首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Bone morphogenetic protein 10 (BMP10) is a member of the TGF-β superfamily and plays a critical role in heart development. In the postnatal heart, BMP10 is restricted to the right atrium. The inactive pro-BMP10 (~60 kDa) is processed into active BMP10 (~14 kDa) by an unknown protease. Proteolytic cleavage occurs at the RIRR(316)↓ site (human), suggesting the involvement of proprotein convertase(s) (PCs). In vitro digestion of a 12-mer peptide encompassing the predicted cleavage site with furin, PACE4, PC5/6, and PC7, showed that furin cleaves the best, whereas PC7 is inactive on this peptide. Ex vivo studies in COS-1 cells, a cell line lacking PC5/6, revealed efficient processing of pro-BMP10 by endogenous PCs other than PC5/6. The lack of processing of overexpressed pro-BMP10 in the furin- and PACE4-deficient cell line, CHO-FD11, and in furin-deficient LoVo cells, was restored by stable (CHO-FD11/Fur cells) or transient (LoVo cells) expression of furin. Use of cell-permeable and cell surface inhibitors suggested that endogenous PCs process pro-BMP10 mostly intracellularly, but also at the cell surface. Ex vivo experiments in mouse primary hepatocytes (wild type, PC5/6 knock-out, and furin knock-out) corroborated the above findings that pro-BMP10 is a substrate for endogenous furin. Western blot analyses of heart right atria extracts from wild type and PACE4 knock-out adult mice showed no significant difference in the processing of pro-BMP10, implying no in vivo role of PACE4. Overall, our in vitro, ex vivo, and in vivo data suggest that furin is the major convertase responsible for the generation of BMP10.  相似文献   

3.
Among the proprotein-processing subtilisin-related endoproteases, furin has been a leading candidate for the enzyme that activates the hemagglutinin (HA) of virulent avian influenza viruses. In the present study, we examined the cleavage activity of two other recently isolated ubiquitous subtilisin-related proteases, PACE4 and PC6, using wild-type HA of A/turkey/Ireland/1378/83 (H5N8) and a series of its mutant HAs. Vaccinia virus-expressed wild-type HA was not cleaved in human colon adenocarcinoma LoVo cells, which lack active furin. This processing defect was corrected by the expression of furin and PC6 but not of PACE4 and a control wild-type vaccinia virus. PC6 showed a sequence specificity similar to that with the endogenous proteases in cultured cells. When LoVo cells were infected with a virulent avian virus, A/turkey/Ontario/7732/66 (H5N9), only noninfectious virions were produced because of the lack of HA cleavage. However, when the cells were coinfected with vaccinia virus that expressed either furin or PC6, the avian virus underwent multiple cycles of replication, indicating that both furin and PC6 specifically cleave the virulent virus HA at the authentic site. These data suggest that PC6, as well as furin, can activate virulent avian influenza viruses in vivo, implying the presence of multiple HA cleavage enzymes in animals.  相似文献   

4.
PACE4, PC6 and furin are potent subtilisin-like proprotein convertases (SPCs) which are responsible for the activation of transforming growth factor-beta (TGFbeta)-related factors such as bone morphogenetic proteins. Heparan sulfate proteoglycan within the extracellular matrix (ECM) is known to regulate the biological activity of various differentiation factors including TGFbeta-related molecules. PACE4 binds tightly to heparin and its heparin-binding region was found to be a cationic stretch of amino acids between residues 743 and 760. Furthermore, PACE4 was detected in the extracellular material fraction of the HEK293 cells, defined as the material remaining on the culture plate following the removal of the cells from the plate. PACE4 bound to the extracellular fraction was selectively dislodged by heparin into the culture medium. Heparin has no inhibitory activity against PACE4. Similarly, PC6A is also able to bind to heparin, whereas soluble furin does not. In human placenta, PACE4 is mainly present in syncytiotrophoblasts and can be released by heparin. These results suggest that PACE4 and PC6 are unique SPC family proteases that anchor heparan sulfate proteoglycans at the ECM. The interaction between PACE4 and heparan sulfate proteoglycans might play an important role in the delicate spatiotemporal regulation of TGFbeta-related factors' biological activity.  相似文献   

5.
PACE4, PC6 and furin are potent subtilisin-like proprotein convertases (SPCs) which are responsible for the activation of transforming growth factor-β (TGFβ)-related factors such as bone morphogenetic proteins. Heparan sulfate proteoglycan within the extracellular matrix (ECM) is known to regulate the biological activity of various differentiation factors including TGFβ-related molecules. PACE4 binds tightly to heparin and its heparin-binding region was found to be a cationic stretch of amino acids between residues 743 and 760. Furthermore, PACE4 was detected in the extracellular material fraction of the HEK293 cells, defined as the material remaining on the culture plate following the removal of the cells from the plate. PACE4 bound to the extracellular fraction was selectively dislodged by heparin into the culture medium. Heparin has no inhibitory activity against PACE4. Similarly, PC6A is also able to bind to heparin, whereas soluble furin does not. In human placenta, PACE4 is mainly present in syncytiotrophoblasts and can be released by heparin. These results suggest that PACE4 and PC6 are unique SPC family proteases that anchor heparan sulfate proteoglycans at the ECM. The interaction between PACE4 and heparan sulfate proteoglycans might play an important role in the delicate spatiotemporal regulation of TGFβ-related factors' biological activity.  相似文献   

6.
Proprotein convertases are enzymes that proteolytically cleave protein precursors in the secretory pathway to yield functional proteins. Seven mammalian subtilisin/Kex2p-like proprotein convertases have been identified: furin, PC1, PC2, PC4, PACE4, PC5 and PC7. The binding pockets of all seven proprotein convertases are evolutionarily conserved and highly similar. Among the seven proprotein convertases, the furin cleavage site motif has recently been characterized as a 20-residue motif that includes one core region P6-P2´ inside the furin binding pocket. This study extended this information by examining the 3D structural environment of the furin binding pocket surrounding the core region P6-P2´ of furin substrates. The physical properties of mutations in the binding pockets of the other six mammalian proprotein convertases were compared. The results suggest that: 1) mutations at two positions, Glu230 and Glu257, change the overall density of the negative charge of the binding pockets, and govern the substrate specificities of mammalian proprotein convertases; 2) two proprotein convertases (PC1 and PC2) may have reduced sensitivity for positively charged residues at substrate position P5 or P6, whereas the substrate specificities of three proprotein convertases (furin, PACE4, and PC5) are similar to each other. This finding led to a novel design of a short peptide pattern for small molecule inhibitors: [K/R]-X-V-X-K-R. Compared with the widely used small molecule dec-RVKR-cmk that inhibits all seven proprotein convertases, a finely-tuned derivative of the short peptide pattern [K/R]-X-V-X-K-R may have the potential to more effectively inhibit five of the proprotein convertases (furin, PC4, PACE4, PC5 and PC7) compared to the remaining two (PC1 and PC2). The results not only provide insights into the molecular evolution of enzyme function in the proprotein convertase family, but will also aid the study of the functional redundancy of proprotein convertases and the development of therapeutic applications.  相似文献   

7.
SPCs (subtilisin-like proprotein convertases) are a family of seven structurally related serine endoproteases that are involved in the proteolytic activation of proproteins. In an effort to examine the substrate protein for PACE4 (paired basic amino-acid-cleaving enzyme-4), an SPC, a potent protein inhibitor of PACE4, an alpha1-antitrypsin RVRR (Arg-Val-Arg-Arg) variant, was expressed in GH4C1 cells. Ectopic expression of the RVRR variant caused accumulation of the 48 kDa protein in cells. Sequence analysis indicates that the 48 kDa protein is a putative Ca2+-binding protein, RCN-3 (reticulocalbin-3), which had previously been predicted by bioinformatic analysis of cDNA from the human hypothalamus. RCN-3 is a member of the CREC (Cab45/reticulocalbin/ERC45/calumenin) family of multiple EF-hand Ca2+-binding proteins localized to the secretory pathway. The most interesting feature of the RCN-3 sequence is the presence of five Arg-Xaa-Xaa-Arg motifs, which represents the target sequence of SPCs. Biosynthetic studies showed that RCN-3 is transiently associated with proPACE4, but not with mature PACE4. Inhibition of PACE4 maturation by a Ca2+ ionophore resulted in accumulation of the proPACE4-RCN-3 complex in cells. Furthermore, autoactivation and secretion of PACE4 was increased upon co-expression with RCN-3. Our findings suggest that selective and transient association of RCN-3 with the precursor of PACE4 plays an important role in the biosynthesis of PACE4.  相似文献   

8.
PACE4 (SPC4), a member of the subtilisin-like proprotein convertase (SPC) family of proteases that cleave at paired basic amino acids, exhibits a dynamic expression pattern during embryogenesis and colocalizes with bone morphogenetic proteins (BMPs). Recently Cui et al. reported that the ectopic expression of alpha1-antitrypsin variant Portland (alpha1-PDX), an engineered serpin that contains the minimal SPC consensus motif in its reactive loop, blocks the proteolytic activation of BMP4, leading to abnormal embryogenic development [Cui, Y. et al. (1998) EMBO J. 17, 4735-4743]. TGFbeta-related factors such as BMPs are synthesized as inactive precursors and activated by limited proteolysis at multibasic amino acids. Therefore, an alpha1-PDX-inhibitable protease is thought to participate in BMP activation. However, conflicting properties, including sensitivity to alpha1-PDX, have been reported for PACE4. In this study, we examined whether alpha1-PDX is responsible for the inhibition of PACE4 by measuring the protease/inhibitor complex directly. Here we show that alpha1-PDX has the ability to form an SDS-stable acyl-intermediate (180 kDa) with PACE4 in vivo and in vitro. Further, we characterized the PACE4 secreted into the culture medium from Cos-1 cells by a specific immunological assay. An alpha1-PDX-insensitive and decanoyl-RVKR-chloromethylketone-sensitive 60-kDa protease(s) is greatly activated in conditioned medium by PACE4 overexpression, suggesting that the activation of an unknown protease(s) other than PACE4 is the cause of the variation in the properties of PACE4. PACE4 is a Ca(2+)-dependent protease with an optimal Ca(2+) requirement of 2 mM, and shows its highest activity at weakly basic pH. PACE4 activity is completely inhibited by EDTA and EGTA, but not by leupeptin. These results show that PACE4 activity can be inhibited by alpha1-PDX as well as furin (SPC1) and suggest that the inhibition of PACE4-mediated activation of factors such as BMPs by alpha1-PDX causes abnormal embryogenic development.  相似文献   

9.
Endoproteolytic cleavage of hormone and neuropeptide precursors, as well as many complex proteins, such as coagulation factors and viral glycoproteins, is a key process in the generation of bioactive polypeptides. These cleavages typically occur at the dibasic amino acid residues Lys-Arg or Arg-Arg. The enzymes responsible for the processing belong to a newly discovered family of serine proteases related to the bacterial subtilisins. These include PACE (furin), PC1/PC3, PC2 and PACE4, which have all been characterized functionally and structurally.  相似文献   

10.
The ubiquitous serine endoprotease furin has been implicated in the activation of bacterial toxins and viral glycoproteins as well as in the metastatic progression of certain tumors. Although high molecular mass bioengineered serpin inhibitors have been well characterized, no small nontoxic nanomolar inhibitors have been reported to date. Here we describe the identification of such inhibitors using positional scanning amidated and acetylated synthetic l- and d-hexapeptide combinatorial libraries. The results indicated that l-Arg or l-Lys in all positions generated the most potent inhibitors. However, further investigation revealed that the peptide terminating groups hindered inhibition. Consequently, a series of non-amidated and acetylated polyarginines was synthesized. The most potent inhibitor identified, nona-l-arginine, had a K(i) for furin of 40 nm. The K(i) values for the related convertases PACE4 and prohormone convertase-1 (PC1) were 110 nm and 2.5 microm, respectively. Although nona-l-arginine was cleaved by furin, the major products after a 6-h incubation at 37 degrees C were hexa- and hepta-l-arginines, both of which retained the great majority of their potency and specificity against furin. Hexa-d-arginine was as potent and specific a furin inhibitor as hexa-l-arginine (K(i) values of hexa-d-arginine: 106 nm, 580 nm, and 13.2 microm for furin, PACE4, and PC1, respectively). PC2 was not inhibited by any polyarginine tested; indeed, PC2 showed an increase in activity of up to 140% of the control in the presence of l-polyarginines. Data are also presented that show extended subsite recognition by furin and PC2. Whereas N-terminal acetylation was found to reduce the inhibitory potency of the l-hexapeptide LLRVKR against furin 8-fold, C-terminal amidation reduced the potency < 2-fold. Conversely, N-terminal acetylation increased the potency against PC2 nearly 3-fold, whereas C-terminal amidation of the same peptide increased the potency by a factor of 1.6. Our data indicate that non-acetylated, poly-d-arginine-derived molecules may represent excellent lead compounds for the development of therapeutically useful furin inhibitors.  相似文献   

11.
The fusion (F) protein precursor of virulent Newcastle disease virus (NDV) strains has two pairs of basic amino acids at the cleavage site, and its intracellular cleavage activation occurs in a variety of cells; therefore, the viruses cause systemic infections in poultry. To explore the protease responsible for the cleavage in the natural host, we examined detailed substrate specificity of the enzyme in chick embryo fibroblasts (CEF) using a panel of the F protein mutants at the cleavage site expressed by vaccinia virus vectors, and compared the specificity with those of mammalian subtilisin-like proteases such as furin, PC6 and PACE4 which are candidates for F protein processing enzymes. It was demonstrated in CEF cells that Arg residues at the -4, -2 and -1 positions upstream of the cleavage site were essential, and that at the -5 position was required for maximal cleavage. Phe at the +1 position was also important for efficient cleavage. On the other hand, furin and PC6 expressed by vaccinia virus vectors showed cleavage specificities against the F protein mutants consistent with that shown by the processing enzyme of CEF cells, but PACE4 hardly cleaved the F proteins including the wild type. These results indicate that the proteolytic processing enzymes of poultry for virulent NDV F proteins could be furin and/or PC6 but not PACE4. The significance of individual contribution of the three amino acids at the -5, -2 and +1 positions to cleavability was discussed in relation to the evolution of virulent and avirulent NDV strains.  相似文献   

12.
Proprotein convertases (PCs) play critical roles in cleaving precursor proteins (growth factors, hormones, receptors and adhesion molecules) for activation. PCs are implicated in a number of cellular functions, including oncogenesis. Endometrial cancer is the most common gynecological cancer in the developed world, but the involvement of PCs is unclear. To characterize the role of PCs in endometrial cancer, we assessed expression of seven PCs (PC1/3, PC2, PACE4, PC4, furin, PC5/6 and PC7) by RT-PCR in six well characterized endometrial cancer cell lines. Expression was variable in all lines, with furin being most consistently expressed in all cell lines tested. We next determined the cellular localization and expression levels of four ubiquitously expressed PCs (furin, PACE4, PC5/6 and PC7) in post-menopausal endometrial biopsies from control (n=7) and endometrial cancer patients (n=30) by immunohistochemistry. Furin increased in tumors, whereas PC5/6, PACE4 and PC7 expression was reduced with increasing cancer grades. Uterine lavage is a non-invasive source material for evaluating the endometrium. We thus assessed whether total PC activity was altered in uterine lavage of endometrial cancer patients (n=36) compared to controls (n=10). PC activity was detected in all uterine lavage samples, and significantly elevated in all grades of endometrial cancer. This study demonstrates a complex association between individual PCs and endometrial cancer. Importantly, we show that monitoring the total PC activity in uterine lavage may provide a rapid and non-invasive method for the diagnosis of endometrial cancer in postmenopausal women.  相似文献   

13.
14.
Proprotein convertases are a family of kexin-like serine proteases that process proteins at single and multiple basic residues. Among the predicted and identified PC substrates, an increasing number of proteins having functions in cancer progression indicate that PCs may be potential targets for antineoplastic drugs. In support of this notion, we identified PACE4 as a vital PC involved in prostate cancer proliferation and progression, contrasting with the other co-expressed PCs. The aim of the present study was to test the importance of PCs in ovarian cancer cell proliferation and tumor progression. Based on tissue-expression profiles, furin, PACE4, PC5/6 and PC7 all displayed increased expression in primary tumor, ascites cells and metastases. These PCs were also expressed in variable levels in three model ovarian cell lines tested, namely SKOV3, CAOV3 and OVCAR3 cells. Since SKOV3 cells closely represented the PC expression profile of ovarian cancer cells, we chose them to test the effects of PC silencing using stable gene-silencing shRNA strategy to generate knockdown SKOV3 cells for each expressed PC. In vitro and in vivo assays confirmed the role of PACE4 in the sustainment of SKOV3 cell proliferation, which was not observed with the other three PCs. We also tested PACE4 peptide inhibitors on all three cell lines and observed consequent reduced cell proliferation which was correlated with PACE4 expression. Overall, these data support a role of PACE4 in promoting cell proliferation in ovarian cancer and provides further evidence for PACE4 as a potential therapeutic target.  相似文献   

15.
Mature endothelial lipase (EL) is a 68 kDa glycoprotein. In HepG2 cells infected with adenovirus encoding human EL, the mature EL was detectable in the cell lysates and heparin-releasable fractions. In contrast, cell media of these cells contained two EL fragments: an N-terminal 40 kDa fragment and a C-terminal 28 kDa fragment. N-terminal protein sequencing of the His-tagged 28 kDa fragment revealed that EL is cleaved on the C terminus of the sequence RNKR330, the consensus cleavage sequence for mammalian proprotein convertases (pPCs). Replacement of Arg-330 with Ser by site-directed mutagenesis totally abolished EL processing. EL processing could efficiently be attenuated by specific inhibitors of pPCs, alpha1-antitrypsin Portland (alpha1-PDX) and alpha1-antitrypsin variant AVRR. Coexpression of the pPCs furin, PC6A, and PACE4 with EL resulted in a complete conversion of the full-length EL to a truncated 40 kDa fragment. Exogenously added EL was also processed by cells, and the processing could be attenuated by alpha1-PDX. The expressed N-terminal 40 kDa fragment of EL (EL-40) harboring the catalytic site failed to hydrolyze [14C]NEFA from [14C]dipalmitoyl-PC-labeled HDL. EL-40 was incapable of bridging 125I-labeled HDL to the cells and had no impact on plasma lipid concentration when overexpressed in mice. Thus, our results demonstrate that pPCs are involved in the inactivation process of EL.  相似文献   

16.
Komiyama T  Fuller RS 《Biochemistry》2000,39(49):15156-15165
We engineered eglin c, a potent subtilisin inhibitor, to create inhibitors for enzymes of the Kex2/furin family of proprotein processing proteases. A structural gene was synthesized that encoded "R(1)-eglin", having Arg at P(1) in the reactive site loop in place of Leu(45). Ten additional variants were created by cassette mutagenesis of R(1)-eglin. These polypeptides were expressed in Escherichia coli, purified to homogeneity, and their interactions with secreted, soluble Kex2 and furin were examined. R(1)-eglin itself was a modest inhibitor of Kex2, with a K(a) of approximately 10(7) M(-)(1). Substituting Arg (in R(4)R(1)-eglin) or Met (in M(4)R(1)-eglin) for Pro(42) at P(4) created potent Kex2 inhibitors exhibiting K(a) values of approximately 10(9) M(-)(1). R(4)R(1)-eglin inhibited furin with a K(a) of 4.0 x 10(8) M(-)(1). Introduction of Lys at P(1), in place of Arg in R(4)R(1)-eglin reduced affinity only approximately 3-fold for Kex2 but 15-fold for furin. The stabilities of enzyme-inhibitor complexes were characterized by association and dissociation rate constants and visualized by polyacrylamide gel electrophoresis. R(4)R(1)-eglin formed stable 1:1 complexes with both Kex2 and furin. However, substitution of Lys at P(2) in place of Thr(44) resulted in eglin variants that inhibited both Kex2 and furin but which were eventually cleaved (temporary inhibition). Surprisingly, R(6)R(4)R(1)-eglin, in which Arg was substituted for Gly(40) in R(4)R(1)-eglin, exhibited stable, high-affinity complex formation with Kex2 (K(a) of 3.5 x 10(9) M(-)(1)) but temporary inhibition of furin. This suggests that enzyme-specific interactions can alter the conformation of the reactive site loop, converting a permanent inhibitor into a substrate. Eglin variants offer possible avenues for affinity purification, crystallization, and regulation of proprotein processing proteases.  相似文献   

17.
18.
The fusion glycoprotein precursor of Newcastle disease virus is ubiquitously cleaved in the constitutive secretory pathway if it possesses an oligobasic cleavage motif (RRQR/KR), whereas the precursor is refractory to cleavage if the motif is monobasic (GR/KQGR). We examined the cleavage activity of the mammalian subtilisin-related proteinases furin/PACE, PC2, and PC1/PC3, which are thought to be responsible for proprotein processing in either the constitutive (furin/PACE) or the regulated (PC2 and PC1/PC3) secretory pathway, for the viral precursors with different cleavage motifs. Only furin/PACE was fully capable of cleaving the precursors with the oligobasic motif. PC2 and PC1/PC3 were incapable or only partially capable of cleaving at this motif. None of the proteinases cleaved the monobasic motif. These results suggest involvement of furin/PACE in viral protein processing in the constitutive secretory pathway.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号