首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A revision of the taxonomy of the Ketaketa subcomplex of the Simulium damnosum Theobald complex (Diptera: Simuliidae) is presented including new material from Tanzania, Malawi and South Africa. The cytotaxonomy, morphology and molecular identity of known and new taxa are described. The Ketaketa subcomplex is cytotaxonomically defined by the paracentric inversion 1L-7. We recognize three sibling species, namely Simulium latipollex (Enderlein), Simulium plumbeum Krueger, sp.n. and Simulium kipengere Krueger, sp.n., the latter comprising three cytoforms: 'Typical', 'Linthipe' and 'Mombo'. The cytoforms 'Mwamphanzi', 'Ketaketa' and 'Hammerkopi' are synonymized with S. plumbeum. Identification keys are provided on the basis of chromosomal and morphological characters. In view of their potential role as vectors of human onchocerciasis (river blindness) we also discuss the possible medical importance of the different cytoforms and their geographical distribution.  相似文献   

2.
The Anopheles gambiae complex of mosquitoes includes malaria vectors at different stages of speciation, whose study enables a better understanding of how adaptation to divergent environmental conditions leads to evolution of reproductive isolation. We investigated the population genetic structure of closely related sympatric taxa that have recently been proposed as separate species (An. coluzzii and An. gambiae), sampled from diverse habitats along the Gambia river in West Africa. We characterized putatively neutral microsatellite loci as well as chromosomal inversion polymorphisms known to be associated with ecological adaptation. The results revealed strong ecologically associated population subdivisions within both species. Microsatellite loci on chromosome‐3L revealed clear differentiation between coastal and inland populations, which in An. coluzzii is reinforced by a unusual inversion polymorphism pattern, supporting the hypothesis of genetic divergence driven by adaptation to the coastal habitat. A strong reduction of gene flow was observed between An. gambiae populations west and east of an extensively rice‐cultivated region apparently colonized exclusively by An. coluzzii. Notably, this ‘intraspecific’ differentiation is higher than that observed between the two species and involves also the centromeric region of chromosome‐X which has previously been considered a marker of speciation within this complex, possibly suggesting that the two populations may be at an advanced stage of differentiation triggered by human‐made habitat fragmentation. These results confirm ongoing ecological speciation within these most important Afro‐tropical malaria vectors and raise new questions on the possible effect of this process in malaria transmission.  相似文献   

3.
The ecological and medical importance of black flies drives the need for rapid and reliable identification of these minute, structurally uniform insects. We assessed the efficiency of DNA barcoding for species identification of tropical black flies. A total of 351 cytochrome c oxidase subunit 1 sequences were obtained from 41 species in six subgenera of the genus Simulium in Thailand. Despite high intraspecific genetic divergence (mean = 2.00%, maximum = 9.27%), DNA barcodes provided 96% correct identification. Barcodes also differentiated cytoforms of selected species complexes, albeit with varying levels of success. Perfect differentiation was achieved for two cytoforms of Simulium feuerborni, and 91% correct identification was obtained for the Simulium angulistylum complex. Low success (33%), however, was obtained for the Simulium siamense complex. The differential efficiency of DNA barcodes to discriminate cytoforms was attributed to different levels of genetic structure and demographic histories of the taxa. DNA barcode trees were largely congruent with phylogenies based on previous molecular, chromosomal and morphological analyses, but revealed inconsistencies that will require further evaluation.  相似文献   

4.
The Simulium damnosum Theobald complex (Diptera: Simuliidae) comprises 57 cytoforms grouped into six subcomplexes. Previous phylogenetic studies using gene sequences have not completely resolved the evolutionary relationships of the cytoforms. The present study investigated the systematics of the complex using a phylogeographic approach. The differentiation between eastern and western forms observed in the phylogenetic studies is confirmed in the estimated haplotype networks. However, haplotypes tend to group in geographical clades and not according to cytoforms. Spatial analyses of the molecular variance also resulted in optimal groupings of sequences that did not correspond to cytoform boundaries. Moreover, Mantel tests showed significant correlations, although not strong, between genetic and geographical distances. This suggests an isolation-by-distance model of differentiation. Furthermore, there are instances in which genetic differentiation between cytoforms is low and not significant. These results indicate a lack of clear genetic differentiation between the cytoforms, which may be explained either by a separation of the taxa recent enough to allow the accumulation of few genetic differences or by recombination between the genomes of the cytoforms, which may be the result of hybridization with introgression or of non-independent evolutionary lineages. The results also emphasize the need for further sampling and for the use of more variable markers in order to clarify the evolutionary history of the group.  相似文献   

5.
Migratory behaviour patterns in animals are controlled by a complex genetic architecture. Rainbow trout (Oncorhynchus mykiss) is a salmonid fish that spawns in streams but exhibits three primary life history pathways: stream‐resident (fluvial), lake‐migrant (adfluvial) and ocean‐migrant (anadromous). Previous studies examining fluvial and anadromous Omykiss have identified several genes associated with life history divergence including the presence of an inversion complex within chromosome 5 (Omy05) that appears to maintain a suite of linked genes controlling migratory behaviour. However, adfluvial trout are migratory without being anadromous, and the genetic basis for this life history has not been investigated from evolutionary perspectives. We sampled wild, native nonanadromous rainbow trout occupying connected stream and lake habitats in a southwest Alaskan watershed to determine whether these fish exhibit genetic divergence between fluvial and adfluvial ecotypes, and whether that divergence parallels that documented in fluvial and anadromous O. mykiss. Data from restriction site‐associated DNA (RAD) sequencing revealed an association between frequencies of both the Omy05 inversion complex and other single nucleotide polymorphisms (SNPs) with habitat type (stream or lake), supporting the genetic divergence of fluvial and adfluvial individuals in sympatry. The presence of a genetic basis for migration into lakes, analogous to that documented for anadromy, indicates that the adfluvial ecotype must be recognized separately from the fluvial form of Omykiss even though neither is anadromous. These results highlight the genetic architecture underlying migration and the importance of chromosomal inversions in promoting and sustaining intraspecific diversity.  相似文献   

6.
Chromosomal rearrangement polymorphisms are common and increasingly found to be associated with adaptive ecological divergence and speciation. Rearrangements, such as inversions, reduce recombination in heterozygous individuals and thus can protect favourable allelic combinations at linked loci, facilitating their spread in the presence of gene flow. Recently, we identified a chromosomal inversion polymorphism that contributes to ecological adaptation and reproductive isolation between annual and perennial ecotypes of the yellow monkeyflower, Mimulus guttatus. Here we evaluate the population genetic structure of this inverted region in comparison with the collinear regions of the genome across the M. guttatus species complex. We tested whether annual and perennial M. guttatus exhibit different patterns of divergence for loci in the inverted and noninverted regions of the genome. We then evaluated whether there are contrasting climate associations with these genomic regions through redundancy analysis. We found that the inversion exhibits broadly different patterns of divergence among annual and perennial M. guttatus and is associated with environmental variation across population accessions. This study is the first widespread population genetic survey of the diversity of the M. guttatus species complex. Our findings contribute to a greater understanding of morphological, ecological, and genetic evolutionary divergence across this highly diverse group of closely related ecotypes and species. Finally, understanding species relationships among M. guttatus sp. has hitherto been stymied by accumulated evidence of substantial gene flow among populations as well as designated species. Nevertheless, our results shed light on these relationships and provide insight into adaptation in life history traits within the complex.  相似文献   

7.
The phylogeography of Simulium siamense complex was inferred from mitochondrial DNA sequences. A 586‐bp fragment of the cytochrome oxidase I was sequenced for 92 individuals from 13 populations throughout Thailand, representing five cytoforms (A, B, C, F and G). The cytoforms are not genetically different at the molecular level except for cytoform B, which is genetically distinct from the others. This might indicate that cytoform B is a distinct species. Further morphological and molecular work using other genes is needed to clarify this. Our results also argue for the need of integrated approach, both cytological and molecular studies to understanding biodiversity of black flies. The star‐like shape of the mtDNA genealogy is consistent with the sudden population expansion of the mismatch distribution analysis and large negative values of Fu's Fs and Tajima's D‐tests, indicating a population demographic expansion. The expansion time is estimated to be in the late Pleistocene (about 120 000 years ago). Therefore, the overall low level of genetic structure could be due to sharing a recent history. The ancestral haplotype was found in the mountainous area in northeastern Thailand, suggesting that this area could have been the refugium of the species complex during the Pleistocene glaciations. Our results are consistent with previous findings about population expansion in response to the Pleistocene climatic change, thus revealing the importance of this historical event in shaping the genetic structure and diversity of Southeast Asian mainland species.  相似文献   

8.
In this study, we examined the genetic structure and population history of the high elevation black fly Simulium feuerborni in Thailand at both cytogenetic and molecular genetic levels. Cytological examination revealed two cytoforms differentiated by fixed chromosome inversions. The distributions of the cytoforms were associated with geographic origins. Cytoform A was found in the lower north and northeast, and cytoform B was found in the upper northern region of Thailand. Molecular data based on the mitochondrial cytochrome oxidase subunit I (COI) barcoding sequence supports the separation of the cytoforms. The average sequence divergence between the two cytoforms was 3.75%, which is higher than the threshold value for the species level based on a COI barcoding sequence. Median joining network clearly differentiated the haplotypes of the cytoforms into different lineages. Population pairwise FST and amova analyses reveal significant genetic differentiation between cytoforms. This indicates that the low land areas separating these populations act as a gene flow barrier. No genetic differentiation was detected within cytoforms. This could be due to a recent sharing of population history. Mismatch distribution analysis revealed population expansion in the northern lineage of the cytoform B approximately 220 000 years ago. More recent expansion (32 000 years ago) was found in the lower north and northeast (cytoform A) lineage. The demographic history of S. feuerborni mirrored previous findings in black flies and other insect species in Thailand. This indicates the important role of Pleistocene climatic change on genetic structure and diversity of Southeast Asian mainland species.  相似文献   

9.
The relative influence of Neogene geomorphological events and Quaternary climatic changes as causal mechanisms on Neotropical diversification remains largely speculative, as most divergence timing inferences are based on a single locus and have limited taxonomic or geographic sampling. To investigate these influences, we use a multilocus (two mitochondrial and 11 nuclear genes) range‐wide sampling of Phyllopezus pollicaris, a gecko complex widely distributed across the poorly studied South American ‘dry diagonal’ biomes. Our approach couples traditional and model‐based phylogeography with geospatial methods, and demonstrates Miocene diversification and limited influence of Pleistocene climatic fluctuations on P. pollicaris. Phylogeographic structure and distribution models highlight that persistence across multiple isolated regions shaped the diversification of this species complex. Approximate Bayesian computation supports hypotheses of allopatric and ecological/sympatric speciation between lineages that largely coincide with genetic clusters associated with Chaco, Cerrado, and Caatinga, standing for complex diversification between the ‘dry diagonal’ biomes. We recover extremely high genetic diversity and suggest that eight well‐supported clades may be valid species, with direct implications for taxonomy and conservation assessments. These patterns exemplify how low‐vagility species complexes, characterized by strong genetic structure and pre‐Pleistocene divergence histories, represent ideal radiations to investigate broad biogeographic histories of associated biomes.  相似文献   

10.
11.
Abstract The Mediterranean species complex of Senecio serves to illustrate evolutionary processes that are likely to confound phylogenetic inference, including rapid diversification, gene tree‐species tree discordance, reticulation, interlocus concerted evolution, and lack of complete lineage sorting. Phylogeographic patterns of chloroplast DNA (cpDNA) haplotype variation were studied by sampling 156 populations (502 individuals) across 18 species of the complex, and a species phylogeny was reconstructed based on sequences from the internal transcribed spacer (ITS) regions of nuclear ribosomal DNA. For a subset of species, randomly amplified polymorphic DNAs (RAPDs) provided reference points for comparison with the cpDNA and ITS datasets. Two classes of cpDNA haplotypes were identified, with each predominating in certain parts of the Mediterranean region. However, with the exception of S. gallicus, intraspecific phylogeographic structure is limited, and only a few haplotypes detected were species‐specific. Nuclear sequence divergence is low, and several unresolved phylogenetic groupings are suggestive of near simultaneous diversification. Two well‐supported ITS clades contain the majority of species, amongst which there is a pronounced sharing of cpDNA haplotypes. Our data are not capable of diagnosing the relative impact of reticulation versus insufficient lineage sorting for the entire complex. However, there is firm evidence that S. flavus subsp. breviflorus and S. rupestris have acquired cpDNA haplotypes and ITS sequences from co‐occurring species by reticulation. In contrast, insufficient lineage sorting is a viable hypothesis for cpDNA haplotypes shared between S. gallicus and its close relatives. We estimated the minimum coalescent times for these haplotypes by utilizing the inferred species phylogeny and associated divergence times. Our data suggest that ancestral cpDNA polymorphisms may have survived for ca. 0.4–1.0 million years, depending on molecular clock calibrations.  相似文献   

12.
Two endemic groundwater arthropod crustacean species, Crangonyx islandicus and Crymostygius thingvallensis, were recently discovered on the mid‐Atlantic volcanic island of Iceland. The extent of morphological differences from closest relatives, endemism, along with the geographic isolation of Iceland and its complete coverage by glaciers 21 000 years ago, suggests that these two species have survived glaciation periods in sub‐glacial refugia. Here we provide strong support for this hypothesis by an analysis of mitochondrial genetic variation within Crangonyx islandicus. Our results show that the species is divided into several distinct monophyletic groups that are found along the volcanic zone in Iceland, which have been separated by 0.5 to around 5 million years. The genetic divergence between groups reflects geographic distances between sampling sites, indicating that divergence occurred after the colonization of Iceland. The genetic patterns, as well as the dependency of genetic variation on distances from the tectonic plate boundary and altitude, points to recent expansion from several refugia within Iceland. This presents the first genetic evidence of multicellular organisms as complex as crustacean amphipods which have survived glaciations beneath an ice sheet. This survival may be explained by geothermal heat linked to volcanic activities, which may have maintained favourable habitats in fissures along the tectonic plate boundary in Iceland during glaciations.  相似文献   

13.
Chromosomal inversions can play an important role in adaptation, but the mechanism of their action in many natural populations remains unclear. An inversion could suppress recombination between locally beneficial alleles, thereby preventing maladaptive reshuffling with less‐fit, migrant alleles. The recombination suppression hypothesis has gained much theoretical support but empirical tests are lacking. Here, we evaluated the evolutionary history and phenotypic effects of a chromosomal inversion which differentiates annual and perennial forms of Mimulus guttatus. We found that perennials likely possess the derived orientation of the inversion. In addition, this perennial orientation occurs in a second perennial species, M. decorus, where it is strongly associated with life history differences between co‐occurring M. decorus and annual M. guttatus. One prediction of the recombination suppression hypothesis is that loci contributing to local adaptation will predate the inversion. To test whether the loci influencing perenniality pre‐date this inversion, we mapped QTLs for life history traits that differ between annual M. guttatus and a more distantly related, collinear perennial species, M. tilingii. Consistent with the recombination suppression hypothesis, we found that this region is associated with life history in the absence of the inversion, and this association can be broken into at least two QTLs. However, the absolute phenotypic effect of the LG8 inversion region on life history is weaker in M. tilingii than in perennials which possess the inversion. Thus, while we find support for the recombination suppression hypothesis, the contribution of this inversion to life history divergence in this group is likely complex.  相似文献   

14.
The complex and dynamic history of the Anatolian Peninsula during the Pleistocene set the stage for species diversification. However, the evolutionary history of biodiversity in the region is shrouded by the challenges of studying species divergence in the recent, dynamic past. Here, we study the Poecilimon bosphoricus (PB) species group to understand how the bush crickets' diversification and the regions' complex history are coupled. Specifically, using sequences of two mitochondrial and two nuclear gene segments from over 500 individuals for a comprehensive set of taxa with extensive geographic sampling, we infer the phylogenetic and geographic setting of species divergence. In addition, we use the molecular data to examine hypothesized species boundaries that were defined morphologically. Our analyses of the timing of divergence confirm the recent origin of the PB complex, indicating its diversification coincided with the dynamic geology and climate of the Pleistocene. Moreover, the geography of divergence suggests a history of fragmentation followed by admixture of populations, suggestive of a ring species. However, the evolutionary history based on genetic divergence conflicts with morphologically defined species boundaries raising the prospects that incipient species divergences may be relatively ephemeral. As such, the morphological differences observed in the PB complex may not to be sufficient to have prevented homogenizing gene flow in the past. Alternatively, with the recent origin of the complex, the lack of time for lineage sorting may underlie the discord between morphological species boundaries and genetic differentiation. Under either hypothesis, geography—not taxonomy—is the best predictor of genetic divergence.  相似文献   

15.
Intraspecific diversity is central to the management and conservation of exploited species, yet knowledge of how this diversity is distributed and maintained in the genome of many marine species is lacking. Recent advances in genomic analyses allow for genome‐wide surveys of intraspecific diversity and offer new opportunities for exploring genomic patterns of divergence. Here, we analysed genome‐wide polymorphisms to measure genetic differentiation between an offshore migratory and a nonmigratory population and to define conservation units of Atlantic Cod (Gadus morhua) in coastal Labrador. A total of 141 individuals, collected from offshore sites and from a coastal site within Gilbert Bay, Labrador, were genotyped using an ~11k single nucleotide polymorphism array. Analyses of population structure revealed strong genetic differentiation between migratory offshore cod and nonmigratory Gilbert Bay cod. Genetic differentiation was elevated for loci within a chromosomal rearrangement found on linkage group 1 (LG1) that coincides with a previously found double inversion associated with migratory and nonmigratory ecotype divergence of cod in the northeast Atlantic. This inverted region includes several genes potentially associated with adaptation to differences in salinity and temperature, as well as influencing migratory behaviour. Our work provides evidence that a chromosomal rearrangement on LG1 is associated with parallel patterns of divergence between migratory and nonmigratory ecotypes on both sides of the Atlantic Ocean.  相似文献   

16.
Strong spatial sorting of genetic variation in contiguous populations is often explained by local adaptation or secondary contact following allopatric divergence. A third explanation, spatial sorting by stochastic effects of range expansion, has been considered less often though theoretical models suggest it should be widespread, if ephemeral. In a study designed to delimit species within a clade of venomous coralsnakes, we identified an unusual pattern within the Texas coral snake (Micrurus tener): strong spatial sorting of divergent mitochondrial (mtDNA) lineages over a portion of its range, but weak sorting of these lineages elsewhere. We tested three alternative hypotheses to explain this pattern—local adaptation, secondary contact following allopatric divergence, and range expansion. Collectively, near panmixia of nuclear DNA, the signal of range expansion associated sampling drift, expansion origins in the Gulf Coast of Mexico, and species distribution modeling suggest that the spatial sorting of divergent mtDNA lineages within M. tener has resulted from genetic surfing of standing mtDNA variation—not local adaptation or allopatric divergence. Our findings highlight the potential for the stochastic effects of recent range expansion to mislead estimations of population divergence made from mtDNA, which may be exacerbated in systems with low vagility, ancestral mtDNA polymorphism, and male‐biased dispersal.  相似文献   

17.
We have reported nine distinct karyotypes for Aotus, of four pelagic phenotypes, and suggest that this single species has undergone extensive subspeciation. We reconstruct the mechanism of chromosomal evolution and propose a hypothesis about the events of subspeciation in Aotus. We speculate that isolated groups of ancestral individuals living in several confined areas have separately accumulated a fusion or inversion pair as a result of inbreeding. A subsequent reassociation of descendants from these individuals led to the formation of offspring with mixtures of fusion or inversion pairs in their complements. They, in turn, radiated into different ecological niches accompanied by adaptive genetic changes and eventually gave rise to the present forms of Aotus distinguishable by their karyotypes, but not easily recognizable by ordinary taxonomic criteria.  相似文献   

18.
Sylvietta is a broadly distributed group of African species inhabiting a wide range of habitats and presents an interesting opportunity to investigate the historic mechanisms that have impacted the biogeography of African avian species. We collected sequence data from 50 individuals and used model‐based phylogenetic methods, molecular divergence estimates and ancestral area estimates to construct a time‐calibrated phylogeny and estimation of biogeographic history. We estimate a southern African origin for Sylvietta, with an initial divergence splitting the genus into two clades. The first consists of arid‐adapted species, with a southern African origin and subsequent diversification north into Ethiopia–Somalia. The second clade is estimated as having a Congolian forest origin with an eastward pattern of colonization and diversification as a result of Plio‐Pleistocene forest dynamics. Additionally, two members of the genus Sylvietta display interesting patterns of intraspecific diversification. Sylvietta rufescens is an arid‐adapted species inhabiting southern Africa, and we recover two subclades with a divergence dating to the Pleistocene, a unique pattern for avian species which may be explained via isolation in arid habitat fragments in the early Pleistocene. Second, Sylvietta virens, a species endemic to Afro‐tropical forests, is recovered with geographically structured genetic diversification across its broad range, an interesting result given that recent investigations of several avian forest species have found similar and substantial geographically structured genetic diversity relating to Plio‐Pleistocene forest fragmentation. Overall, Plio‐Pleistocene habitat cycling played a significant role in driving diversification in Sylvietta, and this investigation highlights the substantial impact of climate‐driven habitat dynamics on the history of sub‐Saharan species.  相似文献   

19.
Using mitochondrial DNA cytochrome c oxidase subunit I and nuclear DNA 28S rRNA data, we explored the phylogenetic relationships of the family Pimoidae (Arachnida: Araneae) and tested the North America to Asia dispersal hypothesis. Sequence data were analysed using maximum parsimony and Bayesian inference. A phylogenetic analysis suggested that vicariance, instead of dispersal, better explained the present distribution pattern of Pimoidae. Times of divergence events were estimated using penalized likelihood method. The dating analysis suggested that the emergence time of Pimoidae was approximately 140 million years ago (Ma). The divergence time of the North American and Asian species of Pimoa was approximately 110 Ma. Our phylogenetic hypothesis supports the current morphology‐based taxonomy and suggests that the cave dwelling might have played an important role in the speciation of pimoids in arid areas.  相似文献   

20.
Species delimitation requires an assessment of varied traits that can contribute to reproductive isolation, as well as of the permanence of evolutionary differentiation among closely related lineages. Integrative taxonomy, including the combination of genome‐wide molecular data with ecological data, offers an effective approach to this issue. We use genotyping‐by‐sequencing together with a review of ecological divergence to assess the traditionally recognized species status of three closely related members of the spruce budworm species complex, Choristoneura fumiferana (Clemens), C. occidentalis Freeman (=C. freemani Razowski) and C. biennis Freeman, each of which is a major defoliator of conifer forests. We sampled a broad region of overlap between these three taxa in Alberta and British Columbia (Canada) where potential for gene flow provides a strong test of the durability of divergence among lineages. A total of 2218 single nucleotide polymorphisms (SNPs) were assayed, and patterns of differentiation were evaluated under the biological, ecological, genotypic cluster and phylogenetic species concepts. Choristoneura fumiferana was genetically distinct with substantial barriers to genetic exchange with C. occidentalis and C. biennis. Conversely, divergence between C. occidentalis and C. biennis was limited to a small subset of outlier loci and was within the range observed within any one of the taxa. Considering both population genetic and ecological patterns of divergence, C. fumiferana should continue to be recognized as a distinct species, and C. biennis ( syn.n. ) should be treated as a subspecies (C. occidentalis biennis Freeman, 1967) of C. occidentalis, thereby automatically establishing the nominate name C. occidentalis occidentalis Freeman, 1967 for univoltine populations of this species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号