首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The E protein is a multifunctional membrane protein of SARS-CoV   总被引:1,自引:0,他引:1  
The E (envelope) protein is the smallest structural protein in all coronaviruses and is the only viral structural protein in which no variation has been detected. We conducted genome sequencing and phylogenetic analyses of SARS-CoV. Based on genome sequencing, we predicted the E protein is a transmembrane (TM) protein characterized by a TM region with strong hydrophobicity and α-helix conformation. We identified a segment (NH2-_L-Cys-A-Y-Cys-Cys-N_-COOH) in the carboxyl-terminal region of the E protein that appears to form three disulfide bonds with another segment of corresponding cysteines in the carboxyl-terminus of the S (spike) protein. These bonds point to a possible structural association between the E and S proteins. Our phylogenetic analyses of the E protein sequences in all published coronaviruses place SARS-CoV in an independent group in Coronaviridae and suggest a non-human animal origin.  相似文献   

2.
利用噬菌体展示的线性12肽库从马抗SARS-CoV IgG筛选SARS-CoV的抗原表位.经生物淘洗富集的噬菌体克隆被测序.获得两个共有序列DXXDP和TXTLL.它们分别与SARS-CoV N蛋白341-345和392-396位氨基酸序列高度同源.含共有序列的克隆在ELISA竞争抑制试验中与SARS-CoV N蛋白竞争结合马抗SARS-CoVIgG.将两个共有序列肽通过基因重组技术成功展示到大肠杆菌鞭毛,获得重组菌F1和F2.用重组菌F1和F2免疫接种试验Balb/c小鼠产生的血清均能与SARS-CoVN蛋白特异结合.说明DXXDP和TXTLL是SARS-CoVN蛋白的两个连续抗原表位.  相似文献   

3.
为确定SARS-CoV N蛋白的特异抗原表位,对3种人冠状病毒SARS-CoV、HCoV-OC43和HCoV-229E N蛋白之间的交叉免疫反应进行了系统研究。构建了分别表达SARS-CoV、HCoV-OC43和HCoV-229E N蛋白的重组痘苗病毒,并制备了相应的小鼠免疫血清。用间接免疫荧光方法,检测了3种N蛋白的表达及其与3种冠状病毒免疫动物血清和SARS病人恢复期血清之间的反应。与此同时,用Western blot方法分析了原核表达的39个不同区段的SARS-CoV N蛋白与3种冠状病毒动物免疫血清和SARS病人恢复期血清之间的交叉反应性。免疫荧光检测结果表明,SARS-CoV、HCoV-OC43和HCoV-229E3种病毒的N蛋白在重组痘苗病毒感染的HeLa细胞中均可以特异表达;3种N蛋白之间存在明显交叉免疫反应。Western blot结果显示,SARS-CoV N蛋白的表位主要位于30~60aa、170~184aa、301~320aa和360~422aa;与HCoV-OC43的交叉反应表位主要位于30~60aa、90~120aa、204~214aa和320~360aa;与HCoV-229E的交叉反应表位主要位于30~60aa、150~160aa和301~360aa。含SARS-CoV N蛋白特异表位的重组肽N155b(60~214aa)和N185(30~214aa)只与SARS病人恢复期血清和灭活SARS-CoV免疫小鼠的血清反应,而不与灭活HCoV-OC43和HCoV-229E免疫的山羊血清产生交叉反应。上述结果为使用SARS-CoV N蛋白抗原进行特异诊断试剂的研究,提供了重要的实验依据。  相似文献   

4.
利用噬菌体展示的线性12肽库从马抗SARS-CoVIgG筛选SARS-CoV的抗原表位。经生物淘洗富集的噬菌体克隆被测序。获得两个共有序列:DXXDP和TXTLL。它们分别与SARS-CoVN蛋白341-345和392-396位氨基酸序列高度同源。含共有序列的克隆在ELISA竞争抑制试验中与SARS-CoVN蛋白竞争结合马抗SARS-CoVIgG。将两个共有序列肽通过基因重组技术成功展示到大肠杆菌鞭毛,获得重组菌F1和F2。用重组菌F1和F2免疫接种试验Balb/c小鼠产生的血清均能与SARS-CoVN蛋白特异结合。说明DXXDP和TXTLL是SARS-CoVN蛋白的两个连续抗原表位。  相似文献   

5.
The corona-like spikes or peplomers on the surface of the virion under electronic microscope are the most striking features of coronaviruses. The S (spike) protein is the largest structural protein, with 1,255 amino acids, in the viral genome. Its structure can be divided into three regions: a long N-terminal region in the exterior, a characteristic transmembrane (TM) region, and a short C-terminus in the interior of a virion. We detected fifteen substitutions of nucleotides by comparisons with the seventeen published SARS-CoV genome sequences, eight (53.3%) of which are non-synonymous mutations leading to amino acid alternations with predicted physiochemical changes. The possible antigenic determinants of the S protein are predicted, and the result is confirmed by ELISA (enzyme-linked immunosorbent assay) with synthesized peptides. Another profound finding is that three disulfide bonds are defined at the C-terminus with the N-terminus of the E (envelope) protein, based on the typical sequence and posit  相似文献   

6.
In order to develop clinical diagnostic tools for rapid detection of SARS-CoV (severe acute respiratory syndrome-associated coronavirus) and to identify candidate proteins for vaccine development, the C-terminal portion of the nucleocapsid (NC) gene was amplified using RT-PCR from the SARS-CoV genome, cloned into a yeast expression vector (pEGH), and expressed as a glutathione S-transferase (GST) and Hisx6 double-tagged fusion protein under the control of an inducible promoter. Western analysis on the purified protein confirmed the expression and purification of the NC fusion proteins from yeast. To determine its antigenicity, the fusion protein was challenged with serum samples from SARS patients and normal controls. The NC fusion protein demonstrated high antigenicity with high specificity, and therefore, it should have great potential in designing clinical diagnostic tools and provide useful information for vaccine development.  相似文献   

7.
SARS-CoV entry is mediated by spike glycoprotein. During the viral and host cellular membrane fusion, HR1 and HR2 form 6-helix bundle, positioning the fusion peptide closely to the C-terminal region of ectodomain to drive apposition and subsequent membrane fusion. Connecting to the HR2 region is a Trp-rich region which is absolutely conserved in members of coronaviruses. To investigate the importance of Trp-rich region in SARS-CoV entry, we produced different mutated S proteins using Alanine scan strategy. SARS-CoV pseudotyped with mutated S protein was used to measure viral infectivity. To restore the aromaticity of Ala-mutants, we performed rescue experiments using phenylalanine substitutions. Our results show that individually substituted Ala-mutants substantially decrease infectivity by >90%, global Ala-mutants totally abrogated infectivity. In contrast, Phe-substituted mutants are able to restore 10-25% infectivity comparing to the wild-type. The results suggest that the Trp-rich region of S protein is essential for SARS-CoV infectivity.  相似文献   

8.
We studied structural and immunological properties of the SARS-CoV M (membrane) protein, based on comparative analyses of sequence features, phylogenetic investigation, and experimental results. The M protein is predicted to contain a triple-spanning transmembrane (TM) region, a single N-glycosylation site near its N-terminus that is in the exterior of the virion, and a long C-terminal region in the interior. The M protein harbors a higher substitution rate (0.6% correlated to its size) among viral open reading frames (ORFs) from published data. The four substitutions detected in the M protein, which cause non-synonymous changes, can be classified into three types. One of them results in changes of pI (isoelectric point) and charge, affecting antigenicity. The second changes hydrophobicity of the TM region, and the third one relates to hydrophilicity of the interior structure. Phylogenetic tree building based on the variations of the M protein appears to support the non-human origin of SARS-CoV. To inve  相似文献   

9.
针对SARS冠状病毒S蛋白的RNAi设计   总被引:3,自引:0,他引:3  
为研究SARS冠状病毒的RNA干涉,以S蛋白为目标选取16个RNA干涉的靶序列,并设计用于体内转录形成以U6为启动子的siRNA发夹结构的DNA,拟将设计的DNA瞬时转染靶细胞,用定量RT-PCR法确定目标RNA被干涉的程度,用Western blot在蛋白质水平上进行监测。针对SARS冠状病毒的RNAi设计为进一步研究奠定了理论基础,其工作的开展将在RNAi治疗、SARS冠状病毒基因功能研究、新药开发等方面发挥重要作用。  相似文献   

10.
SARS-CoV is a newly discovery pathogen causing severe acute respiratory problems. It has been established that the S protein in this pathogen plays an important rule in the adsorption and penetration of SARS-CoV into the host cell by interaction with the ACE2 receptor. To determinant which functional motif of the S protein was involved in the interaction with ACE2, seven truncated S proteins deleted from the N or C terminal were obtained by an E.coli expression system and purified by column chromatography to homogeneity. Each truncated S protein was fixed on to the well of an ELISA plate and an interaction was initiated with the ACE2 protein. The adsorption were quantified by ELISA, and the results indicated that amino acids from 388 to 496 of the S protein was responsible for the interaction with the ACE2 receptor, and the interaction could be completely disrupted by an antibody specific to these amino acids. Deletions adjacent to this domain did not appear to have a significant impact on the interaction with ACE2, suggesting that the S protein of SARS-CoV could be developed as a vaccine to prevent the spread of SARS-CoV.  相似文献   

11.
寻找与SARS-CoV核蛋白相互作用的宿主细胞蛋白,从而探索SARS-CoV的致病机理。可溶性表达SARS-CoV核蛋白,利用His标签和离子交换层析对表达的蛋白进行了纯化,获得较纯的可溶性核蛋白。再将SPR/BIA技术与MALDI-TOF MS技术结合起来,使用SPR生物传感芯片作为亲和吸附的表面,分别捕获2BS细胞和A549细胞裂解液中与SARS-CoV核蛋白相互作用的细胞蛋白,收集足够量的相互作用蛋白,再利用MALDI-TOF-MS分析获得蛋白的性质。结果鉴定出与SARS-CoV核蛋白相互作用的蛋白:26S蛋白酶调节亚单位S10B(蛋白酶体亚单位p42)(蛋白酶体26S亚单位ATPase 6)(P62333),属于泛素/蛋白酶体系统;目前国内外尚未见类似报道。此研究初步发现了一种与SARS-CoV核蛋白在细胞外相互作用的蛋白,但这种相互作用在SARS-CoV感染及SARS的发生发展中发挥的作用还有待于深入研究和探索。  相似文献   

12.
单克隆抗体夹心ELISA检测SARS病毒抗原的研究   总被引:1,自引:0,他引:1  
目的:建立单克隆抗体(McAb)夹心ELISA法,用于检测SARS病毒(SARS-CoV)抗原。方法:用间接夹心ELISA法筛选捕捉和标记用单克隆抗体的组合,采用过碘酸钠法标记辣根过氧化物酶(HRP),优化后用于检测SARS-CoV。结果:从12株抗SARS-CoV鼠单克隆抗体中筛选出2A3/1C5组合用于捕捉SARS-CoV,1A5/1B4组合标记HRP作为指示抗体。优化后2A3/1C5的最适工作浓度为1∶4000,HRP-1A5/1B4的最适工作浓度为1∶2000。本方法检测SARS-CoV的敏感度为105pfu/mL。结论:单克隆抗体夹心ELISA法可特异性检测SARS-CoV抗原。  相似文献   

13.
核衣壳蛋白(N蛋白)是SARS冠状病毒(SARS-CoV)的结构蛋白,与病毒RNA结合形成核衣壳,是主要的抗原分子。最近的亚定位研究表明,它主要定位到细胞质,核仁内也有较少的分布。SARS-CoVN蛋白参与SARS-CoVRNA合成的调控以及核衣壳的形成,并能结合人亲环素(hCypA)解离病毒核心,激活AP-1信号转导途径,类泛素蛋白化干扰宿主细胞分裂,在缺乏生长因子的情况下诱导细胞凋亡。  相似文献   

14.
15.
SARS-CoV M gene fragment was cloned and expressed as a recombinant protein fused with a V5 tag at the C-terminus in Vero E6 cells. In addition to un-glycosylated and glycosylated proteins, one product with smaller size initiated in-frame from the third Met residues probably through ribosomal re-initiation was also detected. Translation initiated in-frame from the third Met is unusual since the sequence around the first Met of SARS-CoV M protein contains the optimal consensus Kozak sequence. The function of this smaller translated product awaits further investigation. Similar to other N-glycosylated proteins, glycosylation of SARS-CoV M protein was occurred co-translationally in the presence of microsomes. The SARS-CoV M protein is predicted as a triple-spanning membrane protein lack of a conventional signal peptide. The second and third trans-membrane regions (a.a. 46–68 and 78–100) are predicted to be the primary type helices, which will be able to penetrate into membrane by themselves, while the first trans-membrane region (a.a. 14–36) is predicted to be the secondary type helix, which is considered to be stabilized by the interaction with other trans-membrane segments. As expected, the second and third trans-membrane regions were able to insert a cytoplasmic protein into the endoplasmic reticulum membrane more efficiently than the first one. These results should be important for the study of SARS-CoV morphogenesis. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
为了解重症急性呼吸综合征冠状病毒(SARS—CoV)表面S蛋白的受体结合功能域及其在宿主细胞上的作用受体,应用PCR技术从SARS—CoV cDNA中克隆到S蛋白的全长基因,并构建了S蛋白与疱疹性口腔炎病毒胞膜蛋白(VSV—G)融合表达载体pVSV—G‘-SG,进而为制备含有SARS—CoVS蛋白膜外区的逆转录病毒假毒粒奠定了实验基础。  相似文献   

17.
为了表达SARS-CoV的S蛋白的受体结合区并对其免疫原性进行分析,用PCR方法扩增S蛋白的受体结合区基因片段,克隆至原核表达质粒pET-F32a+并在大肠杆菌中表达,应用Western—blot鉴定表达的目的蛋白,而后以该蛋白作为诊断抗原包被酶联卡反来检测20份SARS病人血清和28份健康人血清,结果原核表达的S蛋白能够和所用的SARS病人血清反应。这提示表达的S重组蛋白具有良好的抗原性。将变性纯化的重组蛋白和复性蛋白分别皮下免疫小鼠,第三次免疫一周后收集抗血清,用ELISA测定抗体和同时测定中和抗体活性。用变性的抗原免疫的小鼠血清均无中和活性;而用复性的蛋白免疫的小鼠产生了中和抗体。实验表明,S蛋白受体结合区无线性中和表位,中和抗体的产生是由构象表位诱导的。提示该蛋白有可能应用于亚单位疫苗的研究。  相似文献   

18.
Summary The spike (S) glycoprotein is thought to play a complex and central role in the biology and pathogenesis of SARS coronavirus infection. In this study, a recombinant protein (rS268, corresponding to residues 268–1255 of SARS-CoV S protein) was expressed in Escherichia coli and was purified to near homogeneity. After immunization with rS268, S protein-specific BALB/c antisera and mAbs were induced and confirmed using ELISA, Western blot and IFA. Several BALB/c mAbs were found to be effectively to neutralize the infection of Vero E6 cells by SARS-CoV in a dose-dependent manner. Systematic epitope mapping showed that all these neutralizing mAbs recognized a 15-residues peptide (CB-119) corresponding to residues 1143–1157 (SPDVDLGDISGINAS) that was located to the second heptad repeat (HR2) region of the SARS-CoV spike protein. The peptide CB-119 could specifically inhibit the interaction of neutralizing mAbs and spike protein in a dose-dependent manner. Further, neutralizing mAbs, but not control mAbs, could specifically interact with CB-119 in a dose-dependent manner. Results implicated that the second heptad repeat region of spike protein could be a good target for vaccine development against SARS-CoV.  相似文献   

19.
We have investigated a phosphatase-sensitive sequential epitope of the nucleoprotein (N), one of the phosphoproteins of rabies virus, which is recognized by the monoclonal antibody (MAb) #5-2-26. The epitope was shared in common by all of the rabies virus strains we tested, including the HEP, ERA, CVS and Japanese strains (Nishigahara and Komatsukawa). Thin layer chromatography of the acid hydrolyzates of 32P-labeled N protein showed that the protein contained phosphoserine and phospho-threonine at a molar ratio of about 4 to 1, while no phosphotyrosine was detected. Immunoprecipitation studies with several deletion mutants of the N protein showed that the epitope is located in a region spanning from amino acid 344 to 415. If the phosphatase-sensitive epitope is located at or near the phosphoamino acid, the location of the latter could be narrowed further to a region from amino acid 354 to 389 by comparing the amino-acid sequences among the viral strains. To examine this assumption, point mutation was introduced by amino-acid substitution with alanine at either of five potential phosphorylation sites (i.e., positions 354, 375, 377, 386 and 389) in the 354–389 region. Among those, only one substitution, at position 389, greatly affected the antigenicity. Substitution of serine-389 by threonine also reduced the antigenicity. These results strongly suggest that serine-389 is a phosphorylation site and essential for constructing or stabilizing the antigenic structure for MAb 5-2-26.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号