首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 809 毫秒
1.
Frugivores and pollinators are two functional groups of animals that help ensure gene flow of plants among sites in landscapes under restoration and to accelerate restoration processes. Resource availability is postulated to be a key factor to structure animal communities using restoration sites, but it remains poorly studied. We expected that diverse forests with many plant growth forms that have less‐seasonal phenological patterns will provide more resources for animals than forests with fewer plant growth forms and strongly seasonal phenological patterns. We studied forests where original plantings included high tree species diversity. We studied resource provision (richness and abundance of flowers and fruits) of all plant growth forms, in three restoration sites of different ages compared to a reference forest, investigating whether plant phenology changes with restoration process. We recorded phenological data for reproductive plant individuals (351 species) with monthly sampling over 2 years, and found that flower and fruit production have been recovered after one decade of restoration, indicating resource provision for fauna. Our data suggest that a wide range of plant growth forms provides resource complementarities to those of planted tree species. Different flower phenologies between trees and non‐trees seem to be more evident in a forest with high non‐tree species diversity. We recommend examples of ideal species for planting, both at the time of initial planting and post‐planting during enrichment. These management actions can minimize shortage and periods of resource scarcity for frugivorous and nectarivorous fauna, increasing probability of restoring ecological processes and sustainability in restoration sites.  相似文献   

2.
Discussion of successional change has traditionally focused on plants. The role of animals in producing and responding to successional change has received far less attention. Dispersal of plant propagules by animals is a fundamental part of successional change in the tropics. Here we review the role played by frugivorous bats in successional change in tropical forests. We explore the similarities and differences of this ecological service provided by New and Old World seed-dispersing bats and conclude with a discussion of their current economic and conservation implications. Our review suggests that frugivorous New World phyllostomid bats play a more important role in early plant succession than their Old World pteropodid counterparts. We propose that phyllostomid bats have shared a long evolutionary history with small-seeded early successional shrubs and treelets while pteropodid bats are principally dispersers of the seeds of later successional canopy fruits. When species of figs (Ficus) are involved in the early stages of primary succession (e.g. in the river meander system in Amazonia and on Krakatau, Indonesia), both groups of bats are important contributors of propagules. Because they disperse and sometimes pollinate canopy trees, pteropodid bats have a considerable impact on the economic value of Old World tropical forests; phyllostomid bats appear to make a more modest direct contribution to the economic value of New World tropical forests. Nonetheless, because they critically influence forest regeneration, phyllostomid bats make an important indirect contribution to the economic value of these forests. Overall, fruit-eating bats play important roles in forest regeneration throughout the tropics, making their conservation highly desirable.  相似文献   

3.
Tropical forests store large amounts of carbon and high biodiversity, but are being degraded at alarming rates. The emerging global Forest and Landscape Restoration (FLR) agenda seeks to limit global climate change by removing carbon dioxide from the atmosphere through the growth of trees. In doing so, it may also protect biodiversity as a free cobenefit, which is vital given the massive shortfall in funding for biodiversity conservation. We investigated whether natural forest regeneration on abandoned pastureland offers such cobenefits, focusing for the first time on the recovery of taxonomic diversity (TD), phylogenetic diversity (PD) and functional diversity (FD) of trees, including the recovery of threatened and endemic species richness, within isolated secondary forest (SF) fragments. We focused on the globally threatened Brazilian Atlantic Forest, where commitments have been made to restore 1 million hectares under FLR. Three decades after land abandonment, regenerating forests had recovered ~20% (72 Mg/ha) of the above‐ground carbon stocks of a primary forest (PF), with cattle pasture containing just 3% of stocks relative to PFs. Over this period, SF recovered ~76% of TD, 84% of PD and 96% of FD found within PFs. In addition, SFs had on average recovered 65% of threatened and ~30% of endemic species richness of primary Atlantic forest. Finally, we find positive relationships between carbon stock and tree diversity recovery. Our results emphasize that SF fragments offer cobenefits under FLR and other carbon‐based payments for ecosystem service schemes (e.g. carbon enhancements under REDD+). They also indicate that even isolated patches of SF could help to mitigate climate change and the biodiversity extinction crisis by recovering species of high conservation concern and improving landscape connectivity.  相似文献   

4.
5.
Tropical forests around the world have been lost, mainly because of agricultural activities. Linear elements like riparian vegetation in fragmented tropical landscapes help maintain the native flora and fauna. Information about the role of riparian corridors as a reservoir of bat species, however, is scanty. We assessed the value of riparian corridors on the conservation of phyllostomid bat assemblage in an agricultural landscape of southern Mexico. For 2 years (2011–2013), mist‐netting at ground level was carried out twice during the dry season (December to May) and twice during the wet season (June to November) in different habitats: (1) riparian corridors in mature forest, (2) riparian corridors in pasture, (3) continuous forest away from riparian vegetation, and (4) open pastures. Each habitat was replicated three times. To determine the influence of vegetation structure on bat assemblages, all trees (≥10 cm dbh) were sampled in all habitats. Overall, 1752 individuals belonging to 28 species of Phyllostomidae were captured with Sternodermatinae being the most rich and abundant subfamily. Riparian corridors in mature forest and pastures had the greatest species richness and shared 65% of all species. Open pastures had the lowest richness and abundance of bats with no Phyllostominae species recorded. Six of the 18 species recorded could be considered as habitat indicators. There was a positive relationship between bat species composition and tree basal area. Our findings suggest that contrary to our expectations, bats with generalist habits and naturally abundant could be useful detector taxa of habitat modification, rather than bats strongly associated with undisturbed forest. Also in human‐dominated landscapes, the maintenance of habitat elements such as large trees in riparian corridors can serve as reservoirs for bat species, especially for those that are strongly associated with undisturbed forest.  相似文献   

6.
Large‐diameter, tall‐stature, and big‐crown trees are the main stand structures of forests, generally contributing a large fraction of aboveground biomass, and hence play an important role in climate change mitigation strategies. Here, we hypothesized that the effects of large‐diameter, tall‐stature, and big‐crown trees overrule the effects of species richness and remaining trees attributes on aboveground biomass in tropical forests (i.e., we term the “big‐sized trees hypothesis”). Specifically, we assessed the importance of: (a) the “top 1% big‐sized trees effect” relative to species richness; (b) the “99% remaining trees effect” relative to species richness; and (c) the “top 1% big‐sized trees effect” relative to the “99% remaining trees effect” and species richness on aboveground biomass. Using environmental factor and forest inventory datasets from 712 tropical forest plots in Hainan Island of southern China, we tested several structural equation models for disentangling the relative effects of big‐sized trees, remaining trees attributes, and species richness on aboveground biomass, while considering for the full (indirect effects only) and partial (direct and indirect effects) mediation effects of climatic and soil conditions, as well as interactions between species richness and trees attributes. We found that top 1% big‐sized trees attributes strongly increased aboveground biomass (i.e., explained 55%–70% of the accounted variation) compared to species richness (2%–18%) and 99% remaining trees attributes (6%–10%). In addition, species richness increased aboveground biomass indirectly via increasing big‐sized trees but via decreasing remaining trees. Hence, we show that the “big‐sized trees effect” overrides the effects of remaining trees attributes and species richness on aboveground biomass in tropical forests. This study also indicates that big‐sized trees may be more susceptible to atmospheric drought. We argue that the effects of big‐sized trees on species richness and aboveground biomass should be tested for better understanding of the ecological mechanisms underlying forest functioning.  相似文献   

7.
  1. Pollination is essential to fruit production. How plant diversity and blooming events in and around orchards affect the pollinator community and the plant-flower-visitor network in neotropical systems remains largely unknown.
  2. We surveyed the flower visitors in deciduous fruit trees and alternative blooming resources (other crops, hedgerows and weeds) in Colombia across 6 orchards over 12 months. We evaluated whether plant species richness and blooming cover influenced abundance and richness of flower visitors, as well as network-level connectance and specialization. We also assessed the role of alternative blooming resources for the flower visitors of deciduous fruit trees.
  3. Overall, we found 66 taxa of flower visitors, 35 of which visited deciduous fruit trees. There was a greater abundance of flower visitors when there was higher richness of weedy species and greater blooming cover of deciduous fruit trees. Networks were less connected when there was lower crop and weedy species richness. Finally, flower visitor abundance and specialization increased when there were multiple hedgerow species in bloom with a high blooming cover.
  4. We highlight the importance of maintaining alternative blooming resources in and around the orchards to support deciduous fruit tree pollinators and diversity in the plant flower-visitor network.
  相似文献   

8.
We used capture (mist‐netting) and acoustic methods to compare the species richness, abundance, and composition of a bat assemblage in different habitats in the Western Ghats of India. In the tropics, catching bats has been more commonly used as a survey method than acoustic recordings. In our study, acoustic methods based on recording echolocation calls detected greater bat activity and more species than mist‐netting. However, some species were detected more frequently or exclusively by capture. Ideally, the two methods should be used together to compensate for the biases in each. Using combined capture and acoustic data, we found that protected forests, forest fragments, and shade coffee plantations hosted similar and diverse species assemblages, although some species were recorded more frequently in protected forests. Tea plantations contained very few species from the overall bat assemblage. In riparian habitats, a strip of forested habitat on the river bank improved the habitat for bats compared to rivers with tea planted up to each bank. Our results show that shade coffee plantations are better bat habitat than tea plantations in biodiversity hotspots. However, if tea is to be the dominant land use, forest fragments and riparian corridors can improve the landscape considerably for bats. We encourage coffee growers to retain traditional plantations with mature native trees, rather than reverting to sun grown coffee or coffee shaded by a few species of timber trees.  相似文献   

9.
Question: Are long‐unburnt patches of eucalypt forest important for maintaining floristic diversity? Location: Eucalyptus forests of southeastern New South Wales, Australia. Methods: Data from 976 sites representing a range of fire history from three major vegetation formations – shrubby dry sclerophyll forest (SF), grassy dry SF and wet SF – were analysed. Generalized linear models were used to examine changes in species richness with increasing time since wildfire and analysis of similarities to examine changes in community composition. Chi‐squared tests were conducted to examine the distribution of individual species across four time since fire categories. Results: Plant species relationships to fire varied between the three formations. Shrubby dry SF supported lower plant species richness with increasing time since wildfire and this was associated with shifts in community composition. Grassy dry SF showed significant shifts in community composition and species richness in relation to time, with a peak in plant species richness 20–30 yr post fire (either prescribed fire or wildfire). Wet SF increased in species richness until 10–20 yr post wildfire then displayed a general declining trend. Species richness in each vegetation type was not related to the fire frequencies and fire intervals observed in this study. Conclusions: Long‐unburnt (30–50 yr post wildfire) forests appeared to play a minor role in the maintenance of plant species diversity in dry forest systems, although this was more significant in wet forests. Maintenance of a range of fire ages within each vegetation formation will assist in maintaining floristic diversity within regions.  相似文献   

10.
Faced with the rapid and extensive conversion of tropical rain forests to pasture lands and agricultural fields and with the need to preserve the remaining mammalian fauna, it is imperative to determine how the different species that form the mammalian community have responded to the anthropogenic alterations of their natural habitats To provide data in this direction, we sampled bats m 45 forest islands, m 20 agricultural habitats representing five types of vegetation (cocoa, coffee, mixed, citrus and allspice), in four live-fence sites and in four pasture sites at Los Tuxtlas, Veracruz, Mexico Sampling effort resulted in the capture of 2587 bats representing 35 species In forest habitats we detected 32 species We did not capture any bats at the four pasture sites, but the at the other agricultural habitats studied, we captured 38% of the bats and 77% of the species recorded Thirty-four percent of the species recorded were present at the live-fence habitats Isolating distance was an important variable influencing species richness in forests and in agricultural habitats Only 10% of the species recorded occurred m all the habitats studied, but 77% of the species occurred m a habitat other than ram forest Recaptures of bats indicated inter habitat movements in the fragmented landscape We discuss the conservation value for the bat fauna of agricultural islands of vegetation as elements reducing isolating distances among forest fragments  相似文献   

11.
Aim We review several aspects of the structure of regional and local assemblages of nectar‐feeding birds and bats and their relationships with food plants to determine the extent to which evolutionary convergence has or has not occurred in the New and Old World tropics. Location Our review is pantropical in extent and also includes the subtropics of South Africa and eastern Australia. Within the tropics, it deals mostly with lowland forest habitats. Methods An extensive literature review was conducted to compile data bases on the regional and local species richness of nectar‐feeding birds and bats, pollinator sizes, morphology, and diets. Coefficients of variation (CVs) were used to quantify the morphospace occupied by the various families of pollinators. The extent to which plants have become evolutionarily specialized for vertebrate pollination was explored using several criteria: number and diversity of growth forms of plant families providing food for all the considered pollinator families; the most common flower morphologies visited by all the considered pollinator families; and the number of plant families that contain genera with both bird‐ and bat‐specialized species. Results Vertebrate pollinator assemblages in the New World tropics differ from those in the Old World in terms of their greater species richness, the greater morphological diversity of their most specialized taxa, and the greater degree of taxonomic and ecological diversity and morphological specialization of their food plants. Within the Old World tropics, Africa contains more specialized nectar‐feeding birds than Asia and Australasia; Old World nectar‐feeding bats are everywhere less specialized than their New World counterparts. Main conclusions We propose that two factors – phylogenetic history and spatio‐temporal predictability (STP) of flower resources – largely account for hemispheric and regional differences in the structure of vertebrate pollinator assemblages. Greater resource diversity and resource STP in the New World have favoured the radiation of small, hovering nectar‐feeding birds and bats into a variety of relatively specialized feeding niches. In contrast, reduced resource diversity and STP in aseasonal parts of Asia as well as in Australasia have favoured the evolution of larger, non‐hovering birds and bats with relatively generalized feeding niches. Tropical Africa more closely resembles the Neotropics than Southeast Asia and Australasia in terms of resource STP and in the niche structure of its nectar‐feeding birds but not its flower‐visiting bats.  相似文献   

12.
秦岭山脉是我国乃至全球生物多样性热点地区,植被资源丰富,物种多样性高。为了研究秦岭植被恢复过程中的多样性维持机制,参照CTFS样地建设方案,于2016年秋在秦岭主峰太白山北坡的锐齿栎次生林和原始林中各建立了1块100 m×150 m固定监测样地。本文以样地中所有胸径(DBH)≥1 cm的木本植物数据为基础,分析了2块样地中群落组成及结构特征。结果表明: 锐齿栎次生林和原始林样地所监测木本植物分别为2839和2840株,隶属于29科45属65种和21科37属47种,其中,偶见种和稀有种的比例分别为38.4%和24.6%、40.4%和19.2%,且均以北温带分布的植物种类居多,分别占总属数的46.6%和48.7%。2块样地中,建群种锐齿栎径级结构均呈单峰型;水榆花楸、青榨槭、四照花和三桠乌药主要伴生种的径级结构均呈倒“J”型,表明群落内主要树种都能很好地完成种群的生活史。双相关g(r)函数分析表明,在r=10 m的范围内,2块样地中的主要优势种在<2 m的尺度中聚集程度最强;随着尺度的增加,聚集程度逐渐减弱,当尺度增大到某一值时,物种呈随机或均匀分布格局。次生林和原始林的平均角尺度分别为0.56和0.58,群落整体处于聚集分布状态,并且次生林群落及主要优势种的平均角尺度均小于原始林,说明次生林样地中物种的聚集程度比原始林弱;次生林和原始林的平均大小比数均为0.47,整体林分处于中庸状态;平均混交度分别为0.70和0.57,属于强度和中度混交。干扰导致群落的物种丰富度、群落稳定性和林木空间分布格局发生变化。因此,受干扰的森林群落在植被恢复过程中,必须考虑种间相互作用、生境异质性对物种共存的影响和群落结构的动态变化。  相似文献   

13.
The bee guild represents direct primary costs of angiosperm reproduction. Tropical flower visitors take an amount comparable to herbivores, exceeding 3% of net primary production energy. Therefore herbivory and aboveground net primary production have been underestimated. Comparing pollinators to other herbivores, harvest in mature forest by tropical bees is greater than leafcutter ants, game animals, frugivores, vertebrate folivores, insect defoliators excluding ants, flower-feeding birds and bats, but not soil organisms. The ratio of total aboveground net primary production to investment in pollen, nectar and resin used by pollinators suggests wind pollination is several times more efficient in temperate forests than is animal pollination in neotropical moist forest. Animal pollination may be favoured by habitat mosaics and an unpredictable or sparse dispersion of conspecifics — consequences of fluctuating abiotic and biotic environments. Natural selection evidently favours diminished direct reproductive costs in forests, for example by wind pollination, regardless of latitude and disturbance regime. An example is “wind pollination by proxy” of dominant trees in seasonal southeast Asian forests. They flower only occasionally and their pollen is dispersed by tiny winged insects that are primarily carried by the wind — rather than the nectar-hungry bees, bats, birds and moths used by most tropical flora. Increasing evapotranspiration is associated with greater net primary production; I show its correlation with species richness of social tropical bees across the isthmus of Panama, which may indicate increasing forest reproductive effort devoted to flowering, and its monopolization by unspecialized flower visitors in wetter and less seasonal lowland forests.  相似文献   

14.
Fire regimes have a major influence on biodiversity in many ecosystems around the globe, yet our understanding of the longer‐term response of fauna is typically poor. We sampled bats with ultrasonic detectors in three different years in dry sclerophyll forests of south‐eastern Australia in a long‐term, management‐scale experiment. Frequent low‐intensity burning (every 2 or 4 years plus unburnt) and logging (with 33% retention of the original unlogged tree basal area) were manipulated to assess their effects on bats. We found that both the fire regime and regrowth after logging influenced the local bat community. The routine burning treatment (burnt every 4 years) in unlogged forest was consistently related to higher total bat activity (2–3 times) and species richness when compared to unburnt controls and logging treatments. Foraging activity was more variable, but it was typically lowest in Unlogged Unburnt Controls. These patterns were evident at both the detector site scale and the block scale and were probably due to a reduction in understorey stem density with burning, especially in unlogged forest. Bat activity was significantly lower across the entire study area (including controls) in 1 year, when sampling occurred within 6 months of burning. When pooled across burning treatments, unlogged forest supported higher bat activity (1.5 times) and species richness than logged forest (12‐ to 17‐year‐old regrowth), again most likely because of a negative association with high stem density in regrowth after logging. We conclude that low‐intensity burning had positive benefits for echolocating bats, most notably in unlogged forest. However, careful planning is required to generate heterogeneous vegetation patterns that are likely to be most suitable for a range of taxa.  相似文献   

15.
Anthropogenic habitat modification often has a profound negative impact on the flora and fauna of an ecosystem. In parts of the Middle East, ephemeral rivers (wadis) are characterised by stands of acacia trees. Green, flourishing assemblages of these trees are in decline in several countries, most likely due to human-induced water stress and habitat changes. We examined the importance of healthy acacia stands for bats and their arthropod prey in comparison to other natural and artificial habitats available in the Arava desert of Israel. We assessed bat activity and species richness through acoustic monitoring for entire nights and concurrently collected arthropods using light and pit traps. Dense green stands of acacia trees were the most important natural desert habitat for insectivorous bats. Irrigated gardens and parks in villages and fields of date palms had high arthropod levels but only village sites rivalled acacia trees in bat activity level. We confirmed up to 13 bat species around a single patch of acacia trees; one of the richest sites in any natural desert habitat in Israel. Some bat species utilised artificial sites; others were found almost exclusively in natural habitats. Two rare species (Barbastella leucomelas and Nycteris thebaica) were identified solely around acacia trees. We provide strong evidence that acacia trees are of unique importance to the community of insectivorous desert-dwelling bats, and that the health of the trees is crucial to their value as a foraging resource. Consequently, conservation efforts for acacia habitats, and in particular for the green more densely packed stands of trees, need to increase to protect this vital habitat for an entire community of protected bats.  相似文献   

16.
Assessing the recovery of species diversity and composition after major disturbance is key to understanding the resilience of tropical forests through successional processes, and its importance for biodiversity conservation. Despite the specific abiotic environment and ecological processes of tropical dry forests, secondary succession has received less attention in this biome than others and changes in species diversity and composition have never been synthesised in a systematic and quantitative review. This study aims to assess in tropical dry forests 1) the directionality of change in species richness and evenness during secondary succession, 2) the convergence of species composition towards that of old‐growth forest and 3) the importance of the previous land use, precipitation regime and water availability in influencing the direction and rate of change. We conducted meta‐analyses of the rate of change in species richness, evenness and composition indices with succession in 13 tropical dry forest chronosequences. Species richness increased with succession, showing a gradual accumulation of species, as did Shannon evenness index. The similarity in species composition of successional forests with old‐growth forests increased with succession, yet at a low rate. Tropical dry forests therefore do show resilience of species composition but it may never reach that of old‐growth forests. We found no significant differences in rates of change between different previous land uses, precipitation regimes or water availability. Our results show high resilience of tropical dry forests in term of species richness but a slow recovery of species composition. They highlight the need for further research on secondary succession in this biome and better understanding of impacts of previous land‐use and landscape‐scale patterns. Synthesis Secondary forests account for an increasing proportion of remaining tropical forest. Assessing their resilience is key to conservation of their biodiversity. Our study is the first meta‐analysis of species changes during succession focussing on tropical dry forests, a highly threatened yet understudied biome. We show a gradual species accumulation and convergence of composition towards that of old‐growth forests. While secondary tropical dry forests offer good potential for biodiversity conservation, their capacity for recovery at a sufficient rate to match threats is uncertain. Further research on this biome is needed to understand the effect of land use history and landscape processes.  相似文献   

17.
Wetlands support unique biota and provide important ecosystem services. These services are highly threatened due to the rate of loss and relative rarity of wetlands in most landscapes, an issue that is exacerbated in highly modified urban environments. Despite this, critical ecological knowledge is currently lacking for many wetland‐dependent taxa, such as insectivorous bats, which can persist in urban areas if their habitats are managed appropriately. Here, we use a novel paired landscape approach to investigate the role of wetlands in urban bat conservation and examine local and landscape factors driving bat species richness and activity. We acoustically monitored bat activity at 58 urban wetlands and 35 nonwetland sites (ecologically similar sites without free‐standing water) in the greater Melbourne area, southeastern Australia. We analyzed bat species richness and activity patterns using generalized linear mixed‐effects models. We found that the presence of water in urban Melbourne was an important driver of bat species richness and activity at a landscape scale. Increasing distance to bushland and increasing levels of heavy metal pollution within the waterbody also negatively influenced bat richness and individual species activity. Areas with high levels of artificial night light had reduced bat species richness, and reduced activity for all species except those adapted to urban areas, such as the White‐striped free‐tailed bat (Austronomus australis). Increased surrounding tree cover and wetland size had a positive effect on bat species richness. Our findings indicate that wetlands form critical habitats for insectivorous bats in urban environments. Large, unlit, and unpolluted wetlands flanked by high tree cover in close proximity to bushland contribute most to the richness of the bat community. Our findings clarify the role of wetlands for insectivorous bats in urban areas and will also allow for the preservation, construction, and management of wetlands that maximize conservation outcomes for urban bats and possibly other wetland‐dependent and nocturnal fauna.  相似文献   

18.
Aim Lianas differ physiologically from trees, and therefore their species‐richness patterns and potential climate‐change responses might also differ. However, multivariate assessments of spatial patterns in liana species richness and their controls are lacking. Our aim in this paper is to identify the environmental factors that best explain the variation in liana species richness within tropical forests. Location Lowland and montane Neotropical forests. Methods We quantified the contributions of environmental variables and liana and tree‐and‐shrub abundance to the species richness of lianas, trees and shrubs ≥ 2.5 cm in diameter using a subset of 65 standardized (0.1 ha) plots from 57 Neotropical sites from a global dataset collected by the late Alwyn Gentry. We used both regression and structural equation modelling to account for the effects of environmental variables (climate, soil and disturbance) and liana density on liana species richness, and we compared the species‐richness patterns of lianas with those of trees and shrubs. Results We found that, after accounting for liana density, dry‐season length was the dominant predictor of liana species richness. In addition, liana species richness was also related to stand‐level wood density (a proxy for disturbance) in lowland forests, a pattern that has not hitherto been shown across such a large study region. Liana species richness had a weak association with soil properties, but the effect of soil may be obscured by the strong correlation between soil properties and climate. The diversity patterns of lianas and of trees and shrubs were congruent: wetter forests had a greater species richness of all woody plants. Main conclusions The primary association of both liana and tree‐and‐shrub species richness with water availability suggests that, if parts of the Neotropics become drier as a result of climate change, substantial declines in the species richness of woody plants at the stand level may be anticipated.  相似文献   

19.
Ants are a dominant group in tropical savannas and here we examined the responses of the arboreal and ground‐dwelling ant fauna to a fire in a Neotropical savanna (cerrado) reserve in Central Brazil. Ants were collected using pitfall traps and baits placed in trees and on the ground beneath each tree. Of the 36 trees marked along two transects, half (from each transect) were burned and half not. The same trees were sampled 1 wk before and again 3 and 12 mo after the fire. Rarefaction curves and ordination analyses using data from all trees from each side of each transect indicated that overall ant species richness and composition did not change after fire. Fire, however, reduced the mean number of ant species per tree, and increased the mean number of species on the ground. Fire increased the average abundance of specialist predators, Camponotini, and opportunistic species, and decreased that of arboreal specialists. Changes in the ground‐dwelling fauna were only detected 12 mo after the fire, while those in the arboreal fauna occurred earlier and were no longer apparent 12 mo after the fire. We suggest that these contrasting results represent mainly an indirect response of the ant communities to fire‐induced changes in vegetation. Given the temporary and small scale nature of the effects detected and the overall resilience of the ant fauna, our results indicate that a single fire in the cerrado vegetation does not greatly impact the structure of ant communities in the short term.  相似文献   

20.
Indicator species groups are often used as surrogates for overall biodiversity in conservation planning because inventories of multiple taxa are rare, especially in the tropics where most biodiversity is found. At coarse spatial scales most studies show congruence in the distribution of species richness and of endemic and threatened species of different species groups. At finer spatial scale levels however, cross-taxon congruence patterns are much more ambiguous. In this study we investigated cross-taxon patterns in the distribution of species richness of trees, birds and bats across four tropical forest types in a ca. 100 × 35 km area in the Northern Sierra Madre region of Luzon Island, Philippines. A non-parametric species richness estimator (Chao1) was used to compensate for differential sample sizes, sample strategies and completeness of species richness assessments. We found positive but weak congruence in the distribution of all and endemic tree and bird and tree and bat species richness across the four forest types; strong positive congruence in the distribution of all and endemic bat and bird species richness and low or negative congruence in the distribution of globally threatened species between trees, birds and bats. We also found weak cross-taxon congruence in the complementarity of pairs of forest types in species richness between trees and birds and birds and bats but strong congruence in complementarity of forest pairs between trees and bats. This study provides further evidence that congruence in the distribution of different species groups is often ambiguous at fine to moderate spatial scales. Low or ambiguous cross-taxon congruence complicates the use of indicator species and species groups as a surrogate for biodiversity in general for local systematic conservation planning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号