首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Parametric equations describing the total reaction rate in an electrochemical cell containing free enoate reductase are presented and their use in determining optimal cell and electrode dimensions discussed. Immobilized enoate reductase from Clostridium tyrobutyricum DSM 1460 was used for the repetitive stereospecific reduction of (E)-2-methyl-3-phenyl-2-propenoate and (E)-2-methyl-2-butenoate to their respective (R)-enantiomeric saturated products. The reducing equivalents were provided by electrochemically regenerated methylviologen. The enzyme immobilized in calcium alginate was used in two different systems: (a) on cellulose filters packed into a reactor outside the electrochemical cell, and (b) in the electrochemical cell on a carbon felt electrode soaked with the enzyme and alginate before it was cross-linked with calcium ions.Cyclic voltammetry indicated that the ionotropic gel increased the concentration of methylviologen close to the electrode surface. Via immobilization the half life of enoate reductase in the electrochemical cell increased from about 8–350 h of continuous operation.  相似文献   

2.
Long chain fatty alcohols have wide application in chemical industries and transportation sector. There is no direct natural reservoir for long chain fatty alcohol production, thus many groups explored metabolic engineering approaches for its microbial production. Escherichia coli has been the major microbial platform for this effort, however, terminal endogenous enzyme responsible for converting fatty aldehydes of chain length C14-C18 to corresponding fatty alcohols is still been elusive. Through our in silico analysis we selected 35 endogenous enzymes of E. coli having potential of converting long chain fatty aldehydes to fatty alcohols and studied their role under in vivo condition. We found that deletion of ybbO gene, which encodes NADP+ dependent aldehyde reductase, led to >90% reduction in long chain fatty alcohol production. This feature was found to be strain transcending and reinstalling ybbO gene via plasmid retained the ability of mutant to produce long chain fatty alcohols. Enzyme kinetic study revealed that YbbO has wide substrate specificity ranging from C6 to C18 aldehyde, with maximum affinity and efficiency for C18 and C16 chain length aldehyde, respectively. Along with endogenous production of fatty aldehyde via optimized heterologous expression of cyanobaterial acyl-ACP reductase (AAR), YbbO overexpression resulted in 169 mg/L of long chain fatty alcohols. Further engineering involving modulation of fatty acid as well as of phospholipid biosynthesis pathway improved fatty alcohol production by 60%. Finally, the engineered strain produced 1989 mg/L of long chain fatty alcohol in bioreactor under fed-batch cultivation condition. Our study shows for the first time a predominant role of a single enzyme in production of long chain fatty alcohols from fatty aldehydes as well as of modulation of phospholipid pathway in increasing the fatty alcohol production.  相似文献   

3.
Addition of saturated and alpha, beta-unsaturated aliphatic aldehydes (C8 to C11) significantly increased NADPH oxidation with mouse hepatic microsomes, and the aldehydes themselves were oxidized to the corresponding carboxylic acids. When these aldehyde substrates were incubated similarly under oxygen-18 gas and the carboxylic acids formed were analyzed by GC-MS after methylation, it was indicated that oxygen-18 was significantly incorporated into the carboxylic acids formed from alpha, beta-unsaturated aldehydes, but not significantly into the carboxylic acids formed from saturated aldehydes. These results indicate that enzyme and/or mechanism responsible for the oxidation of these two types of aldehydes is different from each other.  相似文献   

4.
At some point during biosynthesis of the antimalarial artemisinin in glandular trichomes of Artemisia annua, the Delta11(13) double bond originating in amorpha-4,11-diene is reduced. This is thought to occur in artemisinic aldehyde, but other intermediates have been suggested. In an effort to understand double bond reduction in artemisinin biosynthesis, extracts of A. annua flower buds were investigated and found to contain artemisinic aldehyde Delta11(13) double bond reductase activity. Through a combination of partial protein purification, mass spectrometry, and expressed sequence tag analysis, a cDNA clone corresponding to the enzyme was isolated. The corresponding gene Dbr2, encoding a member of the enoate reductase family with similarity to plant 12-oxophytodienoate reductases, was found to be highly expressed in glandular trichomes. Recombinant Dbr2 was subsequently characterized and shown to be relatively specific for artemisinic aldehyde and to have some activity on small alpha,beta-unsaturated carbonyl compounds. Expression in yeast of Dbr2 and genes encoding four other enzymes in the artemisinin pathway resulted in the accumulation of dihydroartemsinic acid. The relevance of Dbr2 to trichome-specific artemisinin biosynthesis is discussed.  相似文献   

5.
Willis RM  Wahlen BD  Seefeldt LC  Barney BM 《Biochemistry》2011,50(48):10550-10558
Fatty alcohols are of interest as a renewable feedstock to replace petroleum compounds used as fuels, in cosmetics, and in pharmaceuticals. One biological approach to the production of fatty alcohols involves the sequential action of two bacterial enzymes: (i) reduction of a fatty acyl-CoA to the corresponding fatty aldehyde catalyzed by a fatty acyl-CoA reductase, followed by (ii) reduction of the fatty aldehyde to the corresponding fatty alcohol catalyzed by a fatty aldehyde reductase. Here, we identify, purify, and characterize a novel bacterial enzyme from Marinobacter aquaeolei VT8 that catalyzes the reduction of fatty acyl-CoA by four electrons to the corresponding fatty alcohol, eliminating the need for a separate fatty aldehyde reductase. The enzyme is shown to reduce fatty acyl-CoAs ranging from C8:0 to C20:4 to the corresponding fatty alcohols, with the highest rate found for palmitoyl-CoA (C16:0). The dependence of the rate of reduction of palmitoyl-CoA on substrate concentration was cooperative, with an apparent K(m) ~ 4 μM, V(max) ~ 200 nmol NADP(+) min(-1) (mg protein)(-1), and n ~ 3. The enzyme also reduced a range of fatty aldehydes with decanal having the highest activity. The substrate cis-11-hexadecenal was reduced in a cooperative manner with an apparent K(m) of ~50 μM, V(max) of ~8 μmol NADP(+) min(-1) (mg protein)(-1), and n ~ 2.  相似文献   

6.
A novel test for the identification of genes involved in aldehyde metabolism is proposed, based on detection of altered sensitivity of the yeast to corresponding alcohols, metabolic precursors of the aldehydes. This attitude enabled to an unexpected detection increased sensitivity of mutants devoid of CuZn-superoxide dismutase (CuZnSOD) to allyl alcohol (precursor of acrolein) and nonenol. We interpret this finding as due to inactivation of some important element of aldehyde detoxification by increased flux of superoxide in DeltaCuZnSOD mutants.  相似文献   

7.
P1-zeta-crystallin (P1-ZCr) is an oxidative stress-induced NADPH:quinone oxidoreductase in Arabidopsis thaliana, but its physiological electron acceptors have not been identified. We found that recombinant P1-ZCr catalyzed the reduction of 2-alkenals of carbon chain C(3)-C(9) with NADPH. Among these 2-alkenals, the highest specificity was observed for 4-hydroxy-(2E)-nonenal (HNE), one of the major toxic products generated from lipid peroxides. (3Z)-Hexenal and aldehydes without alpha,beta-unsaturated bonds did not serve as electron acceptors. In the 2-alkenal molecules, P1-ZCr catalyzed the hydrogenation of alpha,beta-unsaturated bonds, but not the reduction of the aldehyde moiety, to produce saturated aldehydes, as determined by gas chromatography/mass spectrometry. We propose the enzyme name NADPH:2-alkenal alpha,beta-hydrogenase (ALH). A major portion of the NADPH-dependent HNE-reducing activity in A. thaliana leaves was inhibited by the specific antiserum against P1-ZCr, indicating that the endogenous P1-ZCr protein has ALH activity. Because expression of the P1-ZCr gene in A. thaliana is induced by oxidative stress treatments, we conclude that P1-ZCr functions as a defense against oxidative stress by scavenging the highly toxic, lipid peroxide-derived alpha,beta-unsaturated aldehydes.  相似文献   

8.
A novel whole-cell biocatalyst with high allylic alcohol-oxidizing activities was screened and identified as Yokenella sp. WZY002, which chemoselectively reduced the C=O bond of allylic aldehydes/ketones to the corresponding α,β-unsaturated alcohols at 30°C and pH 8.0. The strain also had the capacity of stereoselectively reducing aromatic ketones to (S)-enantioselective alcohols. The enzyme responsible for the predominant allylic/benzyl alcohol dehydrogenase activity was purified to homogeneity and designated YsADH (alcohol dehydrogenase from Yokenella sp.), which had a calculated subunit molecular mass of 36,411 Da. The gene encoding YsADH was subsequently expressed in Escherichia coli, and the purified recombinant YsADH protein was characterized. The enzyme strictly required NADP(H) as a coenzyme and was putatively zinc dependent. The optimal pH and temperature for crotonaldehyde reduction were pH 6.5 and 65°C, whereas those for crotyl alcohol oxidation were pH 8.0 and 55°C. The enzyme showed moderate thermostability, with a half-life of 6.2 h at 55°C. It was robust in the presence of organic solvents and retained 87.5% of the initial activity after 24 h of incubation with 20% (vol/vol) dimethyl sulfoxide. The enzyme preferentially catalyzed allylic/benzyl aldehydes as the substrate in the reduction of aldehydes/ketones and yielded the highest activity of 427 U mg−1 for benzaldehyde reduction, while the alcohol oxidation reaction demonstrated the maximum activity of 79.9 U mg−1 using crotyl alcohol as the substrate. Moreover, kinetic parameters of the enzyme showed lower Km values and higher catalytic efficiency for crotonaldehyde/benzaldehyde and NADPH than for crotyl alcohol/benzyl alcohol and NADP+, suggesting the nature of being an aldehyde reductase.  相似文献   

9.
The aldo-keto reductase superfamily catalyzes the reduction of a broad range of aldehydes and ketones to their corresponding alcohols. Here we report the cloning of the mouse aldehyde reductase cDNA and its embryonic pattern of expression. From stages E7.5 to E13.5 the gene encoding for this enzyme is expressed at high levels in several tissues, including the neural ectoderm, gut endoderm, somites, branchial arches, otic vesicles, limb buds, and tail bud. In adult mice aldehyde reductase was expressed in all tissues examined.  相似文献   

10.
Rat kidney was shown to contain two NADPH-linked aldehyde reductases (alcohol:NADP+) oxidoreductase, EC 1.1.1.2) with different substrate affinities. The high-Km aldehyde reductase, which was purified to apparent homogeneity, had a molecular weight of 32 000 as determined by Sephadex G-100 gel filtration, and of 37 000 by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. The purified enzyme reduced various aliphatic aldehydes of different carbon-chain lengths besides many chemicals containing aldehyde groups. The Km values for n-hexadecanal and n-octadecanal were 8 microM and 4 microM, respectively. Bovine serum albumin (1.8 mM) stimulated the reduction of n-hexadecanal and n-octadecanal, and increased the Vmax values by about 15-fold without changing the Km values. The kidney enzyme was not distinguishable from the brain and liver high-Km aldehyde reductases in mobility on polyacrylamide gel electrophoresis, immunological properties, peptide maps or substrate specificity.  相似文献   

11.
Initial-rate measurements were made of the oxidations of pyridine-3-methanol and glycerol by NADP+ and of the reduction of the corresponding aldehydes by NADPH catalysed by pig kidney aldehyde reductase. In addition, a brief survey of the specificity of the enzyme towards aldehyde substrates and its sensitivity to the inhibitors ethacrynic acid, sodium barbitone and warfarin was made. The detailed kinetic work indicates a compulsory mechanism for aldehyde reduction, with NADPH binding before aldehyde. For alcohol oxidation, however, it is necessary to postulate the formation of kinetically significant amounts of binary complexes of the type enzyme-alcohol to explain the results. Thus, for alcohol oxidation random-order addition of substrates may occur. Inhibition studies of the kinetics of aldehyde reduction in the presence of the corresponding alcohol product provide further evidence for the existence of enzyme-alcohol complexes. Finally, detailed kinetic studies were made of the inhibition of pyridine-3-aldehyde reduction by sodium barbitone. The mechanism of the inhibition is discussed.  相似文献   

12.
In this study we have examined the roles of alcohol dehydrogenase, aldehyde oxidase, and aldehyde dehydrogenase in the adaptation of Drosophila melanogaster to alcohol environments. Fifteen strains were characterized for genetic variation at the above loci by protein electrophoresis. Levels of in vitro enzyme activity were also determined. The strains examined showed considerable variation in enzyme activity for all three gene-enzyme systems. Each enzyme was also characterized for coenzyme requirements, effect of inhibitors, subcellular location, and tissue specific expression. A subset of the strains was chosen to assess the physiological role of each gene-enzyme system in alcohol and aldehyde metabolism. These strains were characterized for both the ability to utilize alcohols and aldehydes as carbon sources as well as the capacity to detoxify such substrates. The results of the above analyses demonstrate the importance of both alcohol dehydrogenase and aldehyde dehydrogenase in the in vivo metabolism of alcohols and aldehydes.  相似文献   

13.
An enzyme which we call carboxylic acid reductase (aldehyde dehydrogenase) seems to be the first which is able to reduce non-activated carboxylic acids to aldehydes at the expense of reduced viologens. There is no further reduction of the aldehydes to the corresponding alcohols. In the presence of oxidized viologens aldehydes can be dehydrogenated to carboxylic acids roughly 20 times faster than the latter are reduced. The specific enzyme activity in crude extracts is about 100 times increased if 10 microM tungstate and a sulphur source in addition to sulphate is given to the growth medium of Clostridium thermoaceticum. Carboxylic acid reductase seems to be present in two forms. One has an apparent molecular mass of about 240 kDa and is bound to red-Sepharose, whereas, the other, a form of an apparent molecular mass of about 60 kDa, is not bound. SDS gel electrophoresis shows a higher complexity. The very labile enzyme has been enriched by a factor of about 145 by binding to octyl-Sepharose and further chromatographic separation by red-Sepharose and FPLC using Mono-Q and phenyl-Superose columns. After cell growth in the presence of [185W]tungstate, radioactivity coincides with the two forms of enzyme activity during all purification steps. This is also the case when the enzyme is electrophoretically separated on polyacrylamide slab gels.  相似文献   

14.
Alcohol oxidase (alcohol:oxygen oxidoreductase) was crystallized from a methanolgrown yeast, Pichia sp. The crystalline enzyme is homogenous as judged from polyacrylamide gel electrophoresis. Alcohol oxidase catalyzed the oxidation of short-chain primary alcohols (C1 to C6), substituted primary alcohols (2-chloroethanol, 3-chloro-1-propanol, 4-chlorobutanol, isobutanol), and formaldehyde. The general reaction with an oxidizable substrate is as follows: Primary alcohol + O2 → aldehyde + H2O2 Formaldehyde + O2 → formate + H2O2. Secondary alcohols, tertiary alcohols, cyclic alcohols, aromatic alcohols, and aldehydes (except formaldehyde) were not oxidized. The Km values for methanol and formaldehyde are 0.5 and 3.5 mm, respectively. The stoichiometry of substrate oxidized (alcohol or formaldehyde), oxygen consumed, and product formed (aldehyde or formate) is 1:1:1. The purified enzyme has a molecular weight of 300,000 as determined by gel filtration and a subunit size of 76,000 as determined by sodium dodecyl sulfate-gel electrophoresis, indicating that alcohol oxidase consists of four identical subunits. The purified alcohol oxidase has absorption maxima at 460 and 380 nm which were bleached by the addition of methanol. The prosthetic group of the enzyme was identified as a flavin adenine dinucleotide. Alcohol oxidase activity was inhibited by sulfhydryl reagents (p-chloromercuribenzoate, mercuric chloride, 5,5′-dithiobis-2-nitrobenzoate, iodoacetate) indicating the involvement of sulfhydryl groups(s) in the oxidation of alcohols by alcohol oxidase. Hydrogen peroxide (product of the reaction), 2-aminoethanol (substrate analogue), and cupric sulfate also inhibited alcohol oxidase activity.  相似文献   

15.
The saturated and 2-enoic primary alcohols and aldehydes, ethanol, 1-propanol, 1-butanol, 3-methyl-1-butanol, 1-hexanol, phenylmethanol, 3-phenyl-1-propanol, 2-propen-1-ol, 2-buten-1-ol, 3-methyl-2-buten-1-ol, 2-hexen-1-ol, 3-phenyl-2-propen-1-ol, ethanal, 1-propanal, 1-butanal, 1-hexanal, phenylmethanal, 3-phenyl-1-propanal, 2-propen-1-al, 2-buten-1-al, 2-hexen-1-al, and 3-phenyl-2-propen-1-al, have been compared under uniform conditions as substrates for the alcohol dehydrogenase enzymes from horse and human liver and from yeast. Kinetic constants (Km arid V) have been measured for each of the substrates with each of the enzymes; equilibrium constants for the various alcohol-aldehyde pairs have also been estimated. The results obtained emphasize the similarities of yeast alcohol dehydrogenase to horse and human liver alcohol dehydrogenase, showing the specificity of yeast alcohol dehydrogenase to be less restricted than formerly believed. In general, the 2-enoic alcohols are better substrates for all three alcohol dehydrogenases than their saturated analogs; on the other hand, saturated aldehydes are better substrates than the 2-enoic aldehydes. Based on these various findings, it is suggested that a more likely candidate than ethanol for the physiological substrate of alcohol dehydrogenase in mammalian systems may well be an unsaturated alcohol, although the wide variety of substrates catalyzed at high rates is not incompatible with a general detoxifying function for alcohols or aldehydes, or both, by alcohol dehydrogenase.  相似文献   

16.
A tomato short-chain dehydrogenase-reductase (SlscADH1) is preferentially expressed in fruit with a maximum expression at the breaker stage while expression in roots, stems, leaves and flowers is very weak. It represents a potential candidate for the formation of aroma volatiles by interconverting alcohols and aldehydes. The SlscADH1 recombinant protein produced in Escherichia coli exhibited dehydrogenase-reductase activity towards several volatile compounds present in tomato flavour with a strong preference for the NAD/NADH co-factors. The strongest activity was observed for the reduction of hexanal (K(m)=0.175mM) and phenylacetaldehyde (K(m)=0.375mM) in the presence of NADH. The oxidation process of hexanol and 1-phenylethanol was much less efficient (K(m)s of 2.9 and 23.0mM, respectively), indicating that the enzyme preferentially acts as a reductase. However activity was observed only for hexanal, phenylacetaldehyde, (E)-2-hexenal and acetaldehyde and the corresponding alcohols. No activity could be detected for other aroma volatiles important for tomato flavour, such as methyl-butanol/methyl-butanal, 5-methyl-6-hepten-2-one/5-methyl-6-hepten-2-ol, citronellal/citronellol, neral/nerol, geraniol. In order to assess the function of the SlscADH1 gene, transgenic plants have been generated using the technique of RNA interference (RNAi). Constitutive down-regulation using the 35S promoter resulted in the generation of dwarf plants, indicating that the SlscADH1 gene, although weakly expressed in vegetative tissues, had a function in regulating plant development. Fruit-specific down-regulation using the 2A11 promoter had no morphogenetic effect and did not alter the aldehyde/alcohol balance of the volatiles compounds produced by the fruit. Nevertheless, SlscADH1-inhibited fruit unexpectedly accumulated higher concentrations of C5 and C6 volatile compounds of the lipoxygenase pathway, possibly as an indirect effect of the suppression of SlscADH1 on the catabolism of phospholipids and/or integrity of membranes.  相似文献   

17.
A series or γ- and δ-lactones could be found in the thermal oxidative products of normal saturated acids, aldehydes, and alcohols (C9, C10, and C12, respectively) heated at 180°C in the presence of 0.1% KMnO4. Their lactones were identified by gas chromatography, infrared spectroscopy, and mass spectroscopy. And they could be detected also in the volatile compounds occurred by heating of C10 acid, aldehyde, and alcohol mixed with pork fat. So it was expected that lactones in meat fat flavor described in the earlier papers could be secondary products converted from saturated acids, aldehydes, and alcohols formed by oxidative degradation of meat fats. This process was presumed to be one of the mechanisms of the lactone formation.

It was discussed that lactones might be derived through mono or dihydroperoxides of acids, aldehydes, and alcohols.  相似文献   

18.
Whole cultures of Nocardia sp. NRRL 5646 reduce carboxylic acids, first to aldehydes, then to alcohols and subsequently to the corresponding acetyl esters. This work describes an NADPH-dependent reductase responsible for catalyzing the reduction of aldehyde intermediates, which was purified 3240-fold by a combination of Mono-Q, hydroxyapatite, and ADP-agarose chromatographies. By sodium dodecyl sulfate–polyacrylamide gel electrophoresis, the purified enzyme ran as a single band of 47 kDa. A native molecular mass estimated at 101 kDa indicated that the enzyme was a homodimer in the native, active state. Edman degradation indicated a unique N-terminal sequence as NH2-X-X-Ala-Ala-Ala-Tyr-Ala-Val-Pro-Ala-Pro-Asp-Gly-Cys-Phe-Glu-Lys-Val-Thr-Ile-Glu-Arg-Arg-Glu-Leu-Gly. The enzyme catalyzed reductions of many aryl- and alkyl-aldehyde substrates. Reactions were most favorable in the direction of aldehyde reduction to alcohols. Journal of Industrial Microbiology & Biotechnology (2000) 25, 328–332. Received 08 May 2000/ Accepted in revised form 20 October 2000  相似文献   

19.
Normal fatty aldehyde and alcohol metabolism is essential for epidermal differentiation and function. Long-chain aldehydes are produced by catabolism of several lipids including fatty alcohols, sphingolipids, ether glycerolipids, isoprenoid alcohols and certain aliphatic lipids that undergo α- or ω-oxidation. The fatty aldehyde generated by these pathways is chiefly metabolized to fatty acid by fatty aldehyde dehydrogenase (FALDH, alternately known as ALDH3A2), which also functions to oxidize fatty alcohols as a component of the fatty alcohol:NAD oxidoreductase (FAO) enzyme complex. Genetic deficiency of FALDH/FAO in patients with Sjögren–Larsson syndrome (SLS) results in accumulation of fatty aldehydes, fatty alcohols and related lipids (ether glycerolipids, wax esters) in cultured keratinocytes. These biochemical changes are associated with abnormalities in formation of lamellar bodies in the stratum granulosum and impaired delivery of their precursor membranes to the stratum corneum (SC). The defective extracellular SC membranes are responsible for a leaky epidermal water barrier and ichthyosis. Although lamellar bodies appear to be the pathogenic target for abnormal fatty aldehyde/alcohol metabolism in SLS, the precise biochemical mechanisms are yet to be elucidated. Nevertheless, studies in SLS highlight the critical importance of FALDH and normal fatty aldehyde/alcohol metabolism for epidermal function. This article is part of a Special Issue entitled The Important Role of Lipids in the Epidermis and their Role in the Formation and Maintenance of the Cutaneous Barrier. Guest Editors: Kenneth R. Feingold and Peter Elias.  相似文献   

20.
Initial-rate measurements were made of the reduction of pyridine-3-aldehyde and p-carboxybenzaldehyde by NADPH catalyzed by pig liver aldehyde reductase I. The initial velocity analysis and product inhibition data suggest that aldehyde reductase I obeys a compulsory-order mechanism with pyridine-3-aldehyde as substrate but follows a partially random-order pathway with p-carboxybenzaldehyde. The partially random-order pathway would be operative only at high concentrations of p-carboxybenzaldehyde. In both cases, aldehydes and the corresponding alcohol substrates inhibit the enzyme at high concentration. Abortive ternary complexes are shown to be formed with pyridine-3-aldehyde and with p-carboxybenzaldehyde. Dissociation of the coenzyme from the abortive ternary complex seems only to be observed with p-carboxybenzaldehyde. This study suggests overall that an enzyme kinetic mechanism may be different, depending on whether specific interactions can occur between certain amino acid residue(s) of the protein active site and substrates. Finally, the mechanism of the inhibition of pyridine-3-aldehyde reduction by diacid derivatives is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号