首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Inhibition of EcoRI DNA methylase with cofactor analogs   总被引:5,自引:0,他引:5  
Four analogs of the natural cofactor S-adenosylmethionine (AdoMet) were tested for their ability to bind and inhibit the prokaryotic enzyme, EcoRI adenine DNA methylase. The EcoRI methylase transfers the methyl group from AdoMet to the second adenine in the double-stranded DNA sequence 5'GAATTC3'. Dissociation constants (KD) of the binary methylase-analog complexes obtained in the absence of DNA with S-adenosylhomocysteine (AdoHcy), sinefungin, N-methyl-AdoMet, and N-ethylAdoMet are 225, 43, greater than 1000, and greater than 1000 microM, respectively. In the presence of a DNA substrate, all four analogs show simple competitive inhibition with respect to AdoMet. The product of the enzymic reaction, AdoHcy, is a poor inhibitor of the enzyme (KI(AdoHcy) = 9 microM; KM(AdoMet) = 0.60 microM). Two synthetic analogs, N-methyl-AdoMet and N-ethyl-AdoMet, were also shown to be poor inhibitors with KI values of 50 and greater than 1000 microM, respectively. In contrast, the naturally occurring analog sinefungin was shown to be a highly potent inhibitor (KI = 10 nM). Gel retardation assays confirm that the methylase-DNA-sinefungin complex is sequence-specific. The ternary complex is the first sequence-specific complex detected for any DNA methylase. Potential applications to structural studies of methylase-DNA interactions are discussed.  相似文献   

2.
A Razin  D Goren    J Friedman 《Nucleic acids research》1975,2(10):1967-1974
Nicotinamide was found to be a potent inhibitor of DNA methylation in vivo without interfering with protein or DNA synthesis. The inhibition of DNA methylation in a phage-infected cell resulted in a parallel decrease in the production of viable virus particles. In vitro experiments revealed that nicotinamide inhibits DNA methylase activity in a competitive fashion with respect to S-adenosylmethionine and non-competitively with respect to DNA. These results were interpreted to mean that DNA methylation is an essential step in the process of maturation of the bacteriophage phichi174.  相似文献   

3.
The Mr 38,050 monomeric EcoRI DNA methylase is part of a bacterial restriction-modification system. The methylase transfers the methyl group from S-adenosylmethionine (AdoMet) to the second adenine in the double-stranded DNA sequence 5'-GAATTC-3'. We have used the radiolabeled photoaffinity analog 8-azido-S-adenosylmethionine (8-N3-AdoMet) to identify peptides at the AdoMet binding site in the binary methylase-cofactor analog complex. The dissociation constants in the absence of DNA for the analog and AdoMet are 12.9 and 4.8 microM, respectively. The apparent kcat and Km values, obtained with the double-stranded DNA substrate 5'-CGCGAATTCGCG-3', are 5.0 s-1 and 0.710 microM (8-N3-AdoMet) and 4.3 s-1 and 0.335 microM (AdoMet). Photolabeling by 8-N3-AdoMet occurs upon irradiation with ultraviolet light and is inhibited by AdoMet. Digestion of the adducted methylase with subtilisin generated several radiolabeled peptides. Peptide sequencing from independent photolabeling experiments revealed two radiolabeled peptides containing amino acids 206-212 and 213-221. Instability of the adducted peptides precluded assignment of modified amino acids.  相似文献   

4.
Membrane proteins from human erythrocytes were methylated with purified protein methylase II (S-adenosylmethionine:protein-carboxyl O-methyltransferase, EC.2.1.1.24). The methylated proteins were analyzed by dodecyl sulfate/polyacrylamide gel electrophoresis. Monomeric and dimeric glycophorin A (NaIO4/Schiff-2 and NaIO4/Schiff-1 positive bands) and 'band 4.5' were identified as two major classes of methyl-acceptor polypeptides for protein methylase II. In rabbit erythrocyte membrane where glycophorin A is absent, 'band 4.5' was the only major methyl-acceptor protein component. Extracted and purified glycophorin A from human erythrocytes was also found to be an excellent substrate for protein methylase II with a Km of 35.7 microM. The role of erythrocyte membrane protein methylation is discussed with regard to membrane function.  相似文献   

5.
A new class of protein methylase (S-adenosylmethionine:protein-histidine N-methyltransferase) which methylates histidine residues of protein substrates using S-adenosylmethionine as the methyl donor has been partially purified from rabbit skeletal muscle, 22-fold with a yield of 56%. The enzyme activity was monitored using denatured myofibrils from young rabbit skeletal muscle as the methyl acceptor protein substrate. The enzyme was localised in the myofibrillar fraction and myofibrils isolated in pure form represented the enzyme-substrate complex. The enzyme was solubilised in 0.275 M KCl. The methylase showed no requirement for any metal ion and has a pH optimum of 8.0. It was shown to require a reducing agent like mercaptoethanol for its activity. It was also shown that cardiac and skeletal muscle forms of actins obtained from different species serve as the efficient methyl acceptor protein substrates. Since the enzyme was found to methylate specifically the histidine residues of actin we propose to designate this new methylase as protein methylase IV, to distinguish it from the already known protein methylases I, II and III.  相似文献   

6.
Sequence-specific BamHI methylase. Purification and characterization   总被引:5,自引:0,他引:5  
BamHI methylase has been purified to apparent homogeneity. The isolated form of the enzyme is a single polypeptide with a molecular weight of 56,000 as determined by sodium dodecyl sulfate-polyacrylamide electrophoresis. Unlike BamHI endonuclease, which is isolated as a dimer and higher aggregates, the methylase has no apparent higher form. The methylase requires S-adenosyl-L-methionine as the methyl-group donor and is inhibited by Mg2+. The enzyme is also inhibited by 2,3-butanedione and reagents specific for sulfhydryl groups, such as N-ethylmaleimide, which suggests a role for arginine and cysteine residues, respectively. DNA efficiently protects the enzyme against the butanedione modification while S-adenosylmethionine has no effect. In contrast, S-adenosylmethionine protects against cysteine modification while DNA produces only small amounts of protection. Studies on the mechanism of methylation indicate that both strands of the recognition sequence are modified in a single binding event. The sequence specificity of the methylase is relaxed upon the addition of glycerol in the reaction mixture. In the presence of 30% glycerol the enzyme methylates sequences that are also recognized by BamHI endonuclease when acting under conditions of relaxed specificity.  相似文献   

7.
The enzyme dam methylase which recognizes and methylates the adenine in the palindromic sequence GATC in DNA was isolated and the secondary structure was determined by CD spectroscopy and various predicting methods from the amino acid sequence. The interaction of dam methylase with S-adenosylmethionine was studied by CD spectroscopy indicating a decrease of the percentage of alpha-helix as the amount of S-adenosylmethionine bound to the enzyme was increased.  相似文献   

8.
The effect of spermidine and spermine on the translation of the mRNAs for ornithine decarboxylase and S-adenosylmethionine decarboxylase was studied using a reticulocyte lysate system and specific antisera to precipitate these proteins. It was found that the synthesis of these key enzymes in the biosynthesis of polyamines was much more strongly inhibited by the addition of polyamines than was either total protein synthesis or the synthesis of albumin. Translation of the mRNA for S-adenosylmethionine decarboxylase was maximal in a lysate which had been substantially freed from polyamines by gel filtration. Addition of 80 microM spermine had no significant effect on total protein synthesis and stimulated albumin synthesis but reduced the production of S-adenosylmethionine decarboxylase by 76%. Similarly, addition of 0.8 mM spermidine reduced the synthesis of S-adenosylmethionine decarboxylase by 82% while albumin and total protein synthesis were similar to that found in the gel-filtered lysate. Translation of ornithine decarboxylase mRNA was greater in the gel-filtered lysate than in the control lysate but synthesis of ornithine decarboxylase was stimulated slightly by low concentrations of polyamines and was maximal at 0.2 mM spermidine or 20 microM spermine. Higher concentrations were strongly inhibitory with a 70% reduction occurring at 0.8 mM spermidine or 150 microM spermine. Further experiments in which both polyamines were added together confirmed that the synthesis of ornithine and S-adenosylmethionine decarboxylases were much more sensitive to inhibition by polyamines than protein synthesis as a whole. These results indicate that an important part of the regulation of polyamine biosynthesis by polyamines is due to a direct inhibitory effect of the polyamines on the translation of mRNA for these biosynthetic enzymes.  相似文献   

9.
The phycobiliproteins contain a conserved unique modified residue, gamma-N-methylasparagine at beta-72. This study examines the consequences of this methylation for the structure and function of phycocyanin and of phycobilisomes. An assay for the protein asparagine methylase activity was developed using [methyl-3H]S-adenosylmethionine and apophycocyanin purified from Escherichia coli containing the genes for the alpha and beta subunits of phycocyanin from Synechococcus sp. PCC 7002 as substrates. This assay permitted the partial purification, from Synechococcus sp. PCC 6301, of the activity that methylates phycocyanin and allophycocyanin completely at residue beta-72. Using the methylase assay, two independent nitrosoguanidine-induced mutants of Synechococcus sp. PCC 7942 were isolated that do not exhibit detectable phycobiliprotein methylase activity. These mutants, designated pcm 1 and pcm 2, produce phycocyanin and allophycocyanin unmethylated at beta-72. The phycobiliproteins in these mutants are assembled into phycobilisomes and can be methylated in vitro by the partially purified methylase from Synechococcus sp. PCC 6301. The mutants produce phycobiliproteins in amounts comparable to those of wild-type and the mutant and wild-type phycocyanins are equivalent with respect to thermal stability profiles. Monomeric phycocyanins purified from these strains show small spectral shifts that correlate with the level of methylation. Phycobilisomes from the mutant strains exhibit defects in energy transfer, both in vivo and in vitro, that are also correlated with deficiencies in methylation. Unmethylated or undermethylated phycobilisomes show greater emission from phycocyanin and allophycocyanin and lower fluorescence emission quantum yields than do fully methylated particles. The results support the conclusion that the site-specific methylation of phycobiliproteins contributes significantly to the efficiency of directional energy transfer in the phycobilisome.  相似文献   

10.
On the mechanism of DNA-adenine methylase   总被引:10,自引:0,他引:10  
Experiments were performed to determine whether EcoRI methylase catalyzes the transfer of the methyl group of S-adenosylmethionine (a) directly to the N6 of adenine in DNA or (b) initially to N1 to give N1-methyladenine followed by isomerization of the N1-methylamino and 6-NH2 to give N6-methyladenine (Dimroth rearrangement). A facile synthesis of highly enriched [6-15N]deoxyadenosine and a dodecamer substrate of EcoRI methylase with [6-15N]adenine in the methylation site are reported. In the product of EcoRI enzymatic methylation, all of the isotope remains at the N6 position of the N6-methyladenine product. It is concluded that, contrary to existing chemical precedent, the methylation occurs by direct transfer from S-adenosylmethionine to the N6 of adenine in DNA.  相似文献   

11.
The specific restriction endonuclease of the Escherichia coli plasmid, P15, has been purified to apparent homogeneity by a procedure that includes DNA-cellulose chromatography as well as a new endonuclease assay. Sedimentation on glycerol gradients showed two peaks of activity with values of 11.3 S and 15.7 S. The highly purified enzyme requires ATP and Mg2+ for activity and is stimulated by S-adenosylmethionine. A methylase activity is observed in the course of the endonucleolytic reaction which protects some of the DNA sites from cleavage.  相似文献   

12.
Protein methylases I, II and III were detected in extracts of Trypanosoma brucei brucei, and characterized according to the specific amino substituent methylated. Only protein methylase II activity was elevated by difluoromethylornithine treatment of T. b. brucei, and hence this enzyme was characterized further. Protein methylase II transferred methyl groups from S-adenosyl-L-methionine (S-AdoMet) to the carboxyl residues of several protein substrates, exhibiting highest activity with histone VIII-S (arginine-rich subgroup f3). The crude enzyme had an apparent Km for histone VIII-S of 28 mg ml-1 (11.4 mM-aspartyl and 18.4 mM-glutamyl residues methylated), and an apparent Km for S-AdoMet of 8.4 microM. T. b. brucei protein methylase II was sensitive to inhibition by S-adenosyl-L-homocysteine and its analogue sinefungin with apparent Ki values of 12.9 and 1.6 microM, respectively. Using a partially purified preparation, analysis of kinetic data in the presence and absence of sinefungin indicated that this analogue acts as a competitive inhibitor of the S-AdoMet binding site, and as a non-competitive inhibitor of the (protein) histone VIII-S binding site. The possible role of the enzyme in morphological control and its potential as a chemotherapeutic target are discussed.  相似文献   

13.
The restriction endonuclease from Escherichia coli K is a multifunctional protein which efficiently methylates heteroduplex DNA (one strand modified and one strand unmodified) in the presence of S-adenosylmethionine (AdoMet), ATP, and Mg2+. The methylase activity is catalytic, and seems to modify different heteroduplex host specificity sites for E. coli K with equal efficiency. In the methylase reaction, both AdoMet and ATP (or its imido analog) act as allosteric effectors, but AdoMet also serves as a methyl donor. Preincubation of the enzyme with AdoMet eliminates the lag period observed in DNA methylation. The rate of enzyme activation was determined using the AdoMet analog Sinefungin. The result are consistent with the hypothesis that the early steps of AdoMet binding and enzyme activation are common to both restriction and modification reactions.  相似文献   

14.
The thioredoxin system, comprising NADPH, thioredoxin reductase and thioredoxin reduces protein disulfides via redox-active dithiols. We have discovered that sodium selenite is a substrate for the thioredoxin system; 10 microM selenite plus 0.05 microM calf thymus thioredoxin reductase at pH 7.5 caused a non-stoichiometric oxidation of NADPH (100 microM after 30 min). In contrast, thioredoxin reductase from Escherichia coli showed no direct reaction with selenite, but addition of 3 microM E. coli thioredoxin also resulted in non-stoichiometric oxidation of NADPH, consistent with oxidation of the two active-site thiol groups in thioredoxin to a disulfide. Kinetically, the reaction was complex with a lag phase at low selenite concentrations. Under anaerobic conditions the reaction stopped after 1 mol selenite had oxidized 3 mol NADPH; the admission of air then resulted in continued consumption of NADPH consistent with autooxidation of selenium intermediate(s). Ferricytochrome c was effectively reduced by calf thymus thioredoxin reductase and selenite in the presence of oxygen. Selenite caused a strong dose-dependent inhibition of the formation of thiol groups from insulin disulfides with either the E. coli or calf-thymus thioredoxin system. Thus, under aerobic conditions selenite catalyzed, NADPH-dependent redox cycling with oxygen, a large oxygen-dependent consumption of NADPH and oxidation of reduced thioredoxin inhibiting its disulfide-reductase activity.  相似文献   

15.
A pathway for the synthesis of dimethyl selenide from sodium selenite was studied in rat liver and kidney fractions under anaerobic conditions in the presence of GSH, a NADPH-generating system, and S-adenosylmethionine. Chromatography of liver or kidney soluble fraction on Sephadex G-75 yielded a Fraction C (30,000 molecular weight) which synthesized dimethyl selenide, but at a low rate. Addition of proteins eluting at the void volume (Fraction A) to Fraction C restored full activity. Fractionation of Fraction A on DEAE-cellulose revealed that its ability to stimulate Fraction C was associated with two fractions, one containing glutathione reductase and the other a NADPH-dependent disulfide reductase. It was concluded that Fraction C contains a methyltransferase acting on small amounts of hydrogen selenide produced non-enzymically by the reaction of selenite with GSH, and that stimulation by Fraction A results partly from the NADPH-linked formation of hydrogen selenide catalyzed by glutathione reductase present in Fraction A. Washed liver microsomal fraction incubated with selenite plus 20 mM GSH also synthesized dimethyl selenide, but addition of soluble fraction stimulated activity. A synergistic effect was obtained when liver soluble fraction was added to microsomal fraction in the presence of a physiological level of GSH (2 mM), whereas at 20 mM GSH the effect was merely additive. The microsomal component of the liver system was labile, had maximal activity around pH 7.5, and was exceedingly sensitive to NaAsO2 (93% inhibition by 10(-6) M arsenite in the presence of a 20,000-fold excess of GSH). The microsomal activity apparently results from a Se-methyltransferase, possibly a dithiol protein, that methylates hydrogen selenide produced enzymically by the soluble fraction or non-enzymically when a sufficiently high concentration of GSH is used.  相似文献   

16.
DNA methylase methylating adenine with formation of 6-methylaminopurine has been identified in Shigella sonnei 1188 cells which are the natural host of DDVI phage. At the same time, in DNA of DDVI phage replicating both in Sh. sonnei 1188 cells and in Escherichia coli B cells 7-methylguanine was found as the only minor base in amounts of 0.25 and 0.27 mol per 100 mol of nucleotides, respectively. The extract of the infected cells was found to contain both kinds of DNA methylases: virus-specific guanine methylase and cellular adenine methylase. The lack of 6-methylaminopurine in DNA of this phage is explained by reversible inhibition of the cell enzyme in the infected cells. The amount of methyl groups transferred by DDVI-specific methylase on DNA does not depend on the species of the infected cells and is similar in the case of unmodified SD phage DNA and DNA of T2 phage methylated by E. coli B enzyme. Guanine methylase has been shown to be a DDVI-induced modification enzyme and to protect against restriction of B-type. It methylates double-stranded DNAs only and is inhibited by S-adenosylhomocysteine.  相似文献   

17.
The final urinary excretion product of selenium detoxification is trimethylselenonium ion. An assay has been developed for the enzyme, S-adenosylmethionine:thioether S-methyltransferase, responsible for this final methylation reaction. This assay employed high pressure liquid chromatography separation and quantitation of the trimethylselenonium ion produced by thioether methyltransferase acting on S-adenosylmethionine and dimethyl selenide. The enzyme was shown to reside primarily in the cytosol of mouse lung (30 pmol/mg protein/min) and liver (7 pmol/mg protein/min). Purification from mouse lung to a preparation that exhibited a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis was achieved by DEAE, gel filtration, and chromatofocusing chromatographies. Thioether methyltransferase is monomeric with a molecular weight of 28,000 and has a pI of 5.3. The pH optimum was 6.3, and Km values for dimethyl selenide and S-adenosylmethionine were 0.4 and 1.0 microM, respectively. The enzyme was inhibited 50% by 25 microM sinefungin, an analog of S-adenosylmethionine, or 40 microM S-adenosylhomocysteine, the reaction product. Pure thioether methyltransferase methylated selenium in dimethyl selenide, tellurium in dimethyl telluride, and S in dimethyl sulfide and many other thioethers. These data suggest a general role for this novel enzyme in the synthesis of onium compounds with increased aqueous solubility helpful in their excretion.  相似文献   

18.
S-Adenosylmethionine synthetase has been purified to apparent homogeneity from human chronic lymphocytic leukemia cells. Equilibrium sedimentation studies and denaturing polyacrylamide gel electrophoresis indicate that the native enzyme has a molecular weight of 185,000 and a subunit composition of either alpha alpha' beta 2, alpha 2 beta 2, or alpha' 2 beta 2, where alpha, alpha', and beta are polypeptide chains of molecular weight 53,000, 51,000, and 38,000. The alpha and alpha' subunits appear to be the same polypeptide and presumably differ by some kind of post-translational modification. Stoichiometric studies show that the expected products S-adenosylmethionine, pyrophosphate, and orthophosphate are generated in equimolar amounts. The enzyme exhibits linear kinetics with respect to substrate dependency and product inhibition, except for orthophosphate which shows parabolic noncompetitive inhibition with respect to ATP. Initial velocity studies of substrate dependence and product inhibition indicate a steady state mechanism that is ordered Bi Ter with ATP adding before L-methionine and S-adenosylmethionine as the first product released. Pyrophosphate and orthophosphate, however, appear to be released by a random mechanism. Free Mg2+ is an essential activator with a half-maximal effect at 1.0 mM. The Km and Kia for ATP are 31 microM and 84 microM, and the Km for L-methionine is 3.3 microM. The enzyme also has tripolyphosphatase activity which is stimulated by S-adenosylmethionine.  相似文献   

19.
Conditions were determined for the methylation of intact yeast chromosomes by EcoRI, HhaI, and MspI bacterial methylases using an endonuclease protection assay while the chromosomes were embedded in agarose plugs suitable for transverse-field electrophoresis. Parameters were also established for the methylation of human chromosomes by EcoRI methylase. Methylation of embedded chromosomes by EcoRI methylase required prewashes with EDTA. EcoRI, HhaI, and MspI methylases showed optimal activity when nonacetylated bovine serum albumin, high levels of S-adenosylmethionine, and high levels of methylase were used. The use of bacterial methylases for methylation of embedded chromosomes will allow investigators to normalize variations in cellular DNA methylation prior to restriction and create new and rare endonuclease recognition sites which will facilitate the detection of chromosomal alterations and deletions.  相似文献   

20.
The origin and function of the large amount of 5-methylcytosine in plant DNA is not well understood. As a tool for in vitro studies of methylcytosine formation in plants we have isolated and characterized the DNA methyltransferase present in germinating wheat embryo. An enzyme fraction enriched 300-fold over the tissue homogenate was obtained by salt extraction of nuclei, chromatography on DEAE-cellulose, Sephadex G-75, blue Sepharose and on DNA immobilized on cellulose. It catalyzes the methylation of cytosine residues in double-stranded DNAs isolated from wheat, maize, calf thymus or bacteria using S-adenosylmethionine as methyl donor. The efficient methylation of both an unmethylated plasmid DNA and its hemimethylated derivative indicate that the wheat DNA methylase can function de novo and in maintenance methylation. A relative molecular mass of 50,000-55,000 was estimated by gel permeation chromatography and sucrose density gradient centrifugation. Polyacrylamide gel electrophoresis showed the presence of a protein of Mr = 50,000 and one other component (Mr = 35,000). The preference for endogenous, double-stranded DNA as substrate and the lower molecular mass distinguish wheat DNA methyltransferase from the DNA methylases obtained from mammalian sources. The properties of the wheat enzyme resemble, however, those of the DNA methylase isolated from the alga Chlamydomonas reinhardii, suggesting that plant cells possess their own type of DNA methyltransferase for the biosynthesis of their high methylcytosine content in DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号