首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
A large family (MRX48) with a nonspecific X-linked mental retardation condition is described. An X-linked semidominant inheritance is suggested by the segregation in three generations of a moderate to severe mental retardation in seven males and by a milder intellectual impairment in two females, without any specific clinical, radiological, or biological feature. Two-point linkage analysis demonstrated significant linkage between the disorder and several markers in Xq28 (maximum LOD score [Zmax] = 2.71 at recombination fraction [theta] = 0); multipoint linkage analyses confirmed the significant linkage with a Zmax of 3.3 at theta = 0, at DXS1684. A recombination event observed with the flanking marker DXS8011 delineates a locus between this marker and the telomere. The approximate length of this locus is 8-9 cM, corresponding to 5.5-6 Mb. In an attempt to explain the variable intellectual impairment in females, we examined X-chromosome inactivation in all females of the family. Inactivation patterns in lymphocytes were random or moderately skewed, and no correlation between the phenotypic status and a specific inactivation pattern was observed. The interval of assignment noted in this family overlaps with five MRX loci previously reported in Xq28.  相似文献   

2.
X-linked mental retardation (XLMR) is a common cause of moderate to severe intellectual disability in males. XLMR is very heterogeneous, and about two-thirds of patients have clinically indistinguishable non-syndromic (NS-XLMR) forms, which has greatly hampered their molecular elucidation. A few years ago, international consortia overcame this impasse by collecting DNA and cell lines from large cohorts of XLMR families, thereby paving the way for the systematic study of the molecular causes of XLMR. Mutations in known genes might already account for 50% of the families with NS-XLMR, and various genes have been pinpointed that seem to be of particular diagnostic importance. Eventually, even therapy of XLMR might become possible, as suggested by the unexpected plasticity of the neuronal wiring in the brain, and the recent successful drug treatment of a fly model for fragile X syndrome.  相似文献   

3.
4.
We have identified truncating mutations in the human DLG3 (neuroendocrine dlg) gene in 4 of 329 families with moderate to severe X-linked mental retardation. DLG3 encodes synapse-associated protein 102 (SAP102), a member of the membrane-associated guanylate kinase protein family. Neuronal SAP102 is expressed during early brain development and is localized to the postsynaptic density of excitatory synapses. It is composed of three amino-terminal PDZ domains, an src homology domain, and a carboxyl-terminal guanylate kinase domain. The PDZ domains interact directly with the NR2 subunits of the NMDA glutamate receptor and with other proteins responsible for NMDA receptor localization, immobilization, and signaling. The mutations identified in this study all introduce premature stop codons within or before the third PDZ domain, and it is likely that this impairs the ability of SAP102 to interact with the NMDA receptor and/or other proteins involved in downstream NMDA receptor signaling pathways. NMDA receptors have been implicated in the induction of certain forms of synaptic plasticity, such as long-term potentiation and long-term depression, and these changes in synaptic efficacy have been proposed as neural mechanisms underlying memory and learning. The disruption of NMDA receptor targeting or signaling, as a result of the loss of SAP102, may lead to altered synaptic plasticity and may explain the intellectual impairment observed in individuals with DLG3 mutations.  相似文献   

5.
6.
Isolation of a novel potassium channel gene hSKCa3 containing a polymorphic CAG repeat: a candidate for schizophrenia and bipolar disorder?Chandy, K.G. et al. (1998)Mol. Psychiatr. 3, 32–37  相似文献   

7.
The purpose of this study was to identify a gene causing non-syndromic X-linked mental retardation in an extended family, taking advantage of the X chromosome inactivation status of the females in order to determine their carrier state. X inactivation in the females was determined with the androgen receptor methylation assay; thereafter, the X chromosome was screened with evenly spaced polymorphic markers. Once initial linkage was identified, the region of interest was saturated with additional markers and the males were added to the analysis. Candidate genes were sequenced. Ten females showed skewed inactivation, while six revealed a normal inactivation pattern. A maximal lod score of 5.54 at θ?=?0.00 was obtained with the marker DXS10151. Recombination events mapped the disease gene to a 17.4-Mb interval between the markers DXS10153 and DXS10157. Three candidate genes in the region were sequenced and a previously described missense mutation (P375L) was identified in the ACSL4/FACL4 gene. On the basis of the female X inactivation status, we have mapped and identified the causative mutation in a gene causing non-syndromic X-linked mental retardation.  相似文献   

8.
9.
In the course of systematic screening of the X-chromosome coding sequences in 250 families with nonsyndromic X-linked mental retardation (XLMR), two families were identified with truncating mutations in BRWD3, a gene encoding a bromodomain and WD-repeat domain–containing protein. In both families, the mutation segregates with the phenotype in affected males. Affected males have macrocephaly with a prominent forehead, large cupped ears, and mild-to-moderate intellectual disability. No truncating variants were found in 520 control X chromosomes. BRWD3 is therefore a new gene implicated in the etiology of XLMR associated with macrocephaly and may cause disease by altering intracellular signaling pathways affecting cellular proliferation.  相似文献   

10.
11.
Alcohol and nicotine are coabused, and preclinical and clinical data suggest that common genes may influence responses to both drugs. A gene in a region of mouse chromosome 9 that includes a cluster of three nicotinic acetylcholine receptor (nAChR) subunit genes influences the locomotor stimulant response to ethanol. The current studies first used congenic mice to confirm the influential gene on chromosome 9. Congenic F2 mice were then used to more finely map the location. Gene expression of the three subunit genes was quantified in strains of mice that differ in response to ethanol. Finally, the locomotor response to ethanol was examined in mice heterozygous for a null mutation of the α3 nAChR subunit gene ( Chrna3 ). Congenic data indicate that a gene on chromosome 9, within a 46 cM region that contains the cluster of nAChR subunit genes, accounts for 41% of the genetic variation in the stimulant response to ethanol. Greater expression of Chrna3 was found in whole brain and dissected brain regions relevant to locomotor behavior in mice that were less sensitive to ethanol-induced stimulation compared to mice that were robustly stimulated; the other two nAChR subunit genes in the gene cluster (α5 and β4) were not differentially expressed. Locomotor stimulation was not expressed on the genetic background of Chrna3 heterozygous (+/−) and wild-type (+/+) mice; +/− mice were more sensitive than +/+ mice to the locomotor depressant effects of ethanol. Chrna3 is a candidate gene for the acute locomotor stimulant response to ethanol that deserves further examination.  相似文献   

12.
13.
X-linked nonspecific mental retardation (MRX) has a frequency of 0.15% in the male population and is caused by defects in several different genes on the human X chromosome. Genotype-phenotype correlations in male patients with a partial nullisomy of the X chromosome have suggested that at least one locus involved in MRX is on Xp22.3. Previous deletion mapping has shown that this gene resides between markers DXS1060 and DXS1139, a region encompassing approximately 1.5 Mb of DNA. Analyzing the DNA of 15 males with Xp deletions, we were able to narrow this MRX critical interval to approximately 15 kb of DNA. Only one gene, VCX-A (variably charged, X chromosome mRNA on CRI-S232A), was shown to reside in this interval. Because of a variable number of tandem 30-bp repeats in the VCX-A gene, the size of the predicted protein is 186-226 amino acids. VCX-A belongs to a gene family containing at least four nearly identical paralogues on Xp22.3 (VCX-A, -B, -B1, and -C) and two on Yq11.2 (VCY-D, VCY-E), suggesting that the X and Y copies were created by duplication events. We have found that VCX-A is retained in all patients with normal intelligence and is deleted in all patients with mental retardation. There is no correlation between the presence or absence of VCX-B1, -B, and VCX-C and mental status in our patients. These results suggest that VCX-A is sufficient to maintain normal mental development.  相似文献   

14.
We recently reported a new X-linked mental retardation (XLMR) disorder in a four-generation family of Dutch descent. Features included Dandy-Walker malformation, basal ganglia disease, and seizures. Twenty-six family members, including two living affected males and two obligate carriers, were available for study. No evidence of linkage was observed between the disease locus and RFLPs from several X-chromosome regions, including Xp21-p22 (13 markers), proximal Xq (four markers), and Xq28 (three markers). However, a new hypervariable short tandem repeat (STR) within the HPRT gene at Xq26 showed positive linkage to the disease locus, with a maximum lod score of 2.19 at a recombination fraction of 0. A second hypervariable marker in Xq26, the dinucleotide repeat XL90A3 (DXS425), showed a lod score of .84 at a recombination fraction of .11. Both the HPRT and DXS425 markers were typed in 40 CEPH families, and subsequent multipoint linkage analysis showed the following order: Xcen-DXS425-(HPRT,XLMR)-F9-qter. HPRT and these flanking markers are therefore useful for carrier detection and prenatal diagnosis in this family. This study illustrates that hypervariable STRs will be powerful tools for linkage analysis and genetic diagnosis, particularly when relatively small families are involved.  相似文献   

15.
Summary Linkage analysis on a family with fragile X-linked mental retardation was performed using a Taq 1 restriction fragment length polymorphism detected by a cloned human coagulation factor IX cDNA. Two affected brothers in this sibship were found to have different factor IX RFLP alleles, indicating a recombinational event occurred between the two genes. Our data therefore indicate that the gene responsible for fragile X-linked mental retardation is not as tightly linked to the factor IX gene as the previously published data may suggest.  相似文献   

16.
The glutamatergic signaling pathway represents an ideal candidate susceptibility system for attention-deficit/hyperactivity disorder (ADHD). Disruption of specific N-methyl-D-aspartate-type glutamate receptor subunit genes (GRIN1, 2A-D) in mice leads to significant alterations in cognitive and/or locomotor behavior including impairments in latent learning, spatial memory tasks and hyperactivity. Here, we tested for association of GRIN2B variants with ADHD, by genotyping nine single nucleotide polymorphisms (SNPs) in 205 nuclear families identified through probands with ADHD. Transmission of alleles from heterozygous parents to affected offspring was examined using the transmission/disequilibrium test. Quantitative trait analyses for the ADHD symptom dimensions [inattentive (IA) and hyperactive/impulsive (HI)] and cognitive measures of verbal working memory and verbal short-term memory were performed using the fbat program. Three SNPs showed significantly biased transmission (P < 0.05), with the strongest evidence of association found for rs2,284,411 (chi(2)= 7.903, 1 degree of freedom, P= 0.005). Quantitative trait analyses showed associations of these markers with both the IA and the HI symptom dimensions of ADHD but not with the cognitive measures of verbal short-term memory or verbal working memory. Our data suggest an association between variations in the GRIN2B subunit gene and ADHD as measured categorically or as a quantitatively distributed trait.  相似文献   

17.
Summary An Indiana family segregating a syndrome of X-linked mental retardation and skeletal anomalies was tested for linkage of the mutant gene to X-chromosome molecular markers. Lod scores of 3.27 and 3.06 (-0) for the molecular probes St14-1 (DXS52) and Dx13 (DXS15), respectively, indicate that the disease gene is located in the terminal portion of Xq.  相似文献   

18.
19.
The extensive heterogeneity underlying the genetic component of mental retardation (MR) is the main cause for our limited understanding of the aetiology of this highly prevalent condition. Hence we set out to identify genes involved in MR. We investigated the breakpoints of two balanced X;autosome translocations in two unrelated female patients with mild/moderate MR and found that the Xp11.2 breakpoints disrupt the novel human KIAA1202 (hKIAA1202) gene in both cases. We also identified a missense exchange in this gene, segregating with the Stocco dos Santos XLMR syndrome in a large four-generation pedigree but absent in >1,000 control X-chromosomes. Among other phenotypic characteristics, the affected males in this family present with severe MR, delayed or no speech, seizures and hyperactivity. Molecular studies of hKIAA1202 determined its genomic organisation, its expression throughout the brain and the regulation of expression of its mouse homologue during development. Transient expression of the wild-type KIAA1202 protein in HeLa cells showed partial colocalisation with the F-actin based cytoskeleton. On the basis of its domain structure, we argue that hKIAA1202 is a new member of the APX/Shroom protein family. Members of this family contain a PDZ and two ASD domains of unknown function and have been shown to localise at the cytoskeleton, and play a role in neurulation, cellular architecture, actin remodelling and ion channel function. Our results suggest that hKIAA1202 may be important in cognitive function and/or development. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users. O. Hagens and A. Dubos contributed equally to this work.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号