首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Isolated giant serotonin-containing neurons of the cerebral ganglia of Helix pomatia were shown to produce serotonin when incubated with 5-hydroxytryptophan (5-HTP) whereas cells of the buccal ganglia, which are non-amine-containing cells did not. The rate of production was comparable to that for Ach in the isolated neurons of Aplysia. The significance of these results is discussed.  相似文献   

2.
The cellular localization of the biogenic amines dopamine and serotonin was investigated in the ventral nerve cord of the cricket, Gryllus bimaculatus, using antisera raised against dopamine, -tyrosine hydroxylase and serotonin. Dopamine-(n<-70) and serotonin-immunoreactive (n<-120) neurones showed a segmental arrangement in the ventral nerve cord. Some neuromeres, however, did not contain dopamine-immunoreactive cell bodies. The small number of stained cells allowed complete identification of brain and thoracic cells, including intersegmentally projecting axons and terminal arborizations. Dopamine-like immunostaining was found primarily in plurisegmental interneurones with axons descending to the soma-ipsilateral hemispheres of the thoracic and abdominal ganglia. In contrast, serotonin-immunostaining occurred predominantly in interneurones projecting via soma-contralaterally ascending axons to the thorax and brain. In addition, serotonin-immunoreactivity was also present in efferent cells and afferent elements. Serotonin-immunoreactive, but no dopamine-immunoreactive, varicose fibres were observed on the surface of some peripheral nerves. Varicose endings of both dopamine-and serotonin-immunoreactive neurones occurred in each neuromere and showed overlapping neuropilar projections in dorsal and medial regions of the thoracic ganglia. Ventral associative neuropiles lacked dopamine-like immunostaining but were innervated by serotonin-immunoreactive elements. A colocalization of the two amines was not observed. The topographic representation of neurone types immunoreactive for serotonin and dopamine is discussed with respect to possible modulatory functions of these biogenic amines in the central nervous system of the cricket.  相似文献   

3.
Neurotransmitter content was measured in two identified giant neurones in isogenic and wild-type populations of the freshwater pond snail Lymnaea stagnalis. The paired serotonergic cerebral giant neurones (LC1 and RC1) have higher transmitter levels and less variability in inbred animals than in wild-type animals. The transmitter content of the unpaired dopaminergic right pedal giant neurone (RPeD1) does not differ between inbred and wild-type animals in either level or variability. It is proposed that serotonin content of the cerebral giant neurones is under partial genetic control, and that animals of the wild-type population may possess a number of different alleles for the genes influencing serotonin levels. Inbreeding resulted in fixation of an allele promoting high serotonin levels. This particular wild-type population is probably already isogenic for genes influencing dopamine content in the right pedal giant neurone.  相似文献   

4.
A dual-channel integrating micro-flame-photometer was evaluated for simultaneous analysis of sodium and potassium in aqueous extracts from nanogram samples of frozen-dried mammalian nervous tissue. Calibrated quartz constriction micropipettes delivered 10−8 l. of extraction fluid to a 100 μ platinum-iridium wire for insertion directly into the flame. Over-all reproducibility was 4 per cent for twenty samples containing 6.5 × 10−11 g K and 2.2 × 10−11 g Na. Large amounts of anions decreased the emissions for both sodium and potassium, but no interference between sodium and potassium was found over the range adopted for biological analyses. The micro-flame-photometer gave results for a few nanolitres of aqueous extracts of brain homogenates which were within 3-5 per cent of those obtained on larger volumes with a conventional flame photometer. Macroanalysis and microanalyses of microgram quantities of frozen-dried tissue sections of cerebral cortex were also in agreement. Nanogram samples from frozen-dried spinal ganglia of a rabbit gave average values for sodium and potassium (calculated/g wet wt.) which were similar to those for aqueous extracts of rabbit brain homogenates. Samples from peripheral ganglia in vivo, 10 minpost mortem and 20 min post mortem had significantly different average K/Na ratios of 1.97, 2.64 and 3.23, respectively.  相似文献   

5.
Summary Following exposure to tritiated 5-HTP, silver grains were observed over the perikarya of the GSCs (Giant serotonin cells) of Helix pomatia and other known serotonin-containing neurones in light and electron microscope autoradiograms. There was no indication that the 5-HTP was taken up by nerve endings or by non-nervous structures. The distribution of radioactivity was completely different in autoradiograms of tissue exposed to tritiated serotonin. Silver grains, often in very high concentrations, were observed only over certain fine axon branches and processes thought to be nerve endings. Electron microscope autoradiography showed that these processes contained small dense-cored vesicles, morphologically identical to those thought to sequester serotonin in the perikarya of the GSCs. The accumulation of tritiated tryptophan was less specific; all the neurone perikarya showed an accumulation of radioactivity after exposure to this substance.We are grateful to Professor J. F. Lamb for the use of the Scintillation Spectrometer.  相似文献   

6.
Summary The thoracic homologue of the abdominal segmental giant neurone of crayfish Pacifastacus leniusculus is identified and described. It has a small cell body located in the anterior ventro-lateral quadrant of the ganglion and a large neuropil arborization, with dendrites aligned along the tracts of the giant fibres. The SG axon exits the ganglion within the major root which innervates the leg, usually in the anterior region of this root. Within 1–2 mm of the ganglion the axon terminates in a mass of fine branches, apparently randomly located within the base of the root.The SG receives suprathreshold input from the ipsilateral MG and LG fibres through rectifying electrical synapses. It makes output to FF motor neurones, also through electrical synapses. The SG also makes output to at least one corollary discharge interneurone. The SG receives depolarizing inhibitory synaptic potentials which can prevent its activation by the GFs. Some but not all of these synaptic potentials are common to similar potentials occurring in a large leg promotor motor neurone.Abbreviations AC anterior connective - GF giant fibre - IPSP inhibitory post-synaptic potential - LG lateral giant fibre - MG medial giant fibre - MoG motor giant neurone - PC posterior connective - PMM promotor motor neurone - r1 first root - r3 third root - rAD anterior distal root - rPD posterior distal root - rPM promotor muscle root - SG segmental giant neurone  相似文献   

7.
1. We have isolated a neuroexcitatory tetrapeptide having a D-phenylalanine (Gly-D-Phe-L-Ala-L-Asp) from the ganglia of Achatina fulica Férussac. This peptide was termed achatin-I (Kamatani et al., 1989). In the present report, we shall present highlights from the original paper concerning the process of peptide isolation and the examination of its effects. 2. From the ganglia of about 30,000 animals, we obtained 50 micrograms of achatin-I and 17 micrograms of its stereoisomer consisting of only L-amino acid residues (Gly-L-Phe-L-Ala-L-Asp) which was termed achatin-II. The data of instrumental analyses (1H-NMR, SIMS, CD and HPLC) of isolated achatin-I and achatin-II were identical to those of synthetic ones. 3. Achatin-I showed marked excitatory effects on the three Achatina giant neurones, PON (periodically oscillating neurone), TAN (tonically autoactive neurone) and v-RCDN (ventral-right cerebral distinct neurone), whereas achatin-II had no effect. Among their stereoisomers, [D-Ala3]-achatin-I (Gly-D-Phe-D-Ala-L-Asp) had slight excitatory effects on the Achatina neurones tested. Amide derivatives of achatin-I and achatin-II were ineffective. 4. Dose-response curves of achatin-I and [D-Ala3]-achatin-I for producing the inward current of PON were measured under voltage clamp at a holding membrane voltage (Vh) of -50 mV.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
FMRFamide-gated Na+ channels of molluscan neurones belong to the ENa/Deg family of channels which have diverse functions. FMRFamide (Phe-Met-Arg-Phe-NH2) Na+ channels were detected electrophysiologically in specified neurones of Helix (Helix aspersa) and Helisoma (Helisoma trivolvis), and clones (FaNaCs) subsequently identified. We have now made a study to determine the distribution of mRNA for the clones HaFaNaC (Helix) and HtFaNaC (Helisoma) in the nervous systems of these species using standard in situ hybridization techniques. Immunohistochemical experiments were also made using an HtFaNaC antibody to detect the channel protein in Helisoma neurones. Many neurones in the central ganglia, including those which exhibit the FMRFamide Na+ current, stained for FaNaC-mRNA, suggesting a much wider distribution of the channel than was indicated by the earlier work. An immunoreactive response to the channel antibody was also observed in some Helisoma neurones, such as the giant dopamine neurone of the left pedal ganglion, also shown to possess HtFaNaC-mRNA and to exhibit the FMRFamide Na+ current. Taken together, these experiments suggest that the clones HaFaNaC and HtFaNaC are major, if not the only, subunits of the FMRFamide-gated Na+ channel detected electrophysiologically in the identified neurones of these species. However, fewer neurones in Helisoma reacted with the HtFaNaC-antibody than those which exhibited message for the channel. This discrepancy may be due to a difference in sensitivity of the two techniques, or because not all of the channel mRNA is normally expressed as a membrane protein.  相似文献   

9.
Summary A monoclonal antibody against substance P was used for immunocytochemical staining of the central ganglia of the snail Helix aspersa and several peripheral tissues including the gut, reproductive system, cardiovascular system, tentacle and other muscles.Within the central ganglia many neurones, and many fibres in the neuropile and the nerves entering the ganglia, were stained for the SP-like material. The largest numbers of reactive cell bodies were in the pleural ganglia and on the dorsal surfaces of the pedal ganglia. A group of cells was also found, surrounding the right pedal-cerebral connective, that did not fluoresce, but were enveloped by reactive processes terminating directly onto the neurone somata.Specific staining was observed in all peripheral tissues examined and always appeared to be concentrated in nerve terminals. Most particularly these occurred in the heart and aorta, the pharyngeal retractor muscle and the tentacle. Although mostly present in muscular tissues, some fluorescence was also observed in the nervous layer surrounding the retina. The tentacular ganglion also contained immunoreactive cell bodies.  相似文献   

10.
In vitro experiments were performed in order to determine whether nerve stimulation would affect the RNA metabolism of an identified giant neurone (R2) in the abdominal ganglion of Aplysia californica. The electrophysiological activity of the neurone was continuously monitored with an intra- or extracellular microelectrode. The mere presence of an intracellular microelectrode inside the neurone had no significant effect on the incorporation of tritiated nucleosides into the RNA of the giant neurone. Prolonged electrical stimulation of ganglionic nerves, strong enough to elicit post-synaptic spikes in the giant neurone, produced a marked increase in the amount of labelled RNA in the nucleus as well as in the cytoplasm. Electrophoresis studies suggested that this increase in labelling might concern RNA with molecular weights corresponding to ribosomal as well as to non-ribosomal RNA.  相似文献   

11.
Histamine (HA) is present in substantial quantities in all ganglia of Aplysia californica. Within the cerebral ganglia this amine is known to be concentrated in at least two identified neurons designated C-2 neurons. In this study a combination of chemical and enzymatic analyses was employed to provide evidence for the existence of a biochemical pathway for HA synthesis in ganglia and individual neurons of this marine mollusk. Examination of extracts of individual neurons dissected from ganglia organ-cultured in the presence of [3H]histidine showed that every neuron accumulated labelled histidine, but only the HA-containing C-2 neurons synthesized and stored labelled HA suggesting that the formation of HA in Aplysia could be catalyzed by the enzyme histidine decarboxylase (HDC). HDC activity was studied with a new microradiometric assay. Many of the properties of the molluscan HDC studied were found to correspond to the vertebrate enzyme. Enzyme activity was inhibited by α-hydrazino-histidine but unaffected by concentrations of α-methyldopa or by 5-(3,4-dihydroxycinnamoyl) salicylic acid which produced nearly complete inhibition of aromatic amino acid decarboxylase activity. HDC was measurable in nervous but not other Aplysia tissues assayed. All 5 major ganglia contained HDC activity which spanned a 15-fold range between the least and most active ganglia. Only 4 of the 13 nerve trunks assayed yielded measurable enzymic activity; these active nerves were associated with the cerebral ganglia which has the highest HDC activity of all measured ganglia. Of the numerous individual neurons assayed for HDC, only the C-2 cells showed measurable enzyme activity, about 25 pmol/cell/h or 70 μmol/g protein/h. Since the activity of HDC in the HA-containing neurons was at least three orders of magnitude larger than all other neurons assayed in the cerebral and other ganglia, these data appear to provide a direct metabolic basis for the selective presence of HA in these cells, and they indicate that the cellular presence of HDC provides a useful biochemical marker for the location of HA-rich neurons in Aplysia.  相似文献   

12.
1. The following four giant neurones were identified on the dorsal surface of the left buccal ganglion of an African giant snail (Achatina fulica Ferussac): d-LBAN (dorsal-left buccal anterior neurone), d-LBMN (dorsal-left buccal medial neurone), d-LBCN (dorsal-left buccal central neurone) and d-LBPN (dorsal-left buccal posterior neurone). The axonal pathways of the neurones were studied by the intracellular injection of Lucifer Yellow; their pharmacological characteristics with respect to common putative neurotransmitters were also investigated.2. The axonal pathways of d-LBAN and d-LBCN were simple, innervating some left lateral buccal nerves or the left accessory connective buccal nerve. On the other hand, those of d-LBMN and d-LBPN were much more widespread, projecting not only to the left buccal nerves, but also to the right buccal nerves through the buccal commissure.3. No direct axonal pathway from any of the four buccal neurones tested to the other ganglioncomplexes through the cerebral buccal connectives was demonstrated.4. The pharmacological characteristics of the four neurones tested were not identical. Only 5-hydroxytryptamine excited all of the neurones, whereas dopamine, l-epinephrine and acetylcholine inhibited all of them. However, the other effective substances, such as dl-octopamine, GABA, l-homocysteic acid, erythro-β-hydroxy-l-glutamic acid and histamine, were either excitatory or inhibitory according to the neurone.  相似文献   

13.
W. R. Kem  C. Östman 《Hydrobiologia》1993,266(1-3):247-254
Circular body wall muscles of Cerebratulus lacteus respond to micromolar concentrations of the neuropeptide Phe-Met-Arg-Pheamide (FMRFa), first isolated from molluscan nervous tissue. Comparison of the relative body wall contractural potencies of various FMRFa analogs indicates that the Arg-Pheamide group is necessary for this activity, but the remaining N-terminal region can be altered considerably without loss of activity. The circular muscle failed to respond to met-enkephalin and many other vertebrate neuropeptides. Acetone-soluble extracts of Cerebratulus contained two FMRFa antibody immunoreactive components separable by reversed phase liquid chromatography. Neither component had the same retention time as FMRFa. Bouin's fixed and paraffin embedded Cerebratulus nervous tissues displayed specific immunofluorescence when incubated with FMRFa polyclonal antibody but not monoclonal antibody specific for the molluscan neuropeptide SCP-B. Some giant neuron somas in the lateral nerve cords and in the ventral cerebral ganglia were immunochemically reactive as were axons in the lateral nerve cord and in the circular and transverse body wall muscles. Pre-exposure of the antibody with FMRFa prevented the reaction. Thus several types of evidence suggest the presence of FMRFa-like neuropeptides in Cerebratulus lacteus.  相似文献   

14.
Summary The rectification properties of electrical synapses made by the segmental giant (SG) neurone of crayfish (Pacifastacus leniusculus) were investigated. The SG acts as an interneurone, transmitting information from the giant command fibres (GFs) to the abdominal fast flexor (FF) motoneurones. The GF-SG (input) synapses are inwardly-rectifying electrical synapses, while the SG-FF (output) synapses are outwardly rectifying electrical synapses. This implies that a single neurone can make gap junction hemichannels with different rectification properties.The coupling coefficient of these synapses is dependent upon transjunctional potential. There is a standing gradient in resting potential between the GFs, SG and FFs, with the GFs the most hyperpolarized, and the FFs the most depolarized. The gradient thus biases each synapse into the low-conductance state under resting conditions.There is functional double rectification between the bilateral pairs of SGs within a single segment, such that depolarizing membrane potential changes of either SG pass to the other SG with less attenuation than do hyperpolarizing potential changes. Computer simulation suggests that this may result from coupling through the intermediary FF neurones.Abbreviations l left - r right - FF fast flexor motoneurone - GF giant fibre - LG lateral giant interneurone - MG medial giant interneurone - MoG motor giant motoneurone - R root, e.g. 1R1 is the first root on the left side - SG Segmental giant neurone  相似文献   

15.
Summary A method is described for recording with microelectrodes from central neurones in locusts,Schistocerca gregaria americana, that are free to perform a large fraction of their behavioural repertoire. This tethered preparation has been used to examine the individual responses of large neurones in the neck connectives to a range of sensory stimuli.From differences in the responses of the units examined and from their positions in the connective, as determined by dye iontophoresis, 31 separate neurones have been identified. The axons of these cells had relatively constant diameters and cord positions in different animals and appeared in both right and left connectives but with their positions mirror reversed. The majority of these 31 cells carried descending information from the head ganglia and under our experimental conditions, 7 were found to have wind stimulation as their strongest sensory input, 17 had visual stimulation, 4 had sound stimulation and 3 had proprioceptive input.Abbreviations DCMD descending contralateral movement detector (neurone) - DIMD descending ipsilateral movement detector (neurone)  相似文献   

16.
Summary Intracellular microelectrode recording and ionophoretic application of carbamylcholine (CCh) were used to compare the cholinergic sensitivity of postsynaptic dendrites of an identified neurone with that of an identified presynaptic cholinergic axon.The axon of the lateral filiform hair sensory neurone (LFHSN) in the first-instar cockroachPeriplaneta americana was found to be as sensitive to CCh as the dendritic regions of giant interneurone 3 (GI 3). The CCh response of both neurones was unaffected by replacing Ca2+ with Mg2+, confirming that the ACh receptors are present on the neurones under test. The CCh response of both neurones was mimicked by ionophoretic application of nicotine. The responses were blocked by 10–5 M mecamylamine and 10–6 M d-tubocurarine and were not affected by muscarinic antagonists, suggesting that the ACh receptors present on GI 3 and LFHSN are predominantly nicotinic.The muscarinic agonist oxotremorine and the antagonists atropine and quinuclidinyl benzilate had no modulatory effect on LFHSN-GI 3 synaptic transmission.The latency of the LFHSN response to CCh was consistent with the hypothesis that ACh receptors are situated on the main axon/terminal within the neuropil of the ganglion. It has previously been shown that this region of the axon does not form output synapses (Blagburn et al. 1985a). This indirect evidence indicates that presynaptic or extrasynaptic ACh receptors are present in the membrane of a cholinergic axon.LFHSN was depolarized by synaptically-released ACh after normal or evoked spike bursts, suggesting that the nicotinic ACh receptors act as autoreceptors. However, it was not possible to obtain direct evidence to support the hypothesis that these receptors modulate ACh release.Abbreviations CCh carbamylcholine - GI giant interneurone - FHSN filiform hair sensory neurone - LFHSN lateral filiform hair sensory neurone - R in input resistance - V depolarization - V m resting potential  相似文献   

17.
Summary The distribution patterns of serotonin-immunoreactive somata in the cerebral and subpharyngeal ganglion, and in the head and tail ganglia of the nerve cord of Lumbricus terrestris are described from whole-mount preparations. A small number of serotonin-immunoreactive neurons occurs in the cerebral ganglion, in contrast to the large population of serotonin-immunoreactive neurons that exists in all parts of the ventral nerve cord. From the arrangement of serotonin-immunoreactive somata in the subpharyngeal ganglion, we suggest that this ganglion arises from the fusion of two primordial ganglia. In head and tail ganglia, the distribution of serotonin-immunoreactive somata resembles that in midbody segments. Segmental variations in the pattern and number of serotonin-immunoreactive somata in the different body regions are discussed on the background of known developmental mechanisms that result in metameric neuronal populations in annelids and arthropods.Abbreviations CG1, CG2 cerebral soma group 1, 2 - CNS central nervous system - GINs giant interneurons - 5-HT 5-hydroxytryptamine, serotonin - 5-HTi 5-HT-immunoreactive - N side nerve - SG19 subpharyngeal soma group 1–9 - SN segmental nerve  相似文献   

18.
This study utilised the pond snail, Lymnaea to examine the contribution that alterations in serotonergic signalling make to age-related changes in feeding. Age-related decreases in 5-HIAA levels in feeding ganglia were positively correlated with a decrease in the number of sucrose-evoked bites and negatively correlated with an increase in inter-bite interval, implicating alterations in serotonergic signalling in the aged phenotype. Analysis of the serotonergic cerebral giant cell (CGC) input to the protraction motor neurone (B1) demonstrated that fluoxetine (10–100 nM) increased the amplitude/duration of the evoked EPSP in both young and middle aged but not in old neurones, suggesting an age-related attenuation of the serotonin transporter. 5-HT evoked a concentration-dependent increase in the amplitude/duration of B1 EPSP, which was greater in old neurones compared to both young and middle aged. Conversely, the 5-HT-evoked depolarisation and conditional bursting of the swallow motor neurone (B4) were attenuated in old neurones, functions critical for a full feeding rhythm. The CGCs' ability to excite B1 was blocked by cinanserin but not by methysergide. Conversely, the CGC to B4 connection was completely blocked by methysergide and only partially by cinanserin suggesting that age-related changes may be receptor-specific. In summary, synapse-specific attenuation of the CGC-B4 connection and enhancement of the CGC-B1 connection would slow the swallow phase and maintain protraction, consistent with behavioural observations.  相似文献   

19.
—Previous experiments on a giant neurone (R2) from Aplysia californica have shown that a prolonged electrical stimulation of ganglionic nerves, strong enough to elicit post-synaptic spikes in the giant neurone, caused a marked increase in the uptake of labelled nucleosides into the neuronal RNA. The results described in the present paper very strongly indicate that these effects of synaptic activation were not due to the discharge of spikes in the giant neurone itself. Spikes which were directly elicited in the giant neurone by current pulses injected into the cell through an intracellular microelectrode had no significant effect on RNA labelling. Weak stimulation of ganglionic nerves, eliciting post-synaptic potentials but few spikes in the giant neurone, produced a small but significant increase of RNA labelling.  相似文献   

20.
  • 1.1. Effects of the following peptides at 10−4 M on identifiable giant neurones of Achatina fulica Férussac were examined: physalaemin, eledoisin, bradykinin, neurokinin A, neurokinin B, neuromedin B, gastrin releasing peptide decapeptide (neuromedin C), gastrin releasing peptide (14–27), cholecystokinin tetrapeptide, cholecystokinin octapeptide, thyrotropin releasing hormone, Arg-vasotocin, γ-melanocyte stimulating hormone.
  • 2.2. The six neurones tested were as follows: PON (periodically oscillating neurone), TAN (tonically autoactive neurone), RAPN (right anterior pallial neurone), d-RPLN (dorsal-right parietal large neurone), VIN (visceral intermittently firing neurone) and d-VLN (dorsal-visceral large neurone).
  • 3.3. Of the peptides examined, only Arg-vasotocin at 10−4 M produced the excitatory effects on PON, VIN and d-VLN. Physalaemin showed slight inhibitory effects on TAN; this substance was sometimes almost ineffective on the neurone.
  • 4.4. The other peptides examined were completely ineffective on all of the neurones tested.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号