首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Drought is a severe environmental constraint to plant productivity and an important factor limiting barley yield. To investigate the initial response of barley to drought stress, changes in protein profile were analyzed using a proteomics technique. Three-day-old barley seedlings of sensitive genotype 004186 and tolerant genotype 004223 were given two treatments, one with 20 % polyethylene glycol and the second with drought induced by withholding water. After 3 days of treatments, proteins were extracted from shoots and separated by 2-dimensional polyacrylamide gel electrophoresis. Metabolism related proteins were decreased in the sensitive genotype under drought; however, they were increased in the tolerant genotype. Photosynthetic related proteins were decreased and increased among the three sensitive and three tolerant genotypes, respectively. In addition, amino acid synthesis and degradation related proteins were increased and decreased among the three tolerant genotypes. These results suggest that chloroplastic metabolism and energy related proteins might play a significant role in the adaptation process of barley seedlings under drought stress.  相似文献   

2.
3.
4.
  • Salinity is one of the most severe environmental stresses, negatively affecting productivity of salt‐sensitive crop species. Given that germination is the most critical phase in the plant life cycle, the present study aimed to determine seed germination potential and associated traits under salt stress conditions as a simple approach to identify salt‐tolerant lentil genotypes.
  • The genetic material consisted of six lentil genotypes whose adaptation to various agroclimatic conditions is not well elucidated. Salinity stress was applied by addition of NaCl at three different levels of stress, while non‐stressed plants were included as controls. Evaluation of tolerance was performed on the basis of germination percentage, seed water absorbance, root and shoot length, seedling water content, seedling vigour index and number of seedlings with an abnormal phenotype.
  • Overall, our findings revealed that salinity stress substantially affects all traits associated with germination and early seedling growth, with the effect of salinity being dependent on the level of stress applied. It is noteworthy, however, that genotypes responded differently to the varying salinity levels. In this context, Samos proved the most salt‐tolerant genotype, indicating its possible use for cultivation under stress conditions.
  • In conclusion, the determination of seed germination and early growth potential may be exploited as an efficient strategy to reveal genetic variation in lentil germplasm of unknown tolerance to salinity stress. This approach allows selection of desirable genotypes at early growth stages, thus enabling more efficient application of various breeding methods to achieve stress‐tolerant lentil genotypes.
  相似文献   

5.
Herein we describe a high-throughput fluorescence and HPLC-based methodology for global profiling of reactive oxygen and nitrogen species (ROS/RNS) in biological systems. The combined use of HPLC and fluorescence detection is key to successful implementation and validation of this methodology. Included here are methods to specifically detect and quantitate the products formed from interaction between the ROS/RNS species and the fluorogenic probes, as follows: superoxide using hydroethidine, peroxynitrite using boronate-based probes, nitric oxide-derived nitrosating species with 4,5-diaminofluorescein, and hydrogen peroxide and other oxidants using 10-acetyl-3,7-dihydroxyphenoxazine (Amplex® Red) with and without horseradish peroxidase, respectively. In this study, we demonstrate real-time monitoring of ROS/RNS in activated macrophages using high-throughput fluorescence and HPLC methods. This global profiling approach, simultaneous detection of multiple ROS/RNS products of fluorescent probes, developed in this study will be useful in unraveling the complex role of ROS/RNS in redox regulation, cell signaling, and cellular oxidative processes and in high-throughput screening of anti-inflammatory antioxidants.  相似文献   

6.
7.
Reactive oxygen species (ROS) production and scavenging in plants under drought stress have been studied intensively in recent years. Here we report a global analysis of gene expression for the major ROS generating and scavenging proteins in alfalfa root and shoot under gradual drought stress followed by one-day recovery. Data from two alfalfa varieties, one drought tolerant and one drought sensitive, were compared and no qualitative differences in ROS gene regulation between the two were found. Conserved, tissue-specific patterns of gene expression in response to drought were observed for several ROS-scavenging gene families, including ascorbate peroxidase, monodehydroascorbate reductase, and peroxiredoxin. In addition, differential gene expression within families was observed. Genes for the ROS-generating enzyme, NADPH oxidase were generally induced under drought, while those for glycolate oxidase were repressed. Among the ROS-scavenging protein genes, Ferritin, Cu/Zn superoxide dismutase (SOD), and the majority of the glutathione peroxidase family members were induced under drought in both roots and shoots of both alfalfa varieties. In contrast, Fe-SOD, CC-type glutaredoxins, and thoiredoxins were downregulated.  相似文献   

8.
Silvente S  Sobolev AP  Lara M 《PloS one》2012,7(6):e38554
Soybean (Glycine max L.) is an important source of protein for human and animal nutrition, as well as a major source of vegetable oil. The soybean crop requires adequate water all through its growth period to attain its yield potential, and the lack of soil moisture at critical stages of growth profoundly impacts the productivity. In this study, utilizing (1)H NMR-based metabolite analysis combined with the physiological studies we assessed the effects of short-term water stress on overall growth, nitrogen fixation, ureide and proline dynamics, as well as metabolic changes in drought tolerant (NA5009RG) and sensitive (DM50048) genotypes of soybean in order to elucidate metabolite adjustments in relation to the physiological responses in the nitrogen-fixing plants towards water limitation. The results of our analysis demonstrated critical differences in physiological responses between these two genotypes, and identified the metabolic pathways that are affected by short-term water limitation in soybean plants. Metabolic changes in response to drought conditions highlighted pools of metabolites that play a role in the adjustment of metabolism and physiology of the soybean varieties to meet drought effects.  相似文献   

9.
Effects of long-term sodium chloride salinity (100 and 200 mM NaCl; ECe = 6.85 and 12.3 dS m–1) were studied in tolerant (Kharchia 65, KRL 19) and susceptible (HD 2009, HD 2687) wheat genotypes. NaCl decreased relative water content (RWC), chlorophyll content (Chl), membrane stability index (MSI) and ascorbic acid (AA) content, and increased the contents of hydrogen peroxide, thiobarbituric acid reactive substances (TBARS), and activities of superoxide dismutase (SOD), ascorbate peroxidase (APOX) and glutathione reductase (GR). Kharchia 65 showed lowest decline in RWC, Chl, MSI and AA content, lowest increase in H2O2 and TBARS contents and higher increase in SOD and its isozymes, APOX and GR, while HD2687 showed the highest decrease in AA content, highest increase in H2O2 and TBARS contents and smallest increase in activities of antioxidant enzymes. KRL 19 and HD 2009 showed intermediate response both in terms of oxidative stress and antioxidant activity.  相似文献   

10.
Abrupt drought–flood alternation (T1) is a meteorological disaster that frequently occurs during summer in southern China and the Yangtze river basin, often causing a significant loss of rice production. In this study, the response mechanism of yield decline under abrupt drought–flood alternation stress at the panicle differentiation stage was analyzed by looking at the metabolome, proteome as well as yield and physiological and biochemical indexes. The results showed that drought and flood stress caused a decrease in the yield of rice at the panicle differentiation stage, and abrupt drought–flood alternation stress created a synergistic effect for the reduction of yield. The main reason for the decrease of yield per plant under abrupt drought–flood alternation was the decrease of seed setting rate. Compared with CK0 (no drought and no flood), the net photosynthetic rate and soluble sugar content of T1 decreased significantly and its hydrogen peroxidase, superoxide dismutase, peroxidase activity increased significantly. The identified differential metabolites and differentially expressed proteins indicated that photosynthesis metabolism, energy metabolism pathway and reactive oxygen species response have changed strongly under abrupt drought–flood alteration stress, which are factors that leads to the rice grain yield reduction.  相似文献   

11.
12.
Drought is a major restrictive factor for declining grain yield in lentil globally. Present investigation was conducted by taking microsperma (HUL-57) and macrosperma (IPL-406) genotypes of lentil (Lens culinaris Medik.) as information regarding physiological and biochemical basis of differences in drought resistance in macrosperma (bold-seeded) and microsperma (small-seeded) are not well understood. Pot grown plants were exposed to drought stress at specific phenophase viz. mid-vegetative, flower initiation and pod formation stage by withholding irrigation till the plants experienced one cycle of permanent wilting (PWP). Genotypes exhibited substantial differences for most of the measured traits under drought irrespective of the phenophase of stress imposed. Under drought HUL-57 had lower CMI, higher CSI, lower values of Δ13C, maintained higher SLN, accumulated more N and efficiently remobilized accumulated N to developing seeds. Higher chlorophyll content, increased accumulation of osmotically active solutes viz. soluble sugars and proline under drought stress was evident in HUL-57. Drought induced H2O2 accumulation and lipid peroxidation in both genotypes, but increments were of lesser magnitudes in HUL-57. Drought stress of pod formation stage followed by flower initiation stage was most damaging than the stress imposed at mid-vegetative stage in both genotypes. HUL-57 showed a better drought resistance capacity than IPL-406. Drought indices viz. DSI, STI and MP are proposed as criterion to identify and breed lentil genotypes for drought conditions.  相似文献   

13.
14.
The growth of the wild-type and three salt tolerant mutants of barnyard grass ( Echinochloa crusgalli L.) under salt stress was investigated in relation to oxidative stress and activities of the antioxidant enzymes superoxide dismutase (SOD: EC 1.15.1.1), catalase (CAT: EC 1.11.1.6), phenol peroxidase (POD: EC 1.11.1.7), glutathione reductase (GR: EC 1.8.1.7) and ascorbate peroxidase (APX: EC 1.11.1.1). The three mutants ( fows B17, B19 and B21) grew significantly better than the wild-type under salt stress (200 m M NaCl) but some salt sensitive individuals were still detectable in the populations of the mutants though in smaller numbers compared with the wild-type. The salt sensitive plants had slower growth rates, higher rates of lipid peroxidation and higher levels of reactive oxygen species (ROS) in their leaves compared with the more tolerant plants from the same genotype. These sensitivity responses were maximized when the plants were grown under high light intensity suggesting that the chloroplast could be a main source of ROS under salt stress. However, the salt sensitivity did not correlate with reduced K +/Na + ratios or enhanced Na + uptake indicating that the sensitivity responses may be mainly because of accumulation of ROS rather than ion toxicity. SOD activities did not correlate to salt tolerance. Salt stress resulted in up to 10-fold increase in CAT activity in the sensitive plants but lower activities were found in the tolerant ones. In contrast, the activities of POD, APX and GR were down regulated in the sensitive plants compared with the tolerant ones. A correlation between plant growth, accumulation of ROS and differential modulation of antioxidant enzymes is discussed. We conclude that loss of activities of POD, APX and GR causes loss of fine regulation of ROS levels and hence the plants experience oxidative stress although they have high CAT activities.  相似文献   

15.

Background  

The effects of viral infection involve concomitant plant gene variations and cellular changes. A simple system is required to assess the complexity of host responses to viral infection. The genome of the Rice yellow mottle virus (RYMV) is a single-stranded RNA with a simple organisation. It is the most well-known monocotyledon virus model. Several studies on its biology, structure and phylogeography have provided a suitable background for further genetic studies. 12 rice chromosome sequences are now available and provide strong support for genomic studies, particularly physical mapping and gene identification.  相似文献   

16.
Fu  Xujun  Wang  Jian  Shangguan  Tengwei  Wu  Rong  Li  Sujuan  Chen  Guang  Xu  Shengchun 《Plant Growth Regulation》2022,96(3):397-408
Plant Growth Regulation - Soybeans are one of the most important crops worldwide, but yield and quality can be severely affected by abiotic stresses. Genes in the Suppressor of MAX2 1-Like (SMXL)...  相似文献   

17.
Mitochondria can be a source of reactive oxygen species (ROS) and a target of oxidative damage during oxidative stress. In this connection, the effect of photodynamic treatment (PDT) with Mitotracker Red (MR) as a mitochondria-targeted photosensitizer has been studied in HeLa cells. It is shown that MR produces both singlet oxygen and superoxide anion upon photoactivation and causes photoinactivation of gramicidin channels in a model system (planar lipid bilayer). Mitochondria-targeted antioxidant (MitoQ) inhibits this effect. In living cells, MR-mediated PDT initiates a delayed ("dark") accumulation of ROS, which is accelerated by inhibitors of the respiratory chain (piericidin, rotenone and myxothiazol) and inhibited by MitoQ and diphenyleneiodonium (an inhibitor of flavin enzymes), indicating that flavin of Complex I is involved in the ROS production. PDT causes necrosis that is prevented by MitoQ. Treatment of the cell with hydrogen peroxide causes accumulation of ROS, and the effects of inhibitors and MitoQ are similar to that described for the PDT model. Apoptosis caused by H2O2 is augmented by the inhibitors of respiration and suppressed by MitoQ. It is concluded that the initial segments of the respiratory chain can be an important source of ROS, which are targeted to mitochondria, determining the fate of the cell subjected to oxidative stress.  相似文献   

18.
19.
20.
Aim of the present study was to determine differential responses in growth and physiology of tolerant (cv. IGPN 2004) and sensitive (cv. GA 10) cultivars of Niger (Guizotia abyssinica Cass.) using in vitro grown calli under water deficit conditions. The calli were subjected to drought stress using PEG-8000 (–0.16,–0.45,–0.87,–1.42 bar) for 15 d and relative growth rate (RGR), percent tissue water content (% TWC), osmolytes (proline–Pro, glycine betaine—GB, total soluble sugars—TSS) accumulation, malondialehyde (MDA) content as well as antioxidant enzyme activities such as superoxide dismutase (SOD), ascorbate peroxidase (APX) and catalase (CAT) were analysed. Our findings showed that RGR and percent TWC was decreased significantly with the intensity of drought stress in both cultivars, but the RGR reduction was least (five folds) in cv. IGPN 2004 than in cv. GA 10 (6.2 folds). In osmolyte accumulation such as Pro and GB, cv. IGPN 2004 was found superior (5.5 and ten folds higher, respectively) to tolerate drought stress than GA 10; however, no change was observed in TSS accumulation. Further, it was noted that cv. IGPN 2004 caused least oxidative damage to the membranes. It also exhibited better SOD, CAT and APX activities and had higher α-tocopherol content. The least reduction in growth and MDA content and higher osmolytes and antioxidant activities in cv. IGPN 2004 revealed more drought stress tolerance at cellular level. It was suggested that increased drought tolerance of cv. IGPN 2004 was coupled with its better maintenance of RGR, percent TWC, reduced lipid peroxidation, more accumulation of osmolytes and higher antioxidant enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号