首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
口腔颌面部爆炸伤是指由致伤物爆炸所造成的口腔颌面部组织损伤,两种主要致伤因素是冲击波和高速破片,较一般火器伤而言,爆炸伤的致伤机制及致伤特点都有不同之处。对爆炸伤害的物理机制和病理生理反应方面研究有助于改进防护及改善治疗策略。本文在简述口腔颌面部爆炸伤的致伤因素和损伤特点的基础上,着重综述了动物模型和有限元模型的研究方法及结果,旨在为以后的模型研究提供思路和参考。  相似文献   

2.
Understanding the mechanisms of traumatic ocular injury is helpful to make accurate diagnoses before the symptoms emerge and to develop specific eye protection. The comprehension of the dynamics of primary blast injury mechanisms is a challenging issue. The question is whether the pressure wave propagation and reflection alone could cause ocular damage. To date, there are dissenting opinions and no conclusive evidence thereupon. A previous numerical investigation of blast trauma highlighted the dynamic effect of pressure propagation and its amplification by the geometry of the bony orbit, inducing a resonance cavity effect and a standing wave hazardous for eye tissues. The objective of the current work is to find experimental evidence of the numerically identified phenomenon. Therefore, tests aimed at evaluating the response of porcine eyes to blast overpressure generated by firecrackers explosion were performed. The orbital cavity effect was considered mounting the enucleated eyes inside a dummy orbit. The experimental measurements obtained during the explosion tests presented in this paper corroborate the numerical evidence of a high-frequency pressure amplification, enhancing the loading on the ocular tissues, attributable to the orbital bony walls surrounding the eye.  相似文献   

3.
Lung injuries, predominantly arising from blast exposure, are a clinical problem in a significant minority of current military casualties. This special feature consists of a series of articles on lung injury. This first article examines the mechanism of the response to blast lung (primary blast injury to the lung). Subsequent articles examine the incidence of blast lung, clinical consequences and current concepts of treatment, computer (in silico) modelling of lung injury and finally chemical injuries to the lungs. Blast lung is caused by a shock wave generated by an explosion causing widespread damage in the lungs, leading to intrapulmonary haemorrhage. This, and the ensuing inflammatory response in the lung, leads to a compromise in pulmonary gas exchange and hypoxia that can worsen over several hours. There is also a characteristic cardio-respiratory effect mediated via an autonomic reflex causing apnoea (or rapid shallow breathing), bradycardia and hypotension (the latter possibly also due to the release of nitric oxide). An understanding of this response, and the way it modifies other reflexes, can help the development of new treatment strategies for this condition and for the way it influences the patient's response to concomitant injuries.  相似文献   

4.
Explosive blast results in multiple organ injury and polytrauma, the intensity of which varies with the nature of the exposure, orientation, environment and individual resilience. Blast overpressure alone may not precisely indicate the level of body or brain injury after blast exposure. Assessment of the extent of body injury after blast exposure is important, since polytrauma and systemic factors significantly contribute to blast-induced traumatic brain injury. We evaluated the activity of plasma enzymes including aspartate aminotransferase (AST), alanine aminotransferase (ALT), lactate dehydrogenase (LDH) and creatine kinase (CK) at different time points after blast exposure using a mouse model of single and repeated blast exposures to assess the severity of injury. Our data show that activities of all the enzymes in the plasma were significantly increased as early as 1 h after blast exposure. The elevated enzyme activity remained up to 6 h in an overpressure dose-dependent manner and returned close to normal levels at 24 h. Head-only blast exposure with body protection showed no increase in the enzyme activities suggesting that brain injury alone does not contribute to the systemic increase. In contrast to plasma increase, AST, ALT and LDH activity in the liver and CK in the skeletal muscle showed drastic decrease at 6 h after blast exposures. Histopathology showed mild necrosis at 6 h and severe necrosis at 24 h after blast exposures in liver and no changes in the skeletal muscle suggesting that the enzyme release from the tissue to plasma is probably triggered by transient cell membrane disruption from shockwave and not due to necrosis. Overpressure dependent transient release of tissue enzymes and elevation in the plasma after blast exposure suggest that elevated enzyme activities in the blood can be potentially used as a biological dosimeter to assess the severity of blast injury.  相似文献   

5.
Blast injuries are becoming increasingly common in military conflicts as the nature of combat changes from conventional to asymmetrical warfare and counter-insurgency. This article describes a retrospective database review of cases from the UK joint theatre trauma registry from 2003 to 2009, containing details of over 3000 patients, mainly injured in Iraq and Afghanistan. During this period, 1678 patients were injured by explosion of whom 113 had evidence of blast lung injury. Of the 50 patients who survived to reach a medical facility, 80 per cent required ventilatory support. Injuries caused by explosion are increasing when compared with those caused by other mechanisms, and blast lung represents a significant clinical problem in a deployed military setting. Management of these patients should be optimized from point of wounding to definitive care.  相似文献   

6.
冲击波负压对大鼠肺致伤效应的初步观察   总被引:5,自引:0,他引:5  
观察了不同的冲击波负压峰值对大鼠肺的影响。各种条件下的冲击波负压值可由负压发生装置来模拟调节,这种装置可满足化爆、核爆和爆炸性减压下负压参数的一般要求,参数稳定,重复性好。冲击波负压峰值范围为-13~-90kPa,下降时间为1~90ms,持续时间为14~2 000ms。6组Wistar系大鼠,分别暴露在-47.2~-84.0kPa的冲击波负压环境中,伤后立即解剖动物,重点观察肺伤情。实验结果显示,在上述冲击波负压环境中,肺可出现从无伤至极重度伤;出血、充血以及肺表面压痕酷似肺冲击伤的病理表现。随着冲击波负压峰值的变化,各组肺伤情亦随着变化,冲击波负压峰值(△P)和减压倍数(P_i/P_a)分别与肺出血面积和动物死亡率相关显著或非常显著。本实验提示,一定条件下的冲击波负压具有明显的致伤作用,且伤情变化范围与超压所致肺伤情变化范围相同,超压和冲击波负压在一定条件下可通过伤情指标等效。  相似文献   

7.
Mechanism of Injury-Provoked Poliomyelitis   总被引:4,自引:2,他引:2       下载免费PDF全文
Skeletal muscle injury is known to predispose its sufferers to neurological complications of concurrent poliovirus infections. This phenomenon, labeled “provocation poliomyelitis,” continues to cause numerous cases of childhood paralysis due to the administration of unnecessary injections to children in areas where poliovirus is endemic. Recently, it has been reported that intramuscular injections may also increase the likelihood of vaccine-associated paralytic poliomyelitis in recipients of live attenuated poliovirus vaccines. We have studied this important risk factor for paralytic polio in an animal system for poliomyelitis and have determined the pathogenic mechanism linking intramuscular injections and provocation poliomyelitis. Skeletal muscle injury induces retrograde axonal transport of poliovirus and thereby facilitates viral invasion of the central nervous system and the progression of spinal cord damage. The pathogenic mechanism of provocation poliomyelitis may differ from that of polio acquired in the absence of predisposing factors.  相似文献   

8.
Colorado beetles can survive up to 10 days in sea water and still be capable of flying when the temperature reaches 80° F. (26·67° C.). The beetles that reached the Channel Islands in May 1947 and in May 1948 prove that they can travel across about 30 miles of sea, the approximate distance of Guernsey from the Cherbourg peninsula. The invasions occurred as a result of migrant beetles from the Cherbourg peninsula which dropped on the sea between the Channel Islands and the French coast and drifted ashore.  相似文献   

9.
Historically, blast overpressure is known to affect primarily gas-containing organs such as the lung and ear. More recent interests focus on its ability to cause damage to solid organs such as the brain, resulting in neurological disorders. Returning veterans exposed to blast but without external injuries are being diagnosed with mild traumatic brain injury (Warden 2006) and with cortical dysfunction (Cernak et al 1999). Decades of studies have been conducted to elucidate the effects of primary blast wave on the central nervous system. These studies were mostly concerned with systemic effects (Saljo et al 2000-2003; Kaur et al 1995-1997, 1999; Cernak et al 1996, 2001). The molecular mechanism of blast-induced neurotrauma is still poorly understood. This paper reviews studies related to primary blast injury to the nervous system, particularly at the cellular level. It starts with a general discussion of primary blast injury and blast wave physics, followed by a review of the literature related to 1) the blast wave/body interaction, 2) injuries to the peripheral nervous system, 3) injuries to the central nervous system, and 4) injury criteria. Finally, some of our preliminary data on cellular injury from in vitro and in vivo studies are presented. Specifically, we report on the effects of overpressure on astrocytes. In the discussion, possible mechanisms of blast-related brain injury are discussed, as well as the concerns and limitations of the published studies. A clearer understanding of the injury mechanisms at both the molecular and macroscopic (organ) level will lead to the development of new treatment, diagnosis and preventive measures.  相似文献   

10.
Yang C  Gao J  Wang HY  Liu Q  Xu MH  Wang ZG  Jiang JX 《Cytokine》2011,54(1):29-35
Hypothalamus-pituitary-adrenal (HPA) axis is involved in the modulation of the innate immune response. The purpose of this study was to evaluate the dynamic relationship between plasma corticosterone and interleukin-6 in the hypothalamus-destroyed rats after blast injury. A total of 105 Sprague-Dawley rats were divided randomly into normal control (normal), sham operated (sham), blast injury plus sham operated (blast injury) and blast injury plus hypothalamus destruction groups. Symmetric electrolytic bilateral destruction of the hypothalamus was performed for the deeply anesthetic rats under sterile conditions. Seven days after the destruction of the hypothalamus, the animals were succumbed to moderate blast injury using a BST-I bioimpact machine. Plasma corticosterone and IL-6 levels were determined by radioimmunoassay and enzyme-linked immunosorbent assay, respectively. After blast injury, the corticosterone level in the hypothalamus-destroyed rats was significantly lower than that in the rats without destruction of hypothalamus at 3h (P<0.01) or from 5 to 8h (P<0.05). Reduction of corticosterone may be intrinsically correlated with the severe tissue injury and increased mortality (4/15 vs. 0/15, P<0.05). Circulating IL-6 level was markedly elevated in response to blast injury and hypothalamus destruction further increased IL-6 secretion (P<0.05). We concluded that elevation of pro-inflammatory IL-6 secretion might compensate the impaired HPA axis function after the trauma occurred in the hypothalamus-destroyed rats. These results also suggested that release of hypothalamus hormones is necessary to maintain certain magnitude of innate immunity after trauma.  相似文献   

11.
Human exposure to blast waves without any fragment impacts can still result in primary blast-induced traumatic brain injury (bTBI). To investigate the mechanical response of human brain to primary blast waves and to identify the injury mechanisms of bTBI, a three-dimensional finite element head model consisting of the scalp, skull, cerebrospinal fluid, nasal cavity, and brain was developed from the imaging data set of a human female. The finite element head model was partially validated and was subjected to the blast waves of five blast intensities from the anterior, right lateral, and posterior directions at a stand-off distance of one meter from the detonation center. Simulation results show that the blast wave directly transmits into the head and causes a pressure wave propagating through the brain tissue. Intracranial pressure (ICP) is predicted to have the highest magnitude from a posterior blast wave in comparison with a blast wave from any of the other two directions with same blast intensity. The brain model predicts higher positive pressure at the site proximal to blast wave than that at the distal site. The intracranial pressure wave invariably travels into the posterior fossa and vertebral column, causing high pressures in these regions. The severities of cerebral contusions at different cerebral locations are estimated using an ICP based injury criterion. Von Mises stress prevails in the cortex with a much higher magnitude than in the internal parenchyma. According to an axonal injury criterion based on von Mises stress, axonal injury is not predicted to be a cause of primary brain injury from blasts.  相似文献   

12.
The regeneration of tubular epithelial cells (TECs) after acute kidney injury (AKI) is crucial for the recovery of renal structure and function. The mechanism by which quiescent TECs re-obtain a potential to regenerate remains unknown. In this study, we observed a transient re-expression of embryonic gene Paired box 2 (Pax2) in adult rat TECs in vivo during ischemia-reperfusion induced AKI and most Pax2 positive TECs co-expressed kidney injury molecule-1 (KIM-1), a tubular injury marker. The re-expression of Pax2 was accompanied by increased levels of intrarenal Angiotensin II, which is a crucial injury factor of AKI. Furthermore, we also found a temporary re-expression of Pax2 in NRK-52E cells under the stimulation of Angiotensin II. This stimulatory effect could be blocked by PD123319 (Angiotensin II type 2 receptor (AT2R) inhibitor) and AG490 (Janus Kinase 2 (JAK2) inhibitor). As Pax2 is essential for the phenotypic conversion from mesenchymal stem cells to TECs during kidney development, we proposed that the re-expression of Pax2 in mature TECs may be an indicator of “atavistic” transition which mimics but reverses the processes of development of TECs. This could be proved by that a progenitor marker, CD24, was also found to be transiently expressed shortly after the expression of Pax2 in NRK-52E cells stimulated with Angiotensin II. The expression of CD24 was also suppressed by PD123319 and AG490. Moreover, knockdown of Pax2 by RNA interference could significantly reduce the expression of CD24 in NRK-52E cells stimulated with Angiotension II. Those findings suggest that mature TECs can trans-differentiate into progenitor-like cells by “atavistic transition”, which may participate in the recovery of tissue structure and Pax2 may play a pivotal role in this process. That might have important implications for further understanding of tubular regeneration after injury.  相似文献   

13.
Blast waves generated by improvised explosive devices can cause mild, moderate to severe traumatic brain injury in soldiers and civilians. To understand the interactions of blast waves on the head and brain and to identify the mechanisms of injury, compression-driven air shock tubes are extensively used in laboratory settings to simulate the field conditions. The overall goal of this effort is to understand the mechanics of blast wave–head interactions as the blast wave traverses the head/brain continuum. Toward this goal, surrogate head model is subjected to well-controlled blast wave profile in the shock tube environment, and the results are analyzed using combined experimental and numerical approaches. The validated numerical models are then used to investigate the spatiotemporal distribution of stresses and pressure in the human skull and brain. By detailing the results from a series of careful experiments and numerical simulations, this paper demonstrates that: (1) Geometry of the head governs the flow dynamics around the head which in turn determines the net mechanical load on the head. (2) Biomechanical loading of the brain is governed by direct wave transmission, structural deformations, and wave reflections from tissue–material interfaces. (3) Deformation and stress analysis of the skull and brain show that skull flexure and tissue cavitation are possible mechanisms of blast-induced traumatic brain injury.  相似文献   

14.
Head injury in infants and young children may produce lesions that are relatively unique for this age group. The uniqueness is generally due to the structural immaturity of the skull, meninges and brain.“Derby-hat” and diastatic fractures are common in this age group. Spurious meningoceles result from tearing of the dura which is closely adherent to the skull. The syndrome of “delayed” concussion is more commonly manifested in children. Extradural and subdural hemorrhage may develop from lacerations of the major venous sinuses. A classical extradural hematoma may occur in the absence of fracture across meningeal arterial channels.The management of patients with head injury has been improved by the more frequent use of tracheotomy, hypothermic techniques and drugs of the “lytic cocktail.” Solutions of urea in 10 per cent invert sugar are administered intravenously to control cerebral edema in selected patients.  相似文献   

15.
《Cytokine》2015,71(2):115-119
Ocular trauma affects 20% of Americans in their lifetime and can cause permanent visual system damage. We have used a mouse model of ocular trauma (exposure to an air blast from a paintball gun) to examine pathways that trigger the resulting retinal damage and to develop treatment strategies that might ameliorate the deleterious effects of trauma on retinal tissue. Our previous studies have shown that ocular blast causes an increase in protein levels of inflammatory mediators and apoptotic factors, including tumor necrosis factor alpha (TNFα) and interleukin-1-beta (IL-1β), as well as the apoptotic markers, Bax, cytochrome C, and cleaved caspase 3. Furthermore, topical treatment by eye drop application of a β-adrenergic receptor agonist, Compound 49b, was shown to decrease these inflammation/apoptosis markers and thus ameliorate the effects of blast trauma. We postulate that the protective effect of Compound 49b may be linked to its demonstrated ability to activate the β-adrenergic receptor and in turn trigger production of insulin-like growth factor binding protein 3 (IGFBP-3). In the current study, we tested this hypothesis using mice with minimal IGFBP-3 activity (IGFBP-3 knockdown mouse) vs. wildtype mice. We found that ocular blast alone did not affect IGFBP-3 levels in retinas of wild type or knockdown mice and surprisingly, the lower levels of IGFBP-3 in knockdown animals did not exacerbate the blast-induced increase in protein levels of inflammation/apoptosis markers. Nevertheless, the levels of IGFBP-3 were significantly increased in knockdown mouse retina by treatment with Compound 49b 24 h post-trauma and as expected, the increase in IGFBP-3 was linked to a decrease in inflammation/apoptosis markers. We conclude that while lowered IGFBP-3 may not make the retina more vulnerable to blast injury, an increase in IGFBP-3 post-trauma may play an important role in limiting trauma-induced inflammatory and apoptotic pathways leading to retinal damage. Eye drop application of the β-adrenergic receptor agonist, Compound 49b, provides a promising treatment strategy for increasing IGFBP-3 levels to promote recovery from retinal inflammation and apoptosis after ocular blast.  相似文献   

16.
Two-hundred children with head injury admitted consecutively to paediatric wards in the two main hospitals in Newcastle upon Tyne have been studied. Eight children required neurosurgical operation. There were two deaths. Details of the cause and consequences of the accidents have been analysed and an attempt has been made to identify psychological or physical factors that may predispose to injury. There was a slightly higher proportion of children with what are regarded as adverse personality factors among the head injuries than in a control group and there were more left-handed children than would be expected in the general population. The results suggest that the modern “high-rise” bicycle may carry a special risk of head injury.  相似文献   

17.
爆炸冲击波作用到人体胸部时,肺部会出现肺出血及肺水肿等症状,这是人体爆炸创伤的主要原因,深入研究很有必要.为了更好地理解爆炸创伤的机理,应研究冲击波与微观组织作用的力学过程,但具有一定的难度.本文从基本的生物膜做起,运用分子动力学研究冲击波对DPPC膜造成的损伤,通过停止活塞来控制冲击波的冲量,观察冲击过程中膜的恢复情况.通过观察不同冲量下冲击波经过膜后磷脂分子及其周围水分子分布,发现随着冲量增大,膜越来越无序混乱,褶皱更严重,疏水区水分子越来越多.将膜冲击过程划为3个阶段,分别为冲击阶段、恢复阶段和后效阶段.发现当冲量大于153 m Pa·s时,在冲击过程中没有观察到膜的损伤恢复.  相似文献   

18.
Chen Y  Huang W  Constantini S 《PloS one》2012,7(6):e39353
A hydraulic energy redirection and release technology has been developed for mitigating the effects of blast shock waves on protected objects. The technology employs a liquid-filled plastic tubing as a blast overpressure transformer to transfer kinetic energy of blast shock waves into hydraulic energy in the plastic tubings. The hydraulic energy is redirected through the plastic tubings to the openings at the lower ends, and then is quickly released with the liquid flowing out through the openings. The samples of the specifically designed body armor in which the liquid-filled plastic tubings were installed vertically as the outer layer of the body armor were tested. The blast test results demonstrated that blast overpressure behind the body armor samples was remarkably reduced by 97% in 0.2 msec after the liquid flowed out of its appropriate volume through the openings. The results also suggested that a volumetric liquid surge might be created when kinetic energy of blast shock wave was transferred into hydraulic energy to cause a rapid physical movement or displacement of the liquid. The volumetric liquid surge has a strong destructive power, and can cause a noncontact, remote injury in humans (such as blast-induced traumatic brain injury and post-traumatic stress disorder) if it is created in cardiovascular system. The hydraulic energy redirection and release technology can successfully mitigate blast shock waves from the outer surface of the body armor. It should be further explored as an innovative approach to effectively protect against blast threats to civilian and military personnel.  相似文献   

19.
A method for transferring a lipid monolayer from an air-water interface to an alkylated glass slide is described. Specific antibodies bind tightly to lipid haptens contained in these monolayers on the glass slides. We conclude that the polar head groups of the lipids face the aqueous phase. A monolayer containing a fluorescent lipid was used to show that the monolayer is homogeneous as observed with an epifluorescence microscope. A periodic pattern photobleaching technique was used to measure the lateral diffusion of this fluorescent lipid probe in monolayers composed of dipalmitoyl phosphatidylcholine and dimyristoyl phosphatidylcholine. Different regions of the pressure-area isotherms of the monolayers at the air-water interface can be correlated with the diffusion of the fluorescent probe molecules on the monolayer-coated glass slide. Monolayers derived from the so-called “solid-condensed” state of a monolayer at the air-water interface showed a very low probe diffusion coefficient in this monolayer when placed on a glass slide, D ≤ 10-10 cm2/s. Monolayers derived from the “liquid condensed/liquid expanded” (LC/LE) region of the monolayer isotherms at the air-water interface showed rapid diffusion (D > 10-8 cm2/s) when these same monolayers were observed on an alkylated glass slide. The monolayers attached to the glass slide appear to be homogeneous when derived from monolayers in the LC/LE region of monolayers at the air-water interface. There is no major variation of the diffusion coefficient of a fluorescent lipid probe when this diffusion is measured on a lipid monolayer on a glass slide, for monolayers derived from various regions of the LC/LE monolayers at the air-water interface. This is consistent with the view that the LC/LE region is most likely a single fluid phase. Monolayers supported on a planar glass substrate are of much potential interest for biophysical and biochemical studies of the interactions between model membranes and cellular membranes, and for physical chemical studies relating the properties of lipid monolayers to the properties of lipid bilayers.  相似文献   

20.
Blast-associated shock wave-induced traumatic brain injury (bTBI) remains a persistent risk for armed forces worldwide, yet its detailed pathophysiology remains to be fully investigated. In this study, we have designed and characterized a laboratory-scale shock tube to develop a rodent model of bTBI. Our blast tube, driven by a mixture of oxygen and acetylene, effectively generates blast overpressures of 20–130 psi, with pressure-time profiles similar to those of free-field blast waves. We tested our shock tube for brain injury response to various blast wave conditions in rats. The results show that blast waves cause diffuse vascular brain damage, as determined using a sensitive optical imaging method based on the fluorescence signal of Evans Blue dye extravasation developed in our laboratory. Vascular leakage increased with increasing blast overpressures and mapping of the brain slices for optical signal intensity indicated nonhomogeneous damage to the cerebral vasculature. We confirmed vascular leakage due to disruption in the blood-brain barrier (BBB) integrity following blast exposure. Reactive oxygen species (ROS) levels in the brain also increased with increasing blast pressures and with time post-blast wave exposure. Immunohistochemical analysis of the brain sections analyzed at different time points post blast exposure demonstrated astrocytosis and cell apoptosis, confirming sustained neuronal injury response. The main advantages of our shock-tube design are minimal jet effect and no requirement for specialized equipment or facilities, and effectively generate blast-associated shock waves that are relevant to battle-field conditions. Overall data suggest that increased oxidative stress and BBB disruption could be the crucial factors in the propagation and spread of neuronal degeneration following blast injury. Further studies are required to determine the interplay between increased ROS activity and BBB disruption to develop effective therapeutic strategies that can prevent the resulting cascade of neurodegeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号