g和1.1—1.7 mg/g;土壤15.0—38.1 mg/g,1.2—3.1 mg/g和0.7—1.1mg/g,不同物种间叶片、凋落物及土壤C、N、P含量差异显著,且叶片C、N、P含量显著高于凋落物与土壤。2)土壤C∶N、C∶P及N∶P值显著低于叶片与凋落物,且土壤C、N、P化学计量关系与凋落物更为密切,凋落物的C∶N、N∶P分别能解释土壤C∶N、N∶P变异的35%、18%。3)挺水植物与湿生植物之间叶片C∶N、N∶P值差异显著,C∶P则差异不显著,凋落物C∶N、C∶P与N∶P均未达到显著性差异。  相似文献   

13.
Silicon (Si) supplied as sodium silicate (1·8 mm ) clearly decreased symptoms of manganese (Mn) toxicity in Cucumis sativus L. (cv. Chinesische Schlange) grown in nutrient solution with low to elevated Mn concentrations (0·5–1000 µm ). Despite approximately the same total Mn content in the leaves, plants not treated with Si had higher Mn concentrations in the intercellular washing fluid (IWF) compared with plants treated with Si, especially in the BaCl2‐ and DTPA‐exchangeable fraction of the leaf apoplast. The Mn concentration of the IWF correlated positively with the severity of Mn‐toxicity symptoms and negatively with the Si supply. Furthermore, in Si‐treated plants less Mn was located in the symplast (< 10%) and more Mn was bound to the cell wall (> 90%) compared with non‐Si‐treated plants (about 50% in each compartment). Manganese present in Si‐treated plants is therefore less available and for this reason less toxic than in plants not treated with Si. It is concluded that Si‐mediated tolerance of Mn in C. sativus is a consequence of stronger binding of Mn to cell walls and a lowering of Mn concentration within the symplast. These results support the role of Si as an important beneficial element in plant nutrition.  相似文献   

14.
Efficiency of lignin biosynthesis: a quantitative analysis   总被引:8,自引:0,他引:8  
Amthor JS 《Annals of botany》2003,91(6):673-695
Lignin is derived mainly from three alcohol monomers: p-coumaryl alcohol, coniferyl alcohol and sinapyl alcohol. Biochemical reactions probably responsible for synthesizing these three monomers from sucrose, and then polymerizing the monomers into lignin, were analysed to estimate the amount of sucrose required to produce a unit of lignin. Included in the calculations were amounts of respiration required to provide NADPH (from NADP(+)) and ATP (from ADP) for lignin biosynthesis. Two pathways in the middle stage of monomer biosynthesis were considered: one via tyrosine (found in monocots) and the other via phenylalanine (found in all plants). If lignin biosynthesis proceeds with high efficiency via tyrosine, 76.9, 70.4 and 64.3 % of the carbon in sucrose can be retained in the fraction of lignin derived from p-coumaryl alcohol, coniferyl alcohol and sinapyl alcohol, respectively. The corresponding carbon retention values for lignin biosynthesis via phenylalanine are less, at 73.2, 65.7 and 60.7 %, respectively. Energy (i.e. heat of combustion) retention during lignin biosynthesis via tyrosine could be as high as 81.6, 74.5 and 67.8 % for lignin derived from p-coumaryl alcohol, coniferyl alcohol and sinapyl alcohol, respectively, with the corresponding potential energy retention values for lignin biosynthesis via phenylalanine being less, at 77.7, 69.5 and 63.9 %, respectively. Whether maximum efficiency occurs in situ is unclear, but these values are targets that can be considered in: (1) plant breeding programmes aimed at maximizing carbon or energy retention from photosynthate; (2) analyses of (minimum) metabolic costs of responding to environmental change or pest attack involving increased lignin biosynthesis; (3) understanding costs of lignification in older tissues; and (4) interpreting carbon balance measurements of organs and plants with large lignin concentrations.  相似文献   

15.
Plant survival in many ecosystems requires tolerance of large radiation loads, unreliable water supply and suboptimal soil fertility. We hypothesized that increased production of neutral lipids (triacylglycerols, TAGs) in plant leaves is a mechanism for dissipating excess radiation energy. In a greenhouse experiment, we combined drought and shade treatments and examined responses among four species differing in life form, habitat, and drought‐ and shade‐tolerance. We also present a lipid extraction protocol suitable for sclerophyllous leaves of native Australian trees (e.g. Acacia, Eucalyptus). Fluorescence measurements indicated that plants exposed to full sunlight experienced mild photoinhibition during our experiment. Accumulation of TAGs did not follow photosynthetic capacity, but instead, TAG concentration increased with non‐photochemical quenching. This suggests that plants under oxidative stress may increase biosynthesis of TAGs. Moderate drought stress resulted in a 60% reduction in TAG concentration in wheat (Triticum aestivum). Shading had no effect on TAGs, but increased concentrations of polar lipids in leaves; for example, acclimation to shade in Austrodanthonia spp., a native Australian grass, resulted in a 60% increase in associated polar lipids and higher foliar chlorophyll concentrations. Shading also reduced the digalactosyldiacylglycerol:monogalactosyldiacylglycerol (DGDG:MGDG) ratio in leaves, with a corresponding increase in the degree of unsaturation and thus fluidity of thylakoid membranes of chloroplasts. Our results suggest that prevention of photodamage may be coordinated with accumulation of TAGs, although further research is required to determine if TAGs serve a photoprotective function in plant leaves.  相似文献   

16.
A family 15 carbohydrate esterase (CE15) from the white‐rot basidiomycete, Phanerochaete carnosa (PcGCE), was transformed into Arabidopsis thaliana Col‐0 and was expressed from the constitutive cauliflower mosaic virus 35S promoter. Like other CE15 enzymes, PcGCE hydrolyzed methyl‐4‐O‐methyl‐d ‐glucopyranuronate and could target ester linkages that contribute to lignin–carbohydrate complexes that form in plant cell walls. Three independently transformed Arabidopsis lines were evaluated in terms of nine morphometric parameters, total sugar and lignin composition, cell wall anatomy, enzymatic saccharification and xylan extractability. The transgenic lines consistently displayed a leaf‐yellowing phenotype, as well as reduced glucose and xylose content by as much as 30% and 35%, respectively. Histological analysis revealed 50% reduction in cell wall thickness in the interfascicular fibres of transgenic plants, and FT‐IR microspectroscopy of interfascicular fibre walls indicated reduction in lignin cross‐linking in plants overexpressing PcGCE. Notably, these characteristics could be correlated with improved xylose recovery in transgenic plants, up to 15%. The current analysis represents the first example whereby a fungal glucuronoyl esterase is expressed in Arabidopsis and shows that the promotion of glucuronoyl esterase activity in plants can alter the extent of intermolecular cross‐linking within plant cell walls.  相似文献   

17.
Rice straw, the role of silica and treatments to improve quality   总被引:4,自引:0,他引:4  
Rice straw is unique relative to other cereal straws in being low in lignin and high in silica. Unlike other cereal straws taller varieties of rice straws tend to be leafy while the leaves are less digested than stems. This may contribute to higher straw value with rice yield. There is genetic variation in straw quality but has not been exploited and tends to be smaller than environmental variation. Effort in plant breeding has been to develop short varieties with higher grain yield. This development has reduced straw quantity but not nutritive value. The relationship between plant genetics and silica metabolism is virtually uninvestigated, although reviews from plant physiology indicate it is a major factor.

Silica and lignin in that order are the primary limiting factors in rice straw quality. Silicon is a nutrient element which has been overlooked largely because of its assumed inertness, but also because of its geochemical abundance that so greatly exceeds its metabolic use by plants and animals. Silicon is involved in several major roles in rice: carbohydrate synthesis, grain yield, phenolic synthesis and plant cell wall protection. These vectors interact with each other to eliminate statistical association of silica and lignin with straw digestibility when varieties are compared. Yield of grain is highly related to silica content of straw, which reflects soil availability. There are no detailed studies on rice straw lignin. Most papers reporting lignin contents in rice straw have used acid-detergent lignin by either the sulfuric acid or permanganate versions. There are undoubtedly soluble phenolics in rice straw that need investigation. The effects of ammonia and urea on silica is to crack the silicified cuticular layer. Silica is not dissolved by these reagents in contrast to the action of sodium hydroxide.

Treatments on rice straw follow those applied to other lignified materials. In order of frequency of reports, urea followed by ammonia with comparatively fewer papers on sodium hydroxide, steam and pressure treatments or exploded by pressure release, and only one or two papers on acid treatments and white rot fungi. There are reports on animal supplementation and a few growth studies with young animals. Field surveys in India and the southeast Asian countries only report the use of urea, although it appears less efficient than ammonia. Farmer acceptance is related to their perceptions on costs, labor, equipment, health, safety, i.e. the exposure to ammonia vapor, economic and other social factors. The various papers reporting treatments have used animal digestion trials; a variety of in sacco, in vitro digestions with rumen organisms or cellulase, some in combination with pepsin digestion or neutral-detergent extraction. Gas production from in vitro rumen fermentation has also been used. Results are expressed mainly on dry matter basis and fewer reports on organic matter. Results are difficult to compare and standardization of procedures is badly needed. However, most treatments with ammonia and urea show some increase in digestibility and intake where measured in in vivo trials. In vitro and in sacco evaluations tend to overestimate improvement in digestibility.  相似文献   


18.
Conversion of grasslands to woodlands may alter the sensitivity of CO2 exchange of individual plants and entire ecosystems to air temperature and precipitation. We combined leaf‐level gas exchange and ecosystem‐level eddy covariance measurements to quantify the effects of plant temperature sensitivity and ecosystem temperature responses within a grassland and mesquite woodland across seasonal precipitation periods. In so doing, we were able to estimate the role of moisture availability on ecosystem temperature sensitivity under large‐scale vegetative shifts. Optimum temperatures (Topt) for net photosynthetic assimilation (A) and net ecosystem productivity (NEP) were estimated from a function fitted to A and NEP plotted against air temperature. The convexities of these temperature responses were quantified by the range of temperatures over which a leaf or an ecosystem assimilated 50% of maximum NEP (Ω50). Under dry pre‐ and postmonsoon conditions, leaf‐level Ω50 in C3 shrubs were two‐to‐three times that of C4 grasses, but under moist monsoon conditions, leaf‐level Ω50 was similar between growth forms. At the ecosystems‐scale, grassland NEP was more sensitive to precipitation, as evidenced by a 104% increase in maximum NEP at monsoon onset, compared to a 57% increase in the woodland. Also, woodland NEP was greater across all temperatures experienced by both ecosystems in all seasons. By maintaining physiological function across a wider temperature range during water‐limited periods, woody plants assimilated larger amounts of carbon. This higher carbon‐assimilation capacity may have significant implications for ecosystem responses to projected climate change scenarios of higher temperatures and more variable precipitation, particularly as semiarid regions experience conversions from C4 grasses to C3 shrubs. As regional carbon models, CLM 4.0, are now able to incorporate functional type and photosynthetic pathway differences, this work highlights the need for a better integration of the interactive effects of growth form/functional type and photosynthetic pathway on water resource acquisition and temperature sensitivity.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号