首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Climate warming is substantially shifting the leaf phenological events of plants, and thereby impacting on their individual fitness and also on the structure and functioning of ecosystems. Previous studies have largely focused on the climate impact on spring phenology, and to date the processes underlying leaf senescence and their associated environmental drivers remain poorly understood. In this study, experiments with temperature gradients imposed during the summer and autumn were conducted on saplings of European beech to explore the temperature responses of leaf senescence. An additional warming experiment during winter enabled us to assess the differences in temperature responses of spring leaf‐out and autumn leaf senescence. We found that warming significantly delayed the dates of leaf senescence both during summer and autumn warming, with similar temperature sensitivities (6–8 days delay per °C warming), suggesting that, in the absence of water and nutrient limitation, temperature may be a dominant factor controlling the leaf senescence in European beech. Interestingly, we found a significantly larger temperature response of autumn leaf senescence than of spring leaf‐out. This suggests a possible larger contribution of delays in autumn senescence, than of the advancement in spring leaf‐out, to extending the growing season under future warmer conditions.  相似文献   

2.
Background and Aims Many individual studies have shown that the timing of leaf senescence in boreal and temperate deciduous forests in the northern hemisphere is influenced by rising temperatures, but there is limited consensus on the magnitude, direction and spatial extent of this relationship.Methods A meta-analysis was conducted of published studies from the peer-reviewed literature that reported autumn senescence dates for deciduous trees in the northern hemisphere, encompassing 64 publications with observations ranging from 1931 to 2010.Key Results Among the meteorological measurements examined, October temperatures were the strongest predictors of date of senescence, followed by cooling degree-days, latitude, photoperiod and, lastly, total monthly precipitation, although the strength of the relationships differed between high- and low-latitude sites. Autumn leaf senescence has been significantly more delayed at low (25° to 49°N) than high (50° to 70°N) latitudes across the northern hemisphere, with senescence across high-latitude sites more sensitive to the effects of photoperiod and low-latitude sites more sensitive to the effects of temperature. Delays in leaf senescence over time were stronger in North America compared with Europe and Asia.Conclusions The results indicate that leaf senescence has been delayed over time and in response to temperature, although low-latitude sites show significantly stronger delays in senescence over time than high-latitude sites. While temperature alone may be a reasonable predictor of the date of leaf senescence when examining a broad suite of sites, it is important to consider that temperature-induced changes in senescence at high-latitude sites are likely to be constrained by the influence of photoperiod. Ecosystem-level differences in the mechanisms that control the timing of leaf senescence may affect both plant community interactions and ecosystem carbon storage as global temperatures increase over the next century.  相似文献   

3.
Leaf senescence in winter deciduous species signals the transition from the active to the dormant stage. The purpose of leaf senescence is the recovery of nutrients before the leaves fall. Photoperiod and temperature are the main cues controlling leaf senescence in winter deciduous species, with water stress imposing an additional influence. Photoperiod exerts a strict control on leaf senescence at latitudes where winters are severe and temperature gains importance in the regulation as winters become less severe. On average, climatic warming will delay and drought will advance leaf senescence, but at varying degrees depending on the species. Warming and drought thus have opposite effects on the phenology of leaf senescence, and the impact of climate change will therefore depend on the relative importance of each factor in specific regions. Warming is not expected to have a strong impact on nutrient proficiency although a slower speed of leaf senescence induced by warming could facilitate a more efficient nutrient resorption. Nutrient resorption is less efficient when the leaves senesce prematurely as a consequence of water stress. The overall effects of climate change on nutrient resorption will depend on the contrasting effects of warming and drought. Changes in nutrient resorption and proficiency will impact production in the following year, at least in early spring, because the construction of new foliage relies almost exclusively on nutrients resorbed from foliage during the preceding leaf fall. Changes in the phenology of leaf senescence will thus impact carbon uptake, but also ecosystem nutrient cycling, especially if the changes are consequence of water stress.  相似文献   

4.

Aim

Climate change regulates autumn leaf senescence date (LSD), exhibiting a strong phenological control of plant carbon uptake. Unlike the delaying effect of daily mean temperature (Tmean) on LSD, the impact of warming asymmetry in daytime and nighttime, as evidenced by variations of the diurnal temperature range (DTR), remains elusive. The objectives of this study were to investigate physiological and ecological impacts of DTR on LSD using long-term in situ observations and to predict the future trends of LSD under warming.

Location

Europe.

Time period

1950–2015.

Major taxa studied

Plant phenology.

Methods

We used partial correlation analysis, multiple linear regression and ridge regression to explore the impacts of DTR on LSD. To quantify the importance of potential drivers of LSD, we trained random forest models and applied the SHapley Additive exPlanations method to isolate the marginal contributions of each predictor on LSD. For LSD modelling and projection, we first evaluated two temperature-driven LSD models [i.e., cooling-degree-day (CDD, without DTR effect) and day–night-temperature CDD (DNCDD, with DTR effect)], then applied them to predict future LSDs.

Results

We found that observational increases in Tmean and DTR had contrasting effects on LSD. Increased Tmean delayed the LSD, whereas larger DTR overall had an advancing effect. Considering the DTR effect, the Tmean sensitivity of LSD was 14% lower than presently estimated (2.4 vs. 2.8 days °C−1). Warming asymmetry-related drought stress and plant functional traits (i.e., plant isohydricity and water-use efficiency) potentially explained the advancing effect of DTR on LSD. We found that current projections of future LSD are overestimated because the DTR effect is discounted, suggesting the need for an adequate understanding of how plant phenology responds to warming asymmetry.

Main conclusions

Our findings highlight the importance of DTR in controlling LSD variations with an advancing-dominant effect and call for the improvement of phenology modelling incorporating the DTR effect. Given that DTR showed a globally narrowing trend over the last several decades, more efforts are needed to understand the potential ecological impacts of warming asymmetry and vegetation response to climate change.  相似文献   

5.
Climate change has substantial influences on autumn leaf senescence, that is, the end of the growing season (EOS). Relative to the impacts of temperature and precipitation on EOS, the influence of drought is not well understood, especially considering that there are apparent cumulative and lagged effects of drought on plant growth. Here, we investigated the cumulative and lagged effects of drought (in terms of the Standardized Precipitation–Evapotranspiration Index, SPEI) on EOS derived from the normalized difference vegetation index (NDVI3g) data over the Northern Hemisphere extra‐tropical ecosystems (>30°N) during 1982–2015. The cumulative effect was determined by the number of antecedent months at which SPEI showed the maximum correlation with EOS (i.e., Rmax‐cml) while the lag effect was determined by a month during which the maximum correlation between 1‐month SPEI and EOS occurred (i.e., Rmax‐lag). We found cumulative effect of drought on EOS for 27.2% and lagged effect for 46.2% of the vegetated land area. For the dominant time scales where the Rmax‐cml and Rmax‐lag occurred, we observed 1–4 accumulated months for the cumulative effect and 2–6 lagged months for the lagged effect. At the biome level, drought had stronger impacts on EOS in grasslands, savannas, and shrubs than in forests, which may be related to the different root functional traits among vegetation types. Considering hydrological conditions, the mean values of both Rmax‐cml and Rmax‐lag decreased along the gradients of annual SPEI and its slope, suggesting stronger cumulative and lagged effects in drier regions as well as in areas with decreasing water availability. Furthermore, the average accumulated and lagged months tended to decline along the annual SPEI gradient but increase with increasing annual SPEI. Our results revealed that drought has strong cumulative and lagged effects on autumn phenology, and considering these effects could provide valuable information on the vegetation response to a changing climate.  相似文献   

6.
To understand the effects of climate change on the growing season of plants in Japan, we conducted trend analysis of phenological phases and examined the relationship between phenology and air temperatures. We used phenological data for Ginkgo biloba L., collected from 1953 to 2000. We defined the beginning and the end of the growing season (BGS and EGS) as the dates of budding and leaf fall, respectively. Changes in the air temperature in the 45 days before the date of BGS affected annual variation in BGS. The annual variation in air temperature over the 85 days before EGS affected the date of EGS. The average annual air temperature in Japan has increased by 1.3°C over the last four decades (1961–2000), and this increase has caused changes in ginkgo phenology. In the last five decades (1953–2000), BGS has occurred approximately 4 days earlier than previously, and EGS has occurred about 8 days later. Consequently, since 1953 the length of the growing season (LGS) has been extended by 12 days. Since around 1970, LGS and air temperatures have shown increasing trends. Although many researchers have stated that phenological events are not affected by the air temperature in the fall, we found high correlations not only between budding dates and air temperatures in spring but also between leaf‐fall dates and air temperatures in autumn. If the mean annual air temperature increases by 1°C, LGS could be extended by 10 days. We also examined the spatial distribution of the rate of LGS extension, but we did not find an obvious relationship between LGS extension and latitude.  相似文献   

7.
Neotropical savannas (‘cerrados’) of Central Brazil are characterized by the coexistence of a large diversity of tree species with divergent phenological behaviors, which reflect a great diversity in growth strategies. In the present study time behavior and quantitative aspects of shoot growth, shoot mortality, and leaf longevity and production were analyzed in 12 woody species of contrasting leaf phenology, adopting a functional group approach where 12 species were categorized into three functional groups: evergreen, decidous and brevideciduous, according to their leaf phenology. Shoot growth and leaf production were seasonal for the three functional groups, differing in their time of occurrence, but being concentrated during the last months of the dry season. Shoot growth differed between evergreens and deciduous, as well leaf production. Evergreens had higher rates of shoot growth, produced a higher number of leaves and had longer leaf longevity (around 500 days against 300 days in deciduous and brevideciduous). Leaf longevity was associated with patterns of leaf production when accounting for all phenological groups studied. It was possible to identify different patterns of aerial growth in savanna phenological groups, providing evidence of great functional variability amongst the groups studied.  相似文献   

8.
Recent studies have revealed large unexplained variation in heat requirement‐based phenology models, resulting in large uncertainty when predicting ecosystem carbon and water balance responses to climate variability. Improving our understanding of the heat requirement for spring phenology is thus urgently needed. In this study, we estimated the species‐specific heat requirement for leaf flushing of 13 temperate woody species using long‐term phenological observations from Europe and North America. The species were defined as early and late flushing species according to the mean date of leaf flushing across all sites. Partial correlation analyses were applied to determine the temporal correlations between heat requirement and chilling accumulation, precipitation and insolation sum during dormancy. We found that the heat requirement for leaf flushing increased by almost 50% over the study period 1980–2012, with an average of 30 heat units per decade. This temporal increase in heat requirement was observed in all species, but was much larger for late than for early flushing species. Consistent with previous studies, we found that the heat requirement negatively correlates with chilling accumulation. Interestingly, after removing the variation induced by chilling accumulation, a predominantly positive partial correlation exists between heat requirement and precipitation sum, and a predominantly negative correlation between heat requirement and insolation sum. This suggests that besides the well‐known effect of chilling, the heat requirement for leaf flushing is also influenced by precipitation and insolation sum during dormancy. However, we hypothesize that the observed precipitation and insolation effects might be artefacts attributable to the inappropriate use of air temperature in the heat requirement quantification. Rather than air temperature, meristem temperature is probably the prominent driver of the leaf flushing process, but these data are not available. Further experimental research is thus needed to verify whether insolation and precipitation sums directly affect the heat requirement for leaf flushing.  相似文献   

9.
The timing of spring leaf development, trajectories of summer leaf area, and the timing of autumn senescence have profound impacts to the water, carbon, and energy balance of ecosystems, and are likely influenced by global climate change. Limited field‐based and remote‐sensing observations have suggested complex spatial patterns related to geographic features that influence climate. However, much of this variability occurs at spatial scales that inhibit a detailed understanding of even the dominant drivers. Recognizing these limitations, we used nonlinear inverse modeling of medium‐resolution remote sensing data, organized by day of year, to explore the influence of climate‐related landscape factors on the timing of spring and autumn leaf‐area trajectories in mid‐Atlantic, USA forests. We also examined the extent to which declining summer greenness (greendown) degrades the precision and accuracy of observations of autumn offset of greenness. Of the dominant drivers of landscape phenology, elevation was the strongest, explaining up to 70% of the spatial variation in the onset of greenness. Urban land cover was second in importance, influencing spring onset and autumn offset to a distance of 32 km from large cities. Distance to tidal water also influenced phenological timing, but only within ~5 km of shorelines. Additionally, we observed that (i) growing season length unexpectedly increases with increasing elevation at elevations below 275 m; (ii) along gradients in urban land cover, timing of autumn offset has a stronger effect on growing season length than does timing of spring onset; and (iii) summer greendown introduces bias and uncertainty into observations of the autumn offset of greenness. These results demonstrate the power of medium grain analyses of landscape‐scale phenology for understanding environmental controls on growing season length, and predicting how these might be affected by climate change.  相似文献   

10.
11.
Maize phenology observations at 112 national agro‐meteorological experiment stations across China spanning the years 1981–2009 were used to investigate the spatiotemporal changes of maize phenology, as well as the relations to temperature change and cultivar shift. The greater scope of the dataset allows us to estimate the effects of temperature change and cultivar shift on maize phenology more precisely. We found that maize sowing date advanced significantly at 26.0% of stations mainly for spring maize in northwestern, southwestern and northeastern China, although delayed significantly at 8.0% of stations mainly in northeastern China and the North China Plain (NCP). Maize maturity date delayed significantly at 36.6% of stations mainly in the northeastern China and the NCP. As a result, duration of maize whole growing period (GPw) was prolonged significantly at 41.1% of stations, although mean temperature (Tmean) during GPw increased at 72.3% of stations, significantly at 19.6% of stations, and Tmean was negatively correlated with the duration of GPw at 92.9% of stations and significantly at 42.9% of stations. Once disentangling the effects of temperature change and cultivar shift with an approach based on accumulated thermal development unit, we found that increase in temperature advanced heading date and maturity date and reduced the duration of GPw at 81.3%, 82.1% and 83.9% of stations on average by 3.2, 6.0 and 3.5 days/decade, respectively. By contrast, cultivar shift delayed heading date and maturity date and prolonged the duration of GPw at 75.0%, 94.6% and 92.9% of stations on average by 1.5, 6.5 and 6.5 days/decade, respectively. Our results suggest that maize production is adapting to ongoing climate change by shift of sowing date and adoption of cultivars with longer growing period. The spatiotemporal changes of maize phenology presented here can further guide the development of adaptation options for maize production in near future.  相似文献   

12.
揭示温带落叶树木秋季物候的发生机理对提高生态系统固碳量和植被生产力的预估精度具有重要意义。该研究利用低温和光周期乘积模型模拟了1981-2014年中国北方温带90余个站点6个树种的叶始变色期和落叶末期, 并对逐站点-物种的最优模型进行了模拟精度评价, 分析了最优模型模拟精度的时空差异及其随水分梯度的空间变化。主要结果如下: (1)在诱导叶片衰老方面, 光周期缩短的影响通常大于温度降低的影响。据此建立的叶始变色期和落叶末期最优模型模拟的平均均方根误差分别为6.9 d和6.0 d, 模拟与观测时间序列呈显著正相关关系的比例分别为71.4%和83.6%; (2)最优模型对区域平均和多年平均叶始变色期和落叶末期模拟的绝对误差小于2.4 d, 但模拟日期的时空变幅通常小于观测日期, 这与秋季物候发生日期的高度时间变异性密切相关; (3)水分条件在一定程度上影响叶片衰老诱导途径的选择, 表现为光周期缩短诱导叶片衰老的叶始变色期最优模型所占比例在干旱和半干旱区大于湿润和半湿润区, 而最优模型的模拟精度在湿润和半湿润区高于干旱和半干旱区。该研究验证了低温和光周期乘积模型在中国温带地区的适用性, 并揭示了水分条件对秋季物候发生机理和模拟精度的影响。  相似文献   

13.
Climate change scenarios predict an increased frequency of extreme climatic events. In Arctic regions, one of the most profound of these are extreme and sudden winter warming events in which temperatures increase rapidly to above freezing, often causing snow melt across whole landscapes and exposure of ecosystems to warm temperatures. Following warming, vegetation and soils no longer insulated below snow are then exposed to rapidly returning extreme cold. Using a new experimental facility established in sub‐Arctic dwarf shrub heathland in northern Sweden, we simulated an extreme winter warming event in the field and report findings on growth, phenology and reproduction during the subsequent growing season. A 1‐week long extreme winter warming event was simulated in early March using infrared heating lamps run with or without soil warming cables. Both single short events delayed bud development of Vaccinium myrtillus by up to 3 weeks in the following spring (June) and reduced flower production by more than 80%: this also led to a near‐complete elimination of berry production in mid‐summer. Empetrum hermaphroditum also showed delayed bud development. In contrast, Vaccinium vitis‐idaea showed no delay in bud development, but instead appeared to produce a greater number of actively growing vegetative buds within plots warmed by heating lamps only. Again, there was evidence of reduced flowering and berry production in this species. While bud break was delayed, growing season measurements of growth and photosynthesis did not reveal a differential response in the warmed plants for any of the species. These results demonstrate that a single, short, extreme winter warming event can have considerable impact on bud production, phenology and reproductive effort of dominant plant species within sub‐Arctic dwarf shrub heathland. Furthermore, large interspecific differences in sensitivity are seen. These findings are of considerable concern, because they suggest that repeated events may potentially impact on the biodiversity and productivity of these systems should these extreme events increase in frequency as a result of global change. Although climate change may lengthen the growing season by earlier spring snow melt, there is a profound danger for these high‐latitude ecosystems if extreme, short‐lived warming in winter exposes plants to initial warm temperatures, but then extreme cold for the rest of the winter. Work is ongoing to determine the longer term and wider impacts of these events.  相似文献   

14.
气候变化对华北冬小麦生育期和灌溉需水量的影响   总被引:13,自引:0,他引:13  
胡玮  严昌荣  李迎春  刘勤 《生态学报》2014,34(9):2367-2377
利用华北4个气象站点1981—2010年冬小麦的生育期数据和气象资料,研究了华北平原典型区域冬小麦在气候变化条件下的生育期及各生育阶段灌溉需水量。结果表明:(1)过去30a来,华北地区冬小麦播种期和出苗期均有推迟趋势,且高纬度站点的变化趋势明显,其他生育期则呈提前趋势,而冬小麦全生育期表现为缩短;(2)华北冬小麦灌溉需水量在空间上从北到南、自东向西逐渐递减趋势;在时间上,东西部地区灌溉需水量变化趋势相反,东部地区呈逐渐增加趋势,而西部地区呈减小趋势;(3)冬小麦生育阶段的灌溉需水量变化不相同,播种—出苗、拔节—抽穗和抽穗—乳熟期灌溉需水量表现为减少趋势,而出苗—拔节和乳熟—成熟期则表现为增加趋势。就冬小麦整个生育期而言,华北西部地区灌溉需水量(北京密云站和石家庄栾城站)有减少趋势,分别减少6.72mm/10a和8.3mm/10a;而华北东部地区(天津宝坻站和邢台南宫站)的趋势正好相反,分别增加2.6mm/10a和7.08mm/10a。6个生育阶段灌溉需水量的年际波动程度依次为:播种—出苗期乳熟—成熟期抽穗—乳熟期拔节—抽穗期出苗—拔节期播种—成熟期;(4)气象要素对灌溉需水量的影响较复杂,其中灌溉需水量同有效降水量、相对湿度呈负相关,且相关关系极显著,与生育期长度存在微负相关关系,与日照时数、平均温度和风速呈显著正相关。同时,影响各生育阶段灌溉需水量的气象要素也存在差异,主要包括有效降水量、相对湿度和风速等。  相似文献   

15.
Aim Species with deciduous and evergreen leaf habits typically differ in leaf life span (LLS). Yet quantification of the response of LLS, within each habit, to key environmental conditions is surprisingly lacking. The aim of this study is to quantify LLS strategies of the two leaf habits under varying temperature, moisture and nutrient conditions, using a global database. We hypothesize that deciduous LLS reflects the length of the growing season, avoiding unfavourable conditions regardless of the cause. Evergreen species adjust to unfavourable periods and amortize lower net carbon gains over several growing seasons, with increasing LLS associated with increasingly short favourable versus unfavourable season lengths. Location Global. Methods Data on LLS and environmental variables were compiled from global datasets for 189 deciduous and 506 evergreen species across 83 study locations. Individual and combined effects of measures of seasonality of temperature, water and nutrient availability on length of the growing season and on LLS were quantified using linear mixed models. The best models for predicting LLS were obtained using Akaike's information criterion (AIC) and ΔAIC. Results The LLS of deciduous and evergreen species showed opposite responses to changes in environmental conditions. Under unfavourable conditions, deciduous LLS decreases while evergreen LLS increases. A measure of temperature alone was the best predictor of the growing season. The LLS of deciduous species was independent of environmental conditions after expressing LLS in relation to the number of growing seasons. Evergreen species, on the other hand, adjusted to unfavourable conditions by increasing LLS up to four growing seasons. Contrary to expectations, variation in LLS was best explained solely by temperature, instead of by combined measures of temperature, moisture and nutrient availability. Shifts in the photosynthesis to respiration balance might provide a physiological explanation. Main conclusions Temperature, and not drought or nutrient availability, is the primary driver of contrasting responses of LLS for different leaf habit types.  相似文献   

16.
We compared how abiotic factors affect the regional distributions of four insect groups (Dermaptera, Formicidae, Orthoptera and Diptera). Insects were collected using a pitfall trap from 36 agricultural field sites, and 31 933 individuals encompassing 139 species were observed. The distribution pattern of dominant species was not obviously different among the four groups. Species richness (H′) of Orthoptera showed a negative and positive correlation with precipitation and sunlight duration, respectively. Longitudinal zonation was the main distribution pattern of many dominant species. Overall, canonical correspondence analysis showed that temperature and precipitation were closely associated with the distribution of Orthoptera, but not that of Formicidae, implying that Formicidae may be affected less by abiotic factors compared to other taxonomic groups. Some orthopteran species such as Dianemobius nigrofasciatus and Polionemobius mikado showed a negative correlation with temperature. We suggest that these species can be categorized as susceptible to climate change. Our results also implied that the association between climate variables and distribution of insects should be evaluated at a species level.  相似文献   

17.
Because soil macroinvertebrates strongly modify decomposition processes, it is important to know how their abundance will respond to global change. We investigated in laboratory microcosms, the effects of elevated temperatures and reduced leaf litter quality on the life‐history traits of a saprophagous macroarthropod (development time, growth, survival and reproduction). Millipedes (Polydesmus angustus) from an Atlantic temperate forest were reared throughout their life cycle (≥16 months) under two temperature regimes differing on average by 3.3 °C; in a factorial design, they were fed either on Atlantic leaf litter or on Mediterranean leaf litter with a higher C : N ratio; humidity was consistently high. The components of the population growth rate (r) were affected positively by the temperature rise and negatively by the switch from Atlantic to Mediterranean leaf litter. When both treatments were combined, litter effects offset temperature effects. These results show that the short‐term response of saprophagous macroarthropods to warming is positive but depends on the availability of high‐quality litter, which is difficult to predict in the global change context. In a parallel experiment, conspecific millipedes from a Mediterranean population, which have evolved for a long time in a warmer climate and on poor‐quality litter, were reared at elevated temperatures on Mediterranean leaf litter. All components of r were higher than in the Atlantic population under the same conditions. This suggests that in the longer term, macroarthropods can overcome detrimental trophic interactions. Based on our study and the literature, we conclude that for decades the positive effects of warming on saprophagous macrofauna should exceed the negative effects of changes in litter quality. The abundance of those organisms in temperate forests could increase, which is confirmed by latitudinal patterns in Europe. Studies aimed at predicting the impacts of global change on decomposition will need to consider interactions with soil macroinvertebrates.  相似文献   

18.
The requirements for the experimental study of the effects of global climate change conditions on plants are outlined. A semi-controlled plant growth facility is described which allows the study of elevated CO2 and temperature, and their interaction on the growth of plants under radiation and temperature conditions similar to the field. During an experiment on winter wheat (cv. Mercia), which ran from December 1990 through to August 1991, the facility maintained mean daytime CO2 concentrations of 363 and 692 cm3 m?3 for targets of 350 and 700 cm3 m?3 respectively. Temperatures were set to follow outside ambient or outside ambient +4°C, and hourly means were within 0.5°C of the target for 92% of the time for target temperatures greater than 6°C. Total photosynthetically active radiation incident on the crop (solar radiation supplemented by artifieal light with natural photoperiod) was 2% greater than the total measured outside over the same period.  相似文献   

19.
Forests are increasingly exposed to extreme global warming-induced climatic events. However, the immediate and carry-over effects of extreme events on forests are still poorly understood. Gross primary productivity (GPP) capacity is regarded as a good proxy of the ecosystem's functional stability, reflecting its physiological response to its surroundings. Using eddy covariance data from 34 forest sites in the Northern Hemisphere, we analyzed the immediate and carry-over effects of late-spring frost (LSF) and growing season drought on needle-leaf and broadleaf forests. Path analysis was applied to reveal the plausible reasons behind the varied responses of forests to extreme events. The results show that LSF had clear immediate effects on the GPP capacity of both needle-leaf and broadleaf forests. However, GPP capacity in needle-leaf forests was more sensitive to drought than in broadleaf forests. There was no interaction between LSF and drought in either needle-leaf or broadleaf forests. Drought effects were still visible when LSF and drought coexisted in needle-leaf forests. Path analysis further showed that the response of GPP capacity to drought differed between needle-leaf and broadleaf forests, mainly due to the difference in the sensitivity of canopy conductance. Moreover, LSF had a more severe and long-lasting carry-over effect on forests than drought. These results enrich our understanding of the mechanisms of forest response to extreme events across forest types.  相似文献   

20.
The ongoing changes in the global climate expose the world's ecosystems not only to increasing CO2 concentrations and temperatures but also to altered precipitation (P) regimes. Using four well-established process-based ecosystem models (LPJ, DayCent, ORCHIDEE, TECO), we explored effects of potential P changes on water limitation and net primary production (NPP) in seven terrestrial ecosystems with distinctive vegetation types in different hydroclimatic zones. We found that NPP responses to P changes differed not only among sites but also within a year at a given site. The magnitudes of NPP change were basically determined by the degree of ecosystem water limitation, which was quantified here using the ratio between atmospheric transpirational demand and soil water supply. Humid sites and/or periods were least responsive to any change in P as compared with moderately humid or dry sites/periods. We also found that NPP responded more strongly to doubling or halving of P amount and a seasonal shift in P occurrence than that to altered P frequency and intensity at constant annual amounts. The findings were highly robust across the four models especially in terms of the direction of changes and largely consistent with earlier P manipulation experiments and modelling results. Overall, this study underscores the widespread importance of P as a driver of change in ecosystems, although the ultimate response of a particular site will depend on the detailed nature and seasonal timing of P change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号