首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three exocellular enzymes of Thermoanaerobacterium thermosulfurigenes EM1 possess a C-terminal triplicated sequence related to a domain of bacterial cell surface proteins (S-layer proteins). At least one copy of this sequence, named the SLH (for S-layer homology) domain, is also present at the N terminus of the S-layer protein of this bacterium. The hypothesis that SLH domains serve to anchor proteins to the cell surface was investigated by using the SLH domain-containing xylanase. This enzyme was isolated from T. thermosulfurigenes EM1, and different forms with and without SLH domains were synthesized in Escherichia coli. The interaction of these proteins with isolated components of the cell envelope was determined to identify the attachment site in the cell wall. In addition, a polypeptide consisting of three SLH domains and the N terminus of the S-layer protein of T. thermosulfurigenes EM1 were included in these studies. The results indicate that SLH domains are necessary for the attachment of these proteins to peptidoglycan-containing sacculi. Extraction of the native sacculi with hydrofluoric acid led to the conclusion that not peptidoglycan but accessory cell wall polymers function as the adhesion component in the cell wall. Our results provide further evidence that attachment of proteins via their SLH domains represents an additional mode to display polypeptides on the cell surfaces of bacteria.  相似文献   

2.
SLH domains (for surface layer homology) are involved in the attachment of proteins to bacterial cell walls. The data presented here assign the conserved TRAE motif within SLH domains a key role for the binding. The charged amino acids arginine (R) or/and glutamic acid (E) were replaced via site-directed mutagenesis by different amino acids. Effects were visualized in an in vitro binding assay using native cell wall sacculi of Thermoanaerobacterium thermosulfurigenes EM1 and different variants of an SLH protein which consisted of the triplicate SLH domain of xylanase XynA of this bacterium and which was purified after expression in Escherichia coli. The results indicated (1) that the TRAE motif is critical for the binding function of SLH domains, (2) that a functional TRAE motif is necessary in all three domains, (3) that a least one (preferentially positively) charged amino acid in the TRAE motif is required for the functionality of the SLH domain, and (4) that the position of the negatively and positively charged amino acids is important. The finding that the cell wall of T. thermosulfurigenes EM1 contains pyruvate (4 μg mg−1) is in agreement with the hypothesis that pyruvylated secondary cell wall polymers function as ligand for SLH domains.Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

3.
Several proteins of Clostridium thermocellum possess a C-terminal triplicated sequence related to bacterial cell surface proteins. This sequence was named the SLH domain (for S-layer homology), and it was proposed that it might serve to anchor proteins to the cell surface (A. Lupas, H. Engelhardt, J. Peters, U. Santarius, S. Volker, and W. Baumeister, J. Bacteriol. 176:1224-1233, 1994). This hypothesis was investigated by using the SLH-containing protein ORF1p from C. thermocellum as a model. Subcellular fractionation, immunoblotting, and electron microscopy of immunocytochemically labeled cells indicated that ORF1p was located on the surface of C. thermocellum. To detect C. thermocellum components interacting with the SLH domains of ORF1p, a probe was constructed by grafting these domains on the C terminus of the MalE protein of Escherichia coli. The SLH domains conferred on the chimeric protein (MalE-ORF1p-C) the ability to bind noncovalently to the peptidoglycan of C. thermocellum. In addition, 125I-labeled MalE-ORF1p-C was shown to bind to SLH-bearing proteins transferred onto nitrocellulose, and to a 26- to 28-kDa component of the cell envelope. These results agree with the hypothesis that SLH domains contribute to the binding of exocellular proteins to the cell surface of bacteria. The gene carrying ORF1 and its product, ORF1p, are renamed olpB and OlpB (for outer layer protein B), respectively.  相似文献   

4.
Two genes fromThermoanaerobacterium thermosulfurigenes EM1 were identified which are predicted to encode a xylanase (XynA) and a polygalacturonate hydrolase (PglA). ThexynA gene has the potential to encode a 1234-amino acid product consisting of a signal peptide followed by a repeated domain, a xylanase family F domain, two cellulose-binding domains and a triplicated sequence at its C-terminus. The genepglA is predicted to encode a product of 1148 amino acids consisting of a signal sequence followed by a fibronectin type III-like domain (Fn3 domain), the catalytic domain, a Gly/Thr/Ser/Asn-rich segment and a triplicated domain. The triplicated segments at the C-termini of deduced XynA and PglA are about 95% identical to each other and to the S-layer-like domains of the previously characterized pullulanase (AmyB) from the same organism. In contrast, sequence comparisons revealed only distant amino acid sequence similarities between the fibronectin type III-like domains of PglA and AmyB fromT. thermosulfurigenes EM1.  相似文献   

5.
Surface (S)-layers, para-crystalline arrays of protein, are deposited in the envelope of most bacterial species. These surface organelles are retained in the bacterial envelope through the non-covalent association of proteins with cell wall carbohydrates. Bacillus anthracis, a Gram-positive pathogen, produces S-layers of the protein Sap, which uses three consecutive repeats of the surface-layer homology (SLH) domain to engage secondary cell wall polysaccharides (SCWP). Using x-ray crystallography, we reveal here the structure of these SLH domains, which assume the shape of a three-prong spindle. Each SLH domain contributes to a three-helical bundle at the spindle base, whereas another α-helix and its connecting loops generate the three prongs. The inter-prong grooves contain conserved cationic and anionic residues, which are necessary for SLH domains to bind the B. anthracis SCWP. Modeling experiments suggest that the SLH domains of other S-layer proteins also fold into three-prong spindles and capture bacterial envelope carbohydrates by a similar mechanism.  相似文献   

6.
There is experimental evidence to suggest that the 100-kDa S-layer protein from Thermus thermophilus HB8 binds to the peptidoglycan cell wall. This property could be related to the presence of a region (SLH) of homology with other S-layer proteins and extracellular enzymes (A. Lupas, H. Engelhardt, J. Peters, U. Santarius, S. Volker, and W. Baumeister, J. Bacteriol. 176:1224-1233, 1994). By using specific monoclonal antibodies, we show that similar regions are present in different members of the Deinococcus-Thermus phylogenetic group. To analyze the role that the SLH domain plays in vivo and in vitro in T. thermophilus, we have obtained a mutant form (slpA.X) of the S-layer gene (slpA) in which the SLH domain was deleted. The slpA.X gene was inserted into the chromosome of the thermophile by gene replacement, resulting in a mutant which expressed a major membrane protein with the size expected from the construction (90 kDa). This protein was identified as the product of slpA.X by its differential reaction with monoclonal antibodies. Mutants expressing the SlpA.X protein grow as groups of cells, surrounded by a common external envelope of trigonal symmetry that contains the SlpA.X protein as a main component, thus showing the inability of the SLH-defective protein to attach to the underlying material in vivo. In addition, averaged images of SlpA.X-rich fractions showed a regular arrangement, identical to that built up by the wild-type (SlpA) protein in the absence of peptidoglycan. Finally, we demonstrate by Western blotting (immunoblotting) the direct role of the SLH domain in the binding of the S-layer of T. thermophilus HB8 to the peptidoglycan layer.  相似文献   

7.
Binding parameters were determined for the SLH (S-layer homologous) domains from the Clostridium thermocellum outer layer protein OlpB, from the C. thermocellum S-layer protein SlpA, and from the Bacillus anthracis S-layer proteins EA1 and Sap, using cell walls from C. thermocellum and B. anthracis. Each SLH domain bound to C. thermocellum and B. anthracis cell walls with a different KD, ranging between 7.1 x 10(-7) and 1.8 x 10(-8) M. Cell wall binding sites for SLH domains displayed different binding specificities in C. thermocellum and B. anthracis. SLH-binding sites were not detected in cell walls of Bacillus subtilis. Cell walls of C. thermocellum lost their affinity for SLH domains after treatment with 48% hydrofluoric acid but not after treatment with formamide or dilute acid. A soluble component, extracted from C. thermocellum cells by sodium dodecyl sulfate treatment, bound the SLH domains from C. thermocellum but not those from B. anthracis proteins. A corresponding component was not found in B. anthracis.  相似文献   

8.
Ryzhkov PM  Ostermann K  Rödel G 《Genetica》2007,131(3):255-265
The surface (S)-layer of Sporosarcina ureae strain ATCC 13881, a periodic ordered structure with p4 square type symmetry, was recently reported to be an excellent biotemplate for the formation of highly ordered metal clusters. The S-layer is formed by self-assembly of a single subunit, the 116 kDa SslA protein. Here we report on the isolation and sequence analysis of the sslA gene. The protein sequence reveals a high degree of similarity to the sequences of other S-layer proteins that form self-assembly lattices with the p4 square type symmetry, especially to those of Bacillus sphaericus. Two conserved surface layer homology (SLH) domains in the extreme aminoterminal portion are likely to mediate attachment of the protein to secondary cell wall polymers. A central HisXXXHis motif and a cysteine residue in the carboxyl-terminal part of the protein, both extremely rare in S-layer proteins, may contribute to the high affinity for metal ions. The strong bias in the codon usage may explain that heterologous expression of SslA in E. coli is not very intense. With respect to the regulatory region we notice several features that are also present in other S-layer genes. The distance between the −35/−10 region and the ATG initiation codon is unusually long, and a 41 bp palindromic sequence is present in the immediate vicinity of the −35/−10 region.  相似文献   

9.
S-layer homology (SLH) module polypeptides were derived from Clostridium josui xylanase Xyn10A, Clostridium stercorarium xylanase Xyn10B, and Clostridium thermocellum scafoldin dockerin binding protein SdbA as rXyn10A-SLH, rXyn10B-SLH, and rSdbA-SLH, respectively. Their binding specificities were investigated using various cell wall preparations. rXyn10A-SLH and rXyn10B-SLH bound to native peptidoglycan-containing sacculi consisting of peptidoglycan and secondary cell wall polymers (SCWP) prepared from these bacteria but not to hydrofluoric acid-extracted peptidoglycan-containing sacculi (HF-EPCS) lacking SCWP, suggesting that SCWP are responsible for binding with SLH modules. In contrast, rSdbA-SLH interacted with HF-EPCS, suggesting that this polypeptide had an affinity for peptidoglycans but not for SCWP. The affinity of rSdbA-SLH for peptidoglycans was confirmed by a binding assay using a peptidoglycan fraction prepared from Escherichia coli cells. The SLH modules of SdbA must be useful for cell surface engineering in bacteria that do not contain SCWP.  相似文献   

10.
Two genes fromThermoanaerobacterium thermosulfurigenes EM1 were identified which are predicted to encode a xylanase (XynA) and a polygalacturonate hydrolase (PglA). ThexynA gene has the potential to encode a 1234-amino acid product consisting of a signal peptide followed by a repeated domain, a xylanase family F domain, two cellulose-binding domains and a triplicated sequence at its C-terminus. The genepglA is predicted to encode a product of 1148 amino acids consisting of a signal sequence followed by a fibronectin type III-like domain (Fn3 domain), the catalytic domain, a Gly/Thr/Ser/Asn-rich segment and a triplicated domain. The triplicated segments at the C-termini of deduced XynA and PglA are about 95% identical to each other and to the S-layer-like domains of the previously characterized pullulanase (AmyB) from the same organism. In contrast, sequence comparisons revealed only distant amino acid sequence similarities between the fibronectin type III-like domains of PglA and AmyB fromT. thermosulfurigenes EM1.  相似文献   

11.
The nucleotide sequence of the Clostridium josui FERM P-9684 xyn10A gene, encoding a xylanase Xyn10A, consists of 3,150 bp and encodes 1,050 amino acids with a molecular weight of 115,564. Xyn10A is a multidomain enzyme composed of an N-terminal signal peptide and six domains in the following order: two thermostabilizing domains, a family 10 xylanase domain, a family 9 carbohydrate-binding module (CBM), and two S-layer homologous (SLH) domains. Immunological analysis indicated the presence of Xyn10A in the culture supernatant of C. josui FERM P-9684 and on the cell surface. The full-length Xyn10A expressed in a recombinant Escherichia coli strain bound to ball-milled cellulose (BMC) and the cell wall fragments of C. josui, indicating that both the CBM and the SLH domains are fully functional in the recombinant enzyme. An 85-kDa xylanase species derived from Xyn10A by partial proteolysis at the C-terminal side, most likely at the internal region of the CBM, retained the ability to bind to BMC. This observation suggests that the catalytic domain or the thermostabilizing domains are responsible for binding of the enzyme to BMC. Xyn10A-II, the 100-kDa derivative of Xyn10A, was purified from the recombinant E. coli strain and characterized. The enzyme was highly active toward xylan but not toward p-nitrophenyl-β-D-xylopyranoside, p-nitrophenyl-β-D-cellobioside, or carboxymethylcellulose.  相似文献   

12.
S-layer homology (SLH) module polypeptides were derived from Clostridium thermocellum S-layer proteins Slp1 and Slp2 and cellulosome anchoring protein AncA as rSlp1-SLH, rSlp2-SLH, and rAncA-SLH respectively. Their binding specificities were investigated using C. thermocellum cell-wall preparations. rAncA-SLH associated with native peptidoglycan-containing sacculi from C. thermocellum, including both peptidoglycan and secondary cell wall polymers (SCWP), but not to hydrofluoric acid-extracted peptidoglycan-containing sacculi (HF-EPCS) lacking SCWPs, suggesting that SCWPs are responsible for binding with SLH modules of AncA. On the other hand, rSlp1-SLH and rSlp2-SLH associated with HF-EPCS, suggesting that these polypeptides had an affinity for peptidoglycan. A binding assay using a peptidoglycan fraction prepared from Escherichia coli cells definitely confirmed that rSlp1-SLH and rSlp2-SLH specifically interacted with peptidoglycan but not with SCWP.  相似文献   

13.
The response to heat stress was examined inThermoanaerobacterium thermosulfurigenes EM1. Upon a temperature shift-up from 50° to 62°C, four heat shock proteins (hsps) were synthesized at an elevated level. Two proteins were found to be immunologically related to theEscherichia coli GroEL protein and theMycobacterium tuberculosis hsp71 (DnaK similar protein), and the correspondinggroE anddnaK homologous sequences were detected in the chromosome ofT. thermosulfurigenes EM1. The heat shock response in this thermophile was transient, with a maximum synthesis of hsps between 10 and 15 min after the shock. The enhanced synthesis of DnaK and GroEL was consistent with increased mRNA levels of the genes, which reached a maximum 15 min after heat treatment.  相似文献   

14.
Engineering microbial strains combining efficient lignocellulose metabolization and high-value chemical production is a cutting-edge strategy towards cost-sustainable 2nd generation biorefining. Here, protein components of the Clostridium cellulovorans cellulosome were introduced in Lactococcus lactis IL1403, one of the most efficient lactic acid producers but unable to directly ferment cellulose. Cellulosomes are protein complexes with high cellulose depolymerization activity whose synergistic action is supported by scaffolding protein(s) (i.e., scaffoldins). Scaffoldins are involved in bringing enzymes close to each other and often anchor the cellulosome to the cell surface. In this study, three synthetic scaffoldins were engineered by using domains derived from the main scaffoldin CbpA and the Endoglucanase E (EngE) of the C. cellulovorans cellulosome. Special focus was on CbpA X2 and EngE S-layer homology (SLH) domains possibly involved in cell-surface anchoring. The recombinant scaffoldins were successfully introduced in and secreted by L. lactis. Among them, only that carrying the three EngE SLH modules was able to bind to the L. lactis surface although these domains lack the conserved TRAE motif thought to mediate binding with secondary cell wall polysaccharides. The synthetic scaffoldins engineered in this study could serve for assembly of secreted or surface-displayed designer cellulosomes in L. lactis.  相似文献   

15.
Bacillus anthracis, the causative agent of anthrax, forms an S-layer atop its peptidoglycan envelope and displays S-layer proteins and Bacillus S-layer-associated (BSL) proteins with specific functions to support cell separation of vegetative bacilli and growth in infected mammalian hosts. S-layer and BSL proteins bind via the S-layer homology (SLH) domain to the pyruvylated secondary cell wall polysaccharide (SCWP) with the repeat structure [→4)-β-ManNAc-(1→4)-β-GlcNAc-(1→6)-α-GlcNAc-(1→]n, where α-GlcNAc and β-GlcNAc are substituted with two and one galactosyl residues, respectively. B. anthracis gneY (BAS5048) and gneZ (BAS5117) encode nearly identical UDP-GlcNAc 2-epimerase enzymes that catalyze the reversible conversion of UDP-GlcNAc and UDP-ManNAc. UDP-GlcNAc 2-epimerase enzymes have been shown to be required for the attachment of the phage lysin PlyG with the bacterial envelope and for bacterial growth. Here, we asked whether gneY and gneZ are required for the synthesis of the pyruvylated SCWP and for S-layer assembly. We show that gneZ, but not gneY, is required for B. anthracis vegetative growth, rod cell shape, S-layer assembly, and synthesis of pyruvylated SCWP. Nevertheless, inducible expression of gneY alleviated all the defects associated with the gneZ mutant. In contrast to vegetative growth, neither germination of B. anthracis spores nor the formation of spores in mother cells required UDP-GlcNAc 2-epimerase activity.  相似文献   

16.
Two Bacillus stearothermophilus wild-type strains were investigated regarding a common recognition and binding mechanism between the S-layer protein and the underlying cell envelope layer. The S-layer protein from B. stearothermophilus PV72/p6 has a molecular weight of 130,000 and assembles into a hexagonally ordered lattice. The S-layer from B. stearothermophilus ATCC 12980 shows oblique lattice symmetry and is composed of subunits with a molecular weight of 122,000. Immunoblotting, peptide mapping, N-terminal sequencing of the whole S-layer protein from B. stearothermophilus ATCC 12980 and of proteolytic cleavage fragments, and comparison with the S-layer protein from B. stearothermophilus PV72/p6 revealed that the two S-layer proteins have identical N-terminal regions but no other extended structurally homologous domains. In contrast to the heterogeneity observed for the S-layer proteins, the secondary cell wall polymer isolated from peptidoglycan-containing sacculi of the different strains showed identical chemical compositions and comparable molecular weights. The S-layer proteins could bind and recrystallize into the appropriate lattice type on native peptidoglycan-containing sacculi from both organisms but not on those extracted with hydrofluoric acid, leading to peptidoglycan of the A1γ chemotype. Affinity studies showed that only proteolytic cleavage fragments possessing the complete N terminus of the mature S-layer proteins recognized native peptidoglycan-containing sacculi as binding sites or could associate with the isolated secondary cell wall polymer, while proteolytic cleavage fragments missing the N-terminal region remained unbound. From the results obtained in this study, it can be concluded that S-layer proteins from B. stearothermophilus wild-type strains possess an identical N-terminal region which is responsible for anchoring the S-layer subunits to a secondary cell wall polymer of identical chemical composition.  相似文献   

17.
18.
Many surface proteins of Gram-positive bacteria contain motifs, about 50 amino acids long, called S-layer homology (SLH) motifs. Bacillus anthracis, the causal agent of anthrax, synthesizes two S-layer proteins, each with three SLH motifs towards the amino-terminus. We used biochemical and genetic approaches to investigate the involvement of these motifs in cell surface anchoring. Proteinase K digestion produced polypeptides lacking these motifs, and stable three-motif polypeptides were produced in Escherichia coli that were able to bind the B. anthracis cell walls in vitro, demonstrating that the three SLH motifs were organized into a cell surface anchoring domain. We also determined the function of these SLH domains by constructing chimeric genes encoding the SLH domains fused to the normally secreted levansucrase of Bacillus subtilis. Cell fractionation and electron microscopy studies showed that each three-motif domain was sufficient for the efficient anchoring of levansucrase onto the cell surface. Proteins consisting of truncated SLH domains fused to levansucrase were unstable and associated poorly with the cell surface. Surface-exposed levansucrase retained its enzymatic and antigenic properties.  相似文献   

19.
Bacillus stearothermophilus strains PV 72 and ATCC 12980 carry a crystalline surface layer (S-layer) with hexagonal (p6) and oblique (p2) symmetry, respectively. Sites of insertions of new subunits into the regular lattice during cell growth have been determined by the indirect fluorescent antibody technique and the protein A/colloidal gold technique.During S-layer growth on both bacillus strains the following common features were noted: 1. shedding of intact S-layer or turnover of individual subunits was not seen; 2. new S-layer was deposited in helically-arranged bands over the cylindrical surface of the cell at a pitch angle related to the orientation of the lattice vectors of the crystalline array; 3. little or no S-layer was inserted into pre-existing S-layer at the poles, and 4. septal regions and, subsequently, newly formed cell poles were covered with new S-layer protein.  相似文献   

20.
Bacillus anthracis synthesizes two S-layer proteins, each containing three S-layer homology (SLH) motifs towards their amino-terminus. In vitro experiments suggested that the three motifs of each protein were organized as a structural domain sufficient to bind purified cell walls. Chimeric genes encoding the SLH domains fused to the levansucrase of Bacillus subtilis were constructed and integrated on the chromosome. Cell fractionation and electron microscopy studies showed that both heterologous polypeptides were targeted to the cell surface. In addition, surface-exposed levansucrase retained its enzymatic and antigenic properties. Preliminary results concerning applications of this work are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号