首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many therapeutic targets are intracellular proteins and molecules designed to interact with them must effectively bind to their target inside the cell. Intracellular antibodies (intrabodies) recognise and bind to proteins in cells and various methods have been developed to produce such molecules. Intracellular antibody capture (IAC) is based on a genetic screening approach and is a facile methodology with which effective intracellular antibodies can be obtained. During the development of the IAC technology, consensus immunoglobulin variable frameworks were identified which can form the basis of intrabody libraries for direct screening. In this paper, we describe the de novo synthesis of intrabody libraries based on the IAC consensus sequence. The procedure comprises in vitro production of a single antibody gene fragment from oligonucleotides and diversification of CDRs of the immunoglobulin variable domain by mutagenic PCR. Completely de novo intrabody libraries can be rapidly generated in vitro by these approaches. As an example, a single immunoglobulin VH domain intrabody library was screened directly in yeast with an oncogenic BCR-ABL antigen bait and distinct antigen binders were isolated illustrating the functional utility of the library. This second generation IAC approach (IAC2) has many practical advantages, in particular the ability to isolate intrabodies by direct genetic selection, which obviates the need for in vitro production of antigen for pre-selection of antibody fragments.  相似文献   

2.
Intracellular antibodies (intrabodies) constitute a potent tool to neutralize the function of target proteins inside specific cell compartments (cytosol, nucleus, mitochondria and ER). The intrabody technology is an attractive alternative to the generation of gene-targeted knockout animals and complements or replaces knockdown techniques such as antisense-RNA, RNAi and RNA aptamers. This article focuses on intrabodies targeted to the ER. Intracellular anti-bodies expressed and retained inside the ER (ER intrabodies) are shown to be highly efficient in blocking the translocation of secreted and cell surface molecules from the ER to the cell surface.The advantage of ER intrabodies over cytoplasmic intrabodies is that they are correctly folded and easier to select. A particular advantage of the intrabody technology over existing ones is the possibility of inhibiting selectively post-translational modifications of proteins.The main applications of ER intrabodies so far have been (i) inactivation of oncogenic receptors and (ii) functional inhibition of virus envelope proteins and virus-receptor molecules on the surface of host cells.In cancer research, the number of in vivo mouse models for evaluation of the therapeutic potential of intrabodies is increasing.In the future, endosomal localized receptors involved in bacterial and viral infections, intracellular oncogenic receptors and enzymes involved in glycosylation of tumour antigens might be new targets for ER intrabodies.  相似文献   

3.
There is a major need in target validation and therapeutic applications for molecules that can interfere with protein function inside cells. Intracellular antibodies (intrabodies) can bind to specific targets in cells but isolation of intrabodies is currently difficult. Intrabodies are normally single chain Fv fragments comprising variable domains of the immunoglobulin heavy (VH) and light chains (VL). We now demonstrate that single VH domains have excellent intracellular properties of solubility, stability and expression within the cells of higher organisms and can exhibit specific antigen recognition in vivo. We have used this intracellular single variable domain (IDab) format, based on a previously characterised intrabody consensus scaffold, to generate diverse intrabody libraries for direct in vivo screening. IDabs were isolated using two distinct antigens and affinities of isolated IDabs ranged between 20 nM and 200 nM. Moreover, IDabs selected for binding to the RAS protein could inhibit RAS-dependent oncogenic transformation of NIH3T3 cells. The IDab format is therefore ideal for in vivo intrabody use. This approach to intrabodies obviates the need for phage antibody libraries, avoids the requirement for production of antigen in vitro and allows for direct selection of intrabodies in vivo.  相似文献   

4.
The ability of intracellular antibodies (intrabodies) to block the function of a target protein can be dependent on the stability of the single-chain antibody (sFv) when expressed in the intracellular environment. Low-affinity sFvs capable of reaching high steady-state levels can be more effective modulators of target proteins than high-affinity, unstable sFvs. In an effort to enhance the intracellular stability of sFvs when expressed as intrabodies, we have generated novel sFv-Fc fusion intrabodies. Fusion of the native sFv sequence with the entire heavy chain constant region fragment of IgG results in decreased turnover of the intrabody and enhanced steady-state accumulation of sFv-Fc protein, while maintaining the ability to target intrabody expression to sub-cellular compartments. Here, we describe the rationale and design for this strategy using two anti-cyclin E sFvs constructed for use as intrabodies.  相似文献   

5.
We have applied in vivo intracellular antibody capture (IAC) technology to isolate human intrabodies which bind to the oncogenic RAS protein. IAC facilitates the capture of antibody fragments, in this case single-chain Fvs (scFvs), which tolerate reducing environments, such as the cytoplasm of cancer cells. Three anti-RAS scFvs with different affinity, solubility and intracellular binding activity were characterized. The anti-RAS scFvs with highest affinity were expressed relatively poorly in mammalian cells, and greater soluble expression was achieved by mutating the antibody framework to canonical consensus scaffolds, previously derived from IAC, without losing antigen specificity. Mutagenesis experiments showed that the consensus scaffolds are functional as intrabody fragments without an intra-domain disulfide bond. Furthermore, we could convert an intrabody which does not bind RAS in mammalian cells into a high-affinity reagent capable of inhibiting RAS-mediated NIH 3T3 transformation by exchanging VH and VL complementarity-determining regions onto its consensus scaffold. These data show that the consensus scaffold is a robust framework by which to improve intrabody function.  相似文献   

6.
Intracellular expression of recombinant antibodies (intrabodies) allows to interfere with the functions of oncogenic or viral molecules expressed in different cell compartments and has therefore a vast clinical potential in therapy. Although the use of phage-display libraries has made it possible to select Fab or single chain Fv (scFv) antibody fragments usable for intracellular targeting, a major source of recombinant antibodies for therapeutic use still remains hybridoma B cells producing well-characterized monoclonal antibodies (mAbs). However, the cloning and the intracellular expression of antibody fragments derived from mAbs can be markedly hampered by a number of technical difficulties that include failure of cloning functional variable regions as well as lack of binding of the antibody fragments to the targeted molecule in an intracellular environment. We discuss herein various molecular methods that have been developed to generate functional recombinant antibody fragments usable as anti-tumor triggering agents when expressed in tumor cells. Such antibodies can neutralize or modify the activity of oncogenic molecules when addressed in specific subcellular compartments and/or they can be used to trigger anti-tumor immunity when expressed on tumor cell surface.  相似文献   

7.
Intracellular antibodies (intrabodies) provide an attractive means for manipulating intracellular protein function, both for research and potentially for therapy. A challenge in the isolation of effective intrabodies is the ability to find molecules that exhibit sufficient binding affinity and stability when expressed in the reducing environment of the cytoplasm. Here, we have used yeast surface display of proteins to isolate novel scFv clones against huntingtin from a non-immune human antibody library. We then applied yeast surface display to affinity mature this scFv pool and analyze the location of the binding site of the mutant with the highest affinity. Interestingly, the paratope was mapped exclusively to the variable light chain domain of the scFv. A single domain antibody was constructed consisting solely of this variable light chain domain, and was found to retain full binding activity to huntingtin. Cytoplasmic expression levels in yeast of the single domain were at least fivefold higher than the scFv. The ability of the single-domain intrabody to inhibit huntingtin aggregation, which has been implicated in the pathogenesis of Huntington's disease (HD), was confirmed in a cell-free in vitro assay as well as in a mammalian cell culture model of HD. Significantly, a single-domain intrabody that is functionally expressable in the cytoplasm was derived from a non-functional scFv by performing affinity maturation and binding site analysis on the yeast cell surface, despite the differences between the cytoplasmic and extracellular environment. This approach may find application in the development of intrabodies to a wide variety of intracellular targets.  相似文献   

8.
The use of antibodies in medicine and research depends on their specificity and affinity in the recogniton and binding of individual molecules. However, these applications are limited to the extracellular targets. Advances in antibody engineering has allowed the manipulation of the antibody segments containing the antigen-binding regions and generation of small fragments that can be stably expressed in cells. These entities are called intracellular antibodies or intrabodies and have being successfully applied, mainly in the scFv format, to inhibit the function of intracellular target proteins in specific cellular compartments. As new techniques to select and isolate intrabody fragments have been developed, intrabodies are beginning to be used to interfere with the function of a greater number of relevant disease targets. Just as monoclonal antibodies are opening a new era in human therapeutics, intrabodies promise a new prospective for antibody tools for therapy and research. Their varied mode of action gives intrabodies great potential in different approaches in the treatment of human diseases, as well as in the area of functional genomics for characterisation of novel gene products and subsequent validation as potential drug targets. While techniques for identifying functional intrabodies have improved, there are still many significant problems to be overcome before intrabodies can actually be used in treatment of diseases such as cancer, AIDS or neuro-degenerative disorders.  相似文献   

9.
Genes encoding the rearranged immunoglobulin heavy and light chain variable regions of anti-HIV-1 Tat, exon 1 or exon 2 specific monoclonal antibodies have been used to construct single chain intracellular antibodies 'intrabodies' for expression in the cytoplasm of mammalian cells. These anti-Tat single chain intrabodies (anti-Tat sFvs) are additionally modified with a C-terminal human C kappa domain to increase cytoplasmic stability and/or the C-terminal SV40 nuclear localization signal to direct the nascent intrabody to the nuclear compartment, respectively. The anti-Tat sFvs with specific binding activity against the N-terminal activation domain of Tat, block Tat-mediated transactivation of HIV-1 LTR as well as intracellular trafficking of Tat in mammalian cells. As a result, the transformed lymphocytes expressing anti-Tat sFvs are resistant to HIV-1 infection. Thus, these studies demonstrate that stably expressed single chain intrabodies and their modified forms can effectively target molecules in the cytoplasm and nuclear compartments of eukaryotic cells. Furthermore, these studies suggest that anti-Tat sFvs used either alone or in combination with other genetically based strategies may be useful for the gene therapy of HIV-1 infection and AIDS.  相似文献   

10.
A key feature of antibodies is their ability to bind antigens with high specificity and affinity. This has led to the concept of intracellular antibodies (intrabodies), designed to mimic antibody-antigen binding, but inside cells. Antibody fragments comprising the antigen-binding variable domains are convenient formats for intrabodies, potentially allowing for intracellular functionality. Intrabodies are promising tools, capable of interfering with a wide range of molecular targets in various intracellular compartments. However, many significant challenges remain to be overcome before intrabodies can be useful therapeutic agents. Although major progress has been made in the design and selection of intrabodies, new developments and advances are needed to allow their efficient delivery and expression for treatment of human diseases.  相似文献   

11.
In the past decade, a large number of intracellular antibodies (intrabodies) have been developed for potential use as therapeutic agents. As antibodies can be generated against virtually any target antigen, the applications of intrabodies span a wide range including tumour therapy, infectious diseases, transplantation, and other diseases associated with protein overexpression or mutagenesis. This article summarises the development of intrabodies and their applications as therapeutic agents.  相似文献   

12.
Prevention of abnormal misfolding and aggregation of α synuclein (syn) protein in vulnerable neurons should be viable therapeutic strategies for reducing pathogenesis in Parkinson's disease. The nonamyloid component (NAC) region of α-syn shows strong tendencies to form β-sheet structures, and deletion of this region has been shown to reduce aggregation and toxicity in vitro and in vivo. The binding of a molecular species to this region may mimic the effects of such deletions. Single-chain variable fragment (scFv) antibodies retain the binding specificity of antibodies and, when genetically manipulated to create high-diversity libraries, allow in vitro selection against peptides. Accordingly, we used a yeast surface display library of an entire naïve repertoire of human scFv antibodies to select for binding to a NAC peptide. Candidate scFv antibodies (after transfer to mammalian expression vectors) were screened for viability in a neuronal cell line by transient cotransfection with A53T mutant α-syn. This provided a ranking of the protective efficacies of the initial panel of intracellular antibodies (intrabodies). High steady-state expression levels and apparent conformational epitope binding appeared more important than in vitro affinity in these assays. None of the scFv antibodies selected matched the sequences of previously reported anti-α-syn scFv antibodies. A stable cell line expressing the most effective intrabody, NAC32, showed highly significant reductions in abnormal aggregation in two separate models. Recently, intrabodies have shown promising antiaggregation and neuroprotective effects against misfolded mutant huntingtin protein. The NAC32 study extends such work significantly by utilizing information about the pathogenic capacity of a specific α-syn region to offer a new generation of in vitro-derived antibody fragments, both for further engineering as direct therapeutics and as a tool for rational drug design for Parkinson's disease.  相似文献   

13.
In the past decade, intracellular antibodies have proven to be a useful tool in obtaining the phenotypic knock-out of selected gene function in different animal and plant systems. This strategy is based on the ectopic expression of recombinant forms of antibodies targeted towards different intracellular compartments, exploiting specific targeting signals to confer the new intracellular location. The functional basis of this technology is closely linked to the ability of intracellular antibodies to interact with their target antigens in vivo. This interaction allows either a direct neutralising effect or the dislodgement of the target protein from its normal intracellular location and, by this mechanism, the inactivation of its function. By using this approach, the function of several antigens has been inhibited in the cytoplasm, the nucleus, and the secretory compartments. In this article, we shall describe all the steps required for expressing single-chain Fv fragments in different subcellular compartments of mammalian cells and their subsequent use in knock-out experiments, starting from a cloned single-chain Fv fragment. This will include the analysis of the solubility properties of the new scFv fragment in transfected mammalian cells, the intracellular distribution of the antigen-antibody complex, and the resulting phenotype.  相似文献   

14.
Antigen-independent selection of intracellular stable antibody frameworks   总被引:1,自引:0,他引:1  
The intracellular expression of highly specific antibody fragments ("intrabodies") in eukaryotes has a great potential in functional genomics and therapeutics. However, since the intracellular reducing environment prevents formation of the conserved intrachain disulfide bonds, most antibodies do not fold properly and are therefore inactive inside cells. The few antibodies that have been found to function in an intracellular environment and that have been characterized for their biophysical properties have generally shown a high degree of stability and solubility. Thus, for intracellular expression and application, very stable antibody frameworks are needed that can correctly fold even in the absence of disulfide bonds and that do not aggregate. Here, we present and discuss a novel method, named "Quality Control," which allows selection of stable and soluble antibody frameworks in vivo without the requirement or knowledge of antigens. This system is based on the expression of single-chain antibody fragments (scFvs) fused to a selectable marker that can control gene expression and cell growth. The activity of such a selectable marker fused to various scFvs that have been biophysically characterized correlated with the solubility and stability of the scFv moieties. This antigen-independent intrabody selection system was applied to screen scFv libraries for identifying stable and soluble frameworks, which subsequently served as acceptor backbones to construct intrabody libraries by randomization of hypervariable loops.  相似文献   

15.
The selective knock-down of cellular proteins has proven useful for in vivo studies of protein function and RNAi methods are readily available for this purpose. However, interfering directly at the protein level may have distinct advantages, with the intracellular targeting of antibodies (intrabodies) representing an attractive option, although not a general one. We demonstrate a novel, general strategy named suicide (or silencing) intrabody technology (SIT), based on the inducible degradation of intrabodies, which are equipped with proteasome-targeting sequences and thus converted into suicide intrabodies. We show that suicide intrabodies are able to redirect the target cellular proteins upon stimulus administration to the proteolytic machinery, thus resulting in selective protein knock-down. Remarkably, suicide intrabody acts in a catalytic fashion. SIT is a ligand-inducible strategy, potentially applicable to any protein of interest and does not require the engineering of cellular proteolytic enzymes. SIT represents a general approach to confer “neutralizing” properties to any intrabody, a valuable feature, given the present impossibility to select a priori intrinsically neutralizing antibodies. This knock-down strategy, together with available methods to isolate functional intrabodies, should allow the large-scale investigation of intracellular protein networks.  相似文献   

16.
Intracellular pathogens have evolved distinct strategies to subvert host cell defenses. At diametrically opposed ends of the spectrum with regard to the host endosomal/lysosomal defenses are the obligate intracellular protozoan Toxoplasma gondii and the bacterium Coxiella burnetti. While the intracellular replication of T. gondii requires complete avoidance of the host endocytic cascade, C. burnetti actively subverts it. This results in these organisms establishing and growing in very different vacuolar compartments. In this study we examined the potential interaction between these distinct compartments following coinfection of mammalian fibroblasts. When present within the same cell, these organisms exhibit minimal interaction with each other. Colocalization of T. gondii and C. burnetti within the same vacuole occurs at a low frequency in doubly infected cells. In such instances only one of the organisms appears to be replication competent, emphasizing the different requirements for survival and/or intracellular growth. The potential basis for both the lack of interaction between these distinct pathogen-containing compartments, and the mechanisms to address their low frequency of colocalization are discussed in the context of our understanding of the biology of the organisms and membrane traffic in eukaryotic cells.  相似文献   

17.
Within the biomedical and pharmaceutical communities there is an ongoing need to find new technologies that can be used to elucidate disease mechanisms and provide novel therapeutics. Antibodies are arguably the most powerful tools in biomedical research, and antibodies specific for extracellular or cell-surface targets are currently the fastest growing class of new therapeutic molecules. However, the majority of potential therapeutic targets are intracellular, and antibodies cannot readily be leveraged against such molecules, in the context of a viable cell or organism, because of the inability of most antibodies to form stable structures in an intracellular environment. Advances in recent years, in particular the development of intracellular screening protocols and the definition of antibody structures that retain their antigen-binding function in an intracellular context, have allowed the robust isolation of a subset of antibodies that can function in an intracellular environment. These antibodies, generally referred to as intrabodies, have immense potential in the process of drug development and may ultimately become therapeutic entities in their own right.  相似文献   

18.
19.
《MABS-AUSTIN》2013,5(6):1010-1035
Intracellular antibodies (intrabodies) are recombinant antibody fragments that bind to target proteins expressed inside of the same living cell producing the antibodies. The molecules are commonly used to study the function of the target proteins (i.e., their antigens). The intrabody technology is an attractive alternative to the generation of gene-targeted knockout animals, and complements knockdown techniques such as RNAi, miRNA and small molecule inhibitors, by-passing various limitations and disadvantages of these methods. The advantages of intrabodies include very high specificity for the target, the possibility to knock down several protein isoforms by one intrabody and targeting of specific splice variants or even post-translational modifications. Different types of intrabodies must be designed to target proteins at different locations, typically either in the cytoplasm, in the nucleus or in the endoplasmic reticulum (ER). Most straightforward is the use of intrabodies retained in the ER (ER intrabodies) to knock down the function of proteins passing the ER, which disturbs the function of members of the membrane or plasma proteomes. More effort is needed to functionally knock down cytoplasmic or nuclear proteins because in this case antibodies need to provide an inhibitory effect and must be able to fold in the reducing milieu of the cytoplasm. In this review, we present a broad overview of intrabody technology, as well as applications both of ER and cytoplasmic intrabodies, which have yielded valuable insights in the biology of many targets relevant for drug development, including α-synuclein, TAU, BCR-ABL, ErbB-2, EGFR, HIV gp120, CCR5, IL-2, IL-6, β-amyloid protein and p75NTR. Strategies for the generation of intrabodies and various designs of their applications are also reviewed.  相似文献   

20.
Intracellular genera are found in all the major groups of Protista, but are particularly common among the dinoflagellates, trypanosomatid zooflagellates and suctorian ciliates; the Sporozoa are nearly all intracellular at some stage of their life, and the Microspora entirely so. Intracellular forms can dwell in the nucleus, within phagosomal or other vacuoles or may lie free in the hyaloplasm of their host cells. Organisms tend to select their hosts from a restricted taxonomic range although there are some notable exceptions. There is also great variation in the types of host cell inhabited. There are various reasons for both host and cell selectivity including recognition phenomena at the cell surfaces. Invasion of host cells is usually preceded by surface interactions with the invader. Some organisms depend upon phagocytosis for entry, but others induce host cells to engulf them by non-phagocytic means or invade by microinjection through the host plasma membrane. Protista avoid lysosomal destruction by their resistance to enzyme attack, by surrounding themselves with lysosome-inhibiting vacuoles, by escaping from the phagosomal system into the hyaloplasm and by choosing host cells which lack lysosomes. Nutrition of intracellular heterotrophic organisms involves some degree of competition with the host cell's metabolism as well as erosion of host cell cytoplasm. In Plasmodium infections, red cells are made more permeable to required nutrients by the action of the parasite on the host cell membrane. The parasite is often dependent upon the host cell for complex nutrients which it cannot synthesize for itself. Intracellular forms often profoundly modify the structure and metabolism of the host cell or interfere with its growth and multiplication. This may result in the final lysis of the host cell at the end of the intracellular phase or before the infection of other cells. Certain types of intracellular organisms may have arisen initially as forms attached to the cell surface of digestive or other organs, but the intracellular habit appears to have arisen independently in several groups of Protista.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号