首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Most oribatid mites are well known for their exocrine oil gland secretions, from which more than a hundred different chemical components (hydrocarbons, terpenes, aromatics and alkaloids) have been described. The biological functions of these secretions have remained enigmatic for most species, but alarm-pheromonal and allomonal functions have been hypothesized, and demonstrated in some cases. Here, we tested different experimental stimuli to induce the release of defensive secretions in the model oribatid mite Archegozetes longisetosus Aoki. Whereas various mechanical stimuli did not result in a reproducible and complete expulsion of oil gland secretions, repeated treatments with hexane led to complete discharge. Life history parameters such as survival, development and reproduction were not influenced by the hexane treatment. Repeated hexane treatments also resulted in a complete depletion of oil glands in Euphthiracarus cribrarius Berlese.  相似文献   

2.
Pare PW  Tumlinson JH 《Plant physiology》1997,114(4):1161-1167
In response to insect feeding on the leaves, cotton (Gossypium hirsutum L.) plants release elevated levels of volatiles, which can serve as a chemical signal that attracts natural enemies of the herbivore to the damaged plant. Pulse-labeling experiments with [13C]CO2 demonstrated that many of the volatiles released, including the acyclic terpenes (E,E)-[alpha]-farnesene, (E)-[beta]-farnesene, (E)-[beta]-ocimene, linalool, (E)-4,8-dimethyl-1,3,7-nonatriene, and (E/E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene, as well as the shikimate pathway product indole, are biosynthesized de novo following insect damage. However, other volatile constituents, including several cyclic terpenes, butyrates, and green leaf volatiles of the lipoxygenase pathway are released from storage or synthesized from stored intermediates. Analysis of volatiles from artificially damaged plants, with and without beet armyworm (Spodoptera exigua Hubner) oral secretions exogenously applied to the leaves, as well as volatiles from beet armyworm-damaged and -undamaged control plants, demonstrated that the application of caterpillar oral secretions increased both the production and release of several volatiles that are synthesized de novo in response to insect feeding. These results establish that the plant plays an active and dynamic role in mediating the interaction between herbivores and natural enemies of herbivores.  相似文献   

3.
Terpenes are a diverse group of plant secondary metabolites that mediate a plethora of ecological interactions in many plant species. Despite increasing research into the genetic control of important adaptive traits in some plant species, the genetic control of terpenes in forest tree species is still relatively poorly studied. In this study, we use quantitative genetic and quantitative trait loci (QTL) analysis to investigate the genetic control of foliar terpenes in an ecologically and commercially important eucalypt species, Eucalyptus globulus. We show a moderate to high within-family broad-sense heritability and significant genetic basis to the variation in 14 of the 16 terpenes assayed. This is the first report of QTL for terpenes in this species. Eleven QTL influenced the terpenes overall. One QTL on linkage group 6 affected six of the seven different sesquiterpenes assayed (plus one monoterpene), which, in combination with highly significant correlations between these compounds, argues that their variation is influenced by a QTL with pleiotropic effect early in the biosynthetic pathway. We examine the homology of these QTL to those found in a closely related eucalypt, Eucalyptus nitens, and provide evidence that both common and unique QTL influence terpene levels.  相似文献   

4.
采用正己烷萃取法,结合GC-MS(气相色谱-质谱联用)技术,并通过谱库、保留指数和文献检索定性,内标法定量,分析9种唇形科芳香植物叶片的挥发性萜类成分并比较其差异,所得结果不仅为芳香植物的高效利用、合理开发提供参考,还为植物萜类的代谢研究提供依据。结果显示:从9种芳香植物中共检测到77种挥发性萜类物质,藿香中检测到的种类最多,为46种,迷迭香(35种)、百里香(33种)、药用鼠尾草(33种)和美国薄荷(31种)次之,石竹烯和蛇麻烯为9种植物共有成分。迷迭香中检测到的挥发性萜类的含量最高,其次是药用鼠尾草和藿香。单萜类成上分明显高于倍半萜类,因此迷迭香、药用鼠尾草、藿香、百里香和美国薄荷,较适宜作为提取挥发性萜类的材料;香蜂花只适宜柠檬醛的提取,牛至、凤梨鼠尾草和南欧丹参不适宜作为提取挥发性萜类的材料。上述芳香植物在正常环境中生成单萜类化合物的能力高于生成倍半萜类化合物的能力,可能与其含有的萜类合酶有关。  相似文献   

5.
The effect of the terpenes α-pinene, eucalyptol, and limonene, individually and as mixtures, on atrazine (ATZ) biodegradation and on biological activity in a biobed biomixture was evaluated. Additionally, terpenes emitted from the biomixture were captured using solid-phase microextraction. Terpenes added individually at relatively low concentrations (50 μg kg?1) significantly enhanced ATZ degradation and biological activity during the first incubation days. No significant effect on ATZ degradation was found from adding the terpene mixture, and, interestingly, an inhibitory effect on phenoloxidase activity was found during the first 20 days of incubation when mixed terpenes were present at 100 μg kg?1. Capturing terpenes demonstrated that during the first hour of incubation a significant fraction of the terpenes was volatilized. These results are the first to demonstrate the feasibility of using terpenes to enhance the degradation of a pesticide. However, successive applications of terpenes or the addition of materials that slowly release terpenes could sustain the ATZ degradation enhancement.  相似文献   

6.
The capability of the yeast Lodderomyces elongisporus to utilize solved paraffins in fermentation brothes could be demonstrated. The growth rate of this microorganism in the case of utilization of solved paraffins is higher as the most known dates. The saturated concentrations of solved hydrocarbons in the fermentation brothes are higher as in real solvent systems. The part of the solved hydrocarbon is a function of the power input, the diameter of oil drops, the fermentation conditions and the length of the paraffin chain. The organism growth rate depends on the solved paraffin concentration in the fermentation broth. This fact is one of the reasons for the variability of the consumption coefficients by utilization of paraffins with different chain lenghts. The results confirm the assumption that the transport of the paraffins from the oil drops to the cells takes place over water soluble phase.  相似文献   

7.
Terpenes are natural products with a remarkable diversity in their chemical structures and they hold a significant market share commercially owing to their distinct applications. These potential molecules are usually derived from terrestrial plants, marine and microbial sources. In vitro production of terpenes using plant tissue culture and plant metabolic engineering, although receiving some success, the complexity in downstream processing because of the interference of phenolics and product commercialization due to regulations that are significant concerns. Industrial workhorses’ viz., Escherichia coli and Saccharomyces cerevisiae have become microorganisms to produce non-native terpenes in order to address critical issues such as demand-supply imbalance, sustainability and commercial viability. S. cerevisiae enjoys several advantages for synthesizing non-native terpenes with the most significant being the compatibility for expressing cytochrome P450 enzymes from plant origin. Moreover, achievement of high titers such as 40?g/l of amorphadiene, a sesquiterpene, boosts commercial interest and encourages the researchers to envisage both molecular and process strategies for developing yeast cell factories to produce these compounds. This review contains a brief consideration of existing strategies to engineer S. cerevisiae toward the synthesis of terpene molecules. Some of the common targets for synthesis of terpenes in S. cerevisiae are as follows: overexpression of tHMG1, ERG20, upc2-1 in case of all classes of terpenes; repression of ERG9 by replacement of the native promoter with a repressive methionine promoter in case of mono-, di- and sesquiterpenes; overexpression of BTS1 in case of di- and tetraterpenes. Site-directed mutagenesis such as Upc2p (G888A) in case of all classes of terpenes, ERG20p (K197G) in case of monoterpenes, HMG2p (K6R) in case of mono-, di- and sesquiterpenes could be some generic targets. Efforts are made to consolidate various studies (including patents) on this subject to understand the similarities, to identify novel strategies and to contemplate potential possibilities to build a robust yeast cell factory for terpene or terpenoid production. Emphasis is not restricted to metabolic engineering strategies pertaining to sterol and mevalonate pathway, but also other holistic approaches for elsewhere exploitation in the S. cerevisiae genome are discussed. This review also focuses on process considerations and challenges during the mass production of these potential compounds from the engineered strain for commercial exploitation.  相似文献   

8.

The neem tree (Azadirachta indica A.Juss.) contains a range of biologically active compounds—mainly triterpenoids produced in single secretory cells, which are distributed among all plant parts. Neem secretions are toxic to animal cells, triggering autolytic mechanisms that culminate in cell disruption. However, little is known about the self-toxicity of these secretions to the cells that produce them. We carried out an anatomical, histochemical, and ultrastructural investigation of neem’s single secretory cells in the shoot apex and in young leaves. We evaluated the morphological changes as possible evidences of stress reactions to their own secretions. The subcellular apparatus involved in synthesis and compartmentation was consistent with hydrophilic and lipophilic secretions. Polymorphic plastids devoid of thylakoids and abundant smooth endoplasmic reticulum in the later stages of differentiation are comparable with previous reports on neem cotyledons with regard to terpenoid synthesis. However, secretions were compartmentalized within autophagic vacuoles and periplasmic spaces instead of in terpenoid vesicles. Cellular swelling, increased vesiculation, dilatation of endoplasmic reticulum cisternae, mitochondrial hypertrophy in the cristolysis process, autolytic vacuoles, and vacuolar degeneration culminating in protoplast autolysis are all consistent with early indications of autotoxicity. The signaling stress reaction mechanism was expressed as cytoplasmic deposits of calcium salt and by the expression of a 70-kDa heat-shock protein. The morphological and histochemical changes in the secreting cells are comparable with those described in animal cells exposed to neem oil. Our data provide evidence of cell damage and signaling reactions linked to these cells’ own secretions before autolysis.

  相似文献   

9.
10.
Utilization of normal and isoparaffins, separately and in mixtures, by a Trichosporon sp. was investigated. From a mixture of normal paraffins and isoparaffins, the organism consumed straight-chain paraffins, leaving the branched paraffins relatively unchanged. When offered separately, the highest utilization of n-alkanes by the organism was obtained in the range of undecane to octadecane; n-pentadecane was poorly utilized. From a mixture of n-alkanes, the rate of consumption of shorter-chain alkanes, n-decane to n-dodecane, was found to be relatively faster and more uniform than that of longer-chain alkanes.  相似文献   

11.
The tergal gland of the beetle, Drusilla canaliculata, contains defensive products which exhibit an extraordinary chemical diversity. This glandular exudate is fortified with alkanes, alkenes, saturated and unsaturated aliphatic aldehydes, 1,4-quinones, and hydroquinones. The aldehydes, n-dodecanal, n-tetradecanal, n-tetradec-5-enal, and n-tetradeca-5,8-dienal, constitute a major group of components. In addition, a new constituent in arthropod defensive secretions, 2-hydroxy-3-methylhydroquinone, has been identified as a minor component in this exocrine exudate.  相似文献   

12.
13.
Pogostemon cablin possesses two morphologically and ontogenetically different types of glandular trichomes, one type of bristle hair on the surfaces of leaves and stems and one type of internal gland inside the leaves and stems. The internal gland originates from elementary meristem and is associated with the biosynthesis of oils present inside the leaves and stems. However, there is little information on mechanism for the oil biosynthesis and secretion inside the leaves and stems. In this study, we identified three kinds of glandular trichome types and two kinds of internal gland in the Pogostemon cablin. The oil secretions from internal glands of stems and leaves contained lipids, flavones and terpenes. Our results indicated that endoplasmic reticulum and plastids and vacuoles are likely involved in the biosynthesis of oils in the internal glands and the synthesized oils are transported from endoplasmic reticulum to the cell wall via connecting endoplasmic reticulum membranes to the plasma membrane. And the comparative analysis of the development, distribution, histochemistry and ultrastructures of the internal and external glands in Pogostemon cablin leads us to propose that the internal gland may be a novel secretory structure which is different from external glands.  相似文献   

14.
Two major groups of plant secondary compounds, phenolic compounds and terpenes, may according to current evidence mediate changes in soil C and N cycling, but their exact role and importance in boreal forest soils are largely unknown. In this review we discuss the occurrence of these compounds in forest plants and soils, the great challenges faced when their concentrations are measured, their possible effects in regulating soil C and N transformations and finally, we attempt to evaluate their role in connection with certain forest management practices. In laboratory experiments, volatile monoterpenes, in the concentrations found in the coniferous soil atmosphere, have been shown to inhibit net nitrogen mineralization and nitrification; they probably provide a C source to part of the soil microbial population but are toxic to another part. However, there is a large gap in our knowledge of the effects of higher terpenes on soil processes. According to results from laboratory experiments, an important group of phenolic compounds, condensed tannins, may also affect microbial processes related to soil C and N cycling; one mechanism is binding of proteins and certain other organic N-containing compounds. Field studies revealed interesting correlations between the occurrence of terpenes or phenolic compounds and C or net N mineralization in forest soils; in some cases these correlations point in the same direction as do the results from laboratory experiments, but not always. Different forest management practices may result in changes in both the quantity and quality of terpenes and phenolic compounds entering the soil. Possible effects of tree species composition, clear-cutting and removal of logging residue for bioenergy on plant secondary compound composition in soil are discussed in relation to changes observed in soil N transformations.  相似文献   

15.
Plants interact with other organisms employing volatile organic compounds (VOCs). The largest group of plant-released VOCs are terpenes, comprised of isoprene, monoterpenes, and sesquiterpenes. Mono- and sesquiterpenes are well-known communication compounds in plant–insect interactions, whereas the smallest, most commonly emitted terpene, isoprene, is rather assigned a function in combating abiotic stresses. Recently, it has become evident that different volatile terpenes also act as plant-to-plant signaling cues. Upon being perceived, specific volatile terpenes can sensitize distinct signaling pathways in receiver plant cells, which in turn trigger plant innate immune responses. This vastly extends the range of action of volatile terpenes, which not only protect plants from various biotic and abiotic stresses, but also convey information about environmental constraints within and between plants. As a result, plant–insect and plant–pathogen interactions, which are believed to influence each other through phytohormone crosstalk, are likely equally sensitive to reciprocal regulation via volatile terpene cues. Here, we review the current knowledge of terpenes as volatile semiochemicals and discuss why and how volatile terpenes make good signaling cues. We discuss how volatile terpenes may be perceived by plants, what are possible downstream signaling events in receiver plants, and how responses to different terpene cues might interact to orchestrate the net plant response to multiple stresses. Finally, we discuss how the signal can be further transmitted to the community level leading to a mutually beneficial community-scale response or distinct signaling with near kin.  相似文献   

16.
The composition of indolealkylamines of Bufo rubescens cutaneous secretions was compared to those from six other Brazilian bufonids. Skin, parotoid and tibial gland secretions were obtained for analysis by thin-layer chromatography. A triple-quadrupole mass spectrometer was used to confirm the indolealkylamines standards (serotonin, 5-HT; bufotenin, BTN; dehydrobufotenin, DHB and bufotenidin, BTD). We observed clear variation in the composition of indolealkylamines of the cutaneous secretions studied and also between those found in the skin and parotoid gland secretions of the same species. We discuss the utility of indolealkylamines to the phylogeny of this group of toads.  相似文献   

17.
Amézquita et al. (2017) recently concluded that species of the Allobates femoralis group are toxic to mice at levels equivalent to syntopic alkaloid‐containing poison frogs, which they attributed to the presence of alkaloids in skin secretions. However, the chemical composition of skin secretions was not analyzed, and here we present additional data supporting the absence of alkaloids in skin secretions of the Allobates femoralis group. Instead, we suggest the observed toxicity was caused by the anesthetic benzocaine, which was applied to the buccal cavity to euthanize frogs prior to skin removal. We show that orally administered benzocaine is rapidly incorporated into the skin of species that sequester and do not sequester alkaloids, which casts doubt on the conclusion that Allobates femoralis group skin secretions are toxic and makes the results of experiments with alkaloid‐containing species of Adelphobates and Ameerega uninterpretable. To prevent experimental errors and misinterpretations in studies of amphibian chemical defense, we encourage researchers to test the chemical composition of samples prior to experimentation, include all necessary controls to detect false positives, conduct small pilot studies for new methods, and consider the limitations of particular methods and their ability to address the intended research questions.  相似文献   

18.
Minor workers of the ant Zacryptocerus pusillus have unusual exocrine secretions in both their mandibular and Dufour glands. The mandibular glands contain a 3:1 mixture of 4-heptanone and 4-heptanol, a mixture found only in the related species Z. varians. The Dufour gland contains a mixture of 13 aldehydes from C9 to C18, not previously encountered in ant secretions. The venom glands gave variable results with only nonanal present consistently.  相似文献   

19.
Thyme plants are known for their production of aromatic oils, whose main component is terpenes. The plants leach terpenes to their surroundings and thereby affect the seed germination and biomass of associated plants, but also potentially themselves. A variation in the dominant terpenes produced by thyme plants is found both within and among species. In Denmark two thyme species (Thymus pulegioides and T. serpyllum) are naturally occurring. The essential oil of T. pulegioides in Denmark is mainly dominated by one monoterpene; ‘carvacrol’. In contrast, the essential oil of T. serpyllum constitutes a mix of two–four different types of terpenes, both mono‐ and sesqui‐terpenes. As the effects of terpenes on plant performance can vary with the type of terpene, and in order to study species‐specific responses, we examined how the dominating T. pulegioides monoterpene ‘carvacrol’ affected germination and growth of both T. pulegioides and T. serpyllum. We compared the performance of seeds and seedlings of both thyme species on soil treated with carvacrol versus control soil. We found no effect of treatment on germination, but we detected a highly significant effect of treatment on seedling biomass. For both thyme species, seedling biomass was significantly higher on terpene soil compared to control soil, suggesting a general adaptation to the presence of terpenes in the soil for both thyme species. Moreover, while no difference in seedling biomass between species on control soil was found, T. pulegiodes seedlings were significantly larger than T. serpyllum when grown on soil treated with its ‘home’ terpene, suggesting an additional species specific response. Dividing the biomass into aboveground and root biomass showed that the increased biomass on terpene‐soil was due to increased aboveground biomass, whereas no difference in root biomass was detected among treatments and species. We discuss whether this response may be caused by an adaptation to a predictable terpene‐mediated alteration in nitrogen‐availability.  相似文献   

20.
E. Schmid 《Genetica》1969,40(1):65-83
The cytogenetic effects of three terpenes, a tropolone, and an anthraquinone on mitosingVicia faba cells were investigated. The three terpenes (+) thujone, thujylic alcohol, sabinene), and the tropolone (-thujaplicin), induce partial or complete failure of the spindle apparatus. In addition, the terpenes induce tripolar mitoses; the tropolone and the terpenes (except sabinene) induce chromosomal stickiness; thujaplicin, thujone and the anthraquinone (aloe-emodin-glucoside) induce chromosomal aberrations. The latter in particular causes subchromatid breaks and rearrangements. The present results and the extensive data in the literature indicate that the effects of the tropolones and terpenes, can be related to their structure. No such relationship could be deduced for the anthraquinones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号