首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
 To test the hypothesis that the contribution of phosphoribulokinase (PRK) to the control of photosynthesis changes depending on the light environment of the plant, the response of transgenic tobacco (Nicotiana tabacum L.) transformed with antisense PRK constructs to irradiance was determined. In plants grown under low irradiance (330 μmol m−2 s−1) steady-state photosynthesis was limited in plants with decreased PRK activity upon exposure to higher irradiance, with a control coefficient of PRK for CO2 assimilation of 0.25 at and above 800 μmol m−2 s−1. The flux control coefficient of PRK for steady-state CO2 assimilation was zero, however, at all irradiances in plant material grown at 800 μmol m−2 s−1 and in plants grown in a glasshouse during mid-summer (alternating shade and sun 300–1600 μmol m−2 s−1). To explain these differences between plants grown under low and high irradiances, Calvin cycle enzyme activities and metabolite content were determined. Activities of PRK and other non-equilibrium Calvin cycle enzymes fructose-1,6-bisphosphatase, sedoheptulose-1,7-bisphosphatase and ribulose-1,5-bisphosphate carboxylase-oxygenase were twofold higher in plants grown at 800 μmol m−2 s−1 or in the glasshouse than in plants grown at 330 μmol m−2 s−1. Activities of equilibrium enzymes transketolase, aldolase, ribulose-5-phosphate epimerase and isomerase were very similar under all growth irradiances. The flux control coefficient of 0.25 in plants grown at 330 μmol m−2 s−1 can be explained because low ribulose-5-phosphate content in combination with low PRK activity limits the synthesis of ribulose-1,5-bisphosphate. This limitation is overcome in high-light-grown plants because of the large relative increase in activities of sedoheptulose-1,7-bisphosphatase and fructose-1,6-bisphosphatase under these conditions, which facilitates the synthesis of larger amounts of ribulose-5-phosphate. This potential limitation will have maintained evolutionary selection pressure for high concentrations of PRK within the chloroplast. Received: 15 November 1999 / Accepted: 27 January 2000  相似文献   

2.
Kadota A  Sato Y  Wada M 《Planta》2000,210(6):932-937
 The light-induced intracellular relocation of chloroplasts was examined in red-light-grown protonemal cells of the moss Physcomitrella patens. When irradiated with polarized red or blue light, chloroplast distribution in the cell depended upon the direction of the electrical vector (E-vector) in both light qualities. When the E-vector was parallel to the cross-wall (i.e. perpendicular to the protonemal axis), chloroplasts accumulated along the cross-wall; however, no accumulation along the cross-wall was observed when the E-vector was perpendicular to it (i.e. parallel to the protonemal axis). When a part of the cell was irradiated with a microbeam of red or blue light, chloroplasts accumulated at or avoided the illumination point depending on the fluence rate used. Red light of 0.1–18 W m−2 and blue light of 0.01–85.5 W m−2 induced an accumulation response (low-fluence-rate response; LFR), while an avoidance response (high-fluence-rate response; HFR) was induced by red light of 60 W m−2 or higher and by blue light of 285 W m−2. The red-light-induced LFR and HFR were nullified by a simultaneous background irradiation of far-red light, whereas the blue-light-induced LFR and HFR were not affected at all by this treatment. These results show, for the first time, that dichroic phytochrome, as well as the dichroic blue-light receptor, is involved in the chloroplast relocation movement in these bryophyte cells. Further, the phytochrome-mediated responses but not the blue-light responses were revealed to be lost when red-light-grown cells were cultured under white light for 2 d. Received: 7 September 1999 / Accepted: 15 October 1999  相似文献   

3.
A new ion-selective liquid membrane microelectrode, based on the neutral carrier 1,1′-bis(2,3-naphtho-18-crown-6), is described that shows the dependence of EMF on the activity of divalent putrescine cations a Put, with the linear slope s Put = 26 ± 3 mV/decade (mean ± SD, N = 18), in the range 10−4–10−1 M at 25 ± 1 °C. Values of potentiometric putrescine cation selectivity coefficients of logK Pot Put j (mean ± SD, N) are obtained by the separate solution method for the ions K+ (1.0 ± 0.4, 10), Na+ (−1.2 ± 0.4, 8), Ca2+ (−2.3 ± 0.5, 10) and Mg2+ (−2.5 ± 0.5, 7). The microelectrode can be applied for the direct analysis of the activities of free divalent putrescine cations in the range 5 × 10−4 to 10−1 M in an extracellular ionic environment. Established analytical methods, e.g. high performance liquid chromatography, determine the total concentration of the derivatives of free and bound putrescine. Received: 20 December 1998 / Revised version: 7 May 1999 / Accepted: 27 May 1999  相似文献   

4.
Leipner J  Stamp P  Fracheboud Y 《Planta》2000,210(6):964-969
Infiltrating detached maize (Zeamays L.) leaves with L-galactono-1,4-lactone (L-GAL) resulted in a 4-fold increase in the content of leaf ascorbate. Upon exposure to high irradiance (1000 μmol photons m−2 s−1) at 5 °C, L-GAL leaves de-epoxidized the xanthophyll-cycle pigments faster than the control leaves; the maximal ratio of de-epoxidized xanthophyll-cycle pigments to the whole xanthophyll-cycle pool was the same in both leaf types. The elevated ascorbate content, together with the faster violaxanthin de-epoxidation, did not affect the degree of photoinhibition and the kinetics of the recovery from photoinhibition, assayed by monitoring the maximum quantum efficiency of photosystem II primary photochemistry (Fv/Fm). Under the experimental conditions, the thermal energy dissipation seems to be zeaxanthin-independent since, in contrast to the de-epoxidation, the decrease in the efficiency of excitation-energy capture by open photosystem II reaction centers (Fv′/Fm′) during the high-irradiance treatment at low temperature showed the same kinetic in both leaf types. This was also observed for the recovery of the maximal fluorescence after stress. Furthermore, the elevated ascorbate content did not diminish the degradation of pigments or α-tocopherol when leaves were exposed for up to 24 h to high irradiance at low temperature. Moreover, a higher content of ascorbate appeared to increase the requirement for reduced glutathione. Received: 20 May 1999 / Accepted: 29 October 1999  相似文献   

5.
In this study we measured growth and milk intake and calculated energy intake and its allocation into metabolism and stored tissue for hooded seal (Cystophora cristata) pups. In addition, we measured mass loss, change in body composition and metabolic rate during the first days of the postweaning fast. The mean body mass of the hooded seal pups (n = 5) at the start of the experiments, when they were new-born, was 24.3 ± 1.3 kg (SD). They gained an average of 5.9 ± 1.1. kg · day−1 of which 19% was water, 76% fat and 5% protein. This corresponds to an average daily energy deposition of 179.8 ± 16.0 MJ. The pups were weaned at an average body mass of 42.5 ± 1.0 kg 3.1 days after the experiment was initiated. During the first days of the postweaning fast the pups lost an average of 1.3 ± 0.5␣kg of body mass daily, of which 56% was water, 16% fat and 28% protein. During the nursing period the average daily water influx for the pups was 124.6 ± 25.8 ml · kg−1. The average CO2 production during this period was 1.10 ± 0.20 ml · g−1 · h−1, which corresponds to a field metabolic rate of 714 ± 130 kJ ·  kg−1 · day−1, or 5.8 ± 1.1 times the predicted basal metabolic rate according to Kleiber (1975). During the postweaning fast the average daily water influx was reduced to 16.1 ± 6.6 ml · kg−1. The average CO2 production in␣this period was 0.58 ± 0.17 ml · g−1 · h−1 which corresponds to a field metabolic rate of 375 ± 108 kJ · kg−1 · day−1 or 3.2 ± 0.9 times the predicted basal metabolic rate. Average values for milk composition were 33.5% water, 58.6% fat and 6.2% protein. The pups drank an average of 10.4 ± 1.8␣kg of milk daily, which represents an energy intake of 248.9 ± 39.1 MJ · day−1. The pups were able to store 73.2 ± 7.7% of this energy as body tissue. Accepted: 15 August 1996  相似文献   

6.
Short-latency vestibular-evoked potentials to pulsed linear acceleration were characterized in the quail. Responses occurred within 8 ms following the onset of stimuli and were composed of a series of positive and negative peaks. The latencies and amplitudes of the first four peaks were quantitatively characterized. Mean latencies at 1.0 g ms−1 ranged from 1265 ± 208 μs (P1, N = 18) to 4802 ± 441 μs (N4, N = 13). Amplitudes ranged from 3.72 ± 1.51 μV (P1/N1, N = 18) to 1.49 ± 0.77 μV (P3/N3, N = 16). Latency-intensity (LI) slopes ranged from −38.7 ± 7.3 μs dB−1 (P1, N = 18) to −71.6 ± 21.9 μs dB−1 (N3, N = 15) and amplitude-intensity (AI) slopes ranged from 0.20 ± 0.08 μV dB−1 (P1/N1, N = 18) to 0.07 ± 0.04 μV dB−1 (P3/N3, N = 11). The mean response threshold across all animals was −21.83 ± 3.34 dB re: 1.0 g ms−1 (N = 18). Responses remained after cochlear extirpation showing that they could not depend critically on cochlear activity. Responses were eliminated by destruction of the vestibular end organs, thus showing that responses depended critically and specifically on the vestibular system. The results demonstrate that the responses are vestibular and the findings provide a scientific basis for using vestibular responses to evaluate vestibular function through ontogeny and senescence in the quail. Accepted: 18 January 1997  相似文献   

7.
Mercado JM  Carmona R  Niell FX 《Planta》2000,210(5):758-764
Regulation by irradiance level of the mechanism for dissolved inorganic carbon (DIC) acquisition was examined in the red macroalga Gracilaria tenuistipitata Zhang et Xia. For this purpose, affinity for external DIC, carbonic anhydrase (CA; EC 4.2.1.1) activity and content of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco; EC 4.1.1.39) were determined in thalli grown at 45 and 500 μmol photons m−2 s−1. Oxygen evolution rates declined by 50% when the medium pH was changed from 8.1 to 8.7, and the pH compensation point attained was ca. 9.2. These characteristics were unaffected by the light treatments. In contrast, photosynthetic conductance for DIC at pH 8.7 was doubled in thalli grown at high irradiance compared with those grown at low irradiance (to 0.74 × 10−6 from 0.33 × 10−6 m s−1). Photosynthetic rates at saturating DIC concentration were also higher by 60% in thalli grown at high irradiance. These differences could not be attributed to changes in the use of external DIC, since external CA activity did not vary. Although the irradiance level did not modify the pool size of Rubisco, Rubisco content expressed on a chlorophyll a basis was almost doubled at high irradiance. These results likely indicate that the internal transport of DIC towards the active-site of Rubisco, rather than the external use of DIC, is enhanced in the thalli grown at high irradiance. Received: 7 June 1999 / Accepted: 16 October 1999  相似文献   

8.
Kubitscheck U  Homann U  Thiel G 《Planta》2000,210(3):423-431
The dye FM1-43 was used alone or in combination with measurements of the membrane capacitance (Cm) to monitor membrane changes in protoplasts from Viciafaba L. guard cells. Confocal images of protoplasts incubated with FM1-43 (10 μM) at constant ambient osmotic pressure (πo) revealed in confocal images a slow internalisation of FM1-43-labelled membrane into the cytoplasm. As a result of this process the relative fluorescence intensity of the cell interior (fFM,i) increased with reference to the total fluorescence (fFM,t) by 7.4 × 10−4 min−1. This steady internalisation of dye suggests the occurrence of constitutive endocytosis under constant osmotic pressure. Steady internalisation of FM1-43 labelled membrane caused a prominent staining of a ring-like structure located beneath the plasma membrane. Abrupt elevation of πo by 200 mosmol kg−1 caused, over the first minutes of incubation, a rapid internalisation of FM1-43 fluorescence into the cytoplasm concomitant with a decrease in cell perimeter. Within the first 5 min the cell perimeter decreased by 7.9%. Over the same time fFM,i/fFM,t increased by 0.13, reflecting internalisation of fluorescent label into the cytoplasm. Combined measurements of Cm and total fluorescence of a protoplast (fFM,p) showed that an increase in πo evoked a decrease in Cm but no change in fFM,p. This means that surface contraction of the protoplast is due to retrieval of excess membrane from the plasma membrane and internalisation into the cytoplasm. Further inspection of confocal images revealed that protoplast shrinking was only occasionally associated with internalisation of giant vesicles (median diameter 2.7 μm) with FM1-43-labelled membrane. But, in all cases, osmotic contraction was correlated with a diffuse distribution of FM1-43 label throughout the cytoplasm. From this, we conclude that endocytosis of small vesicles into the cytoplasm is the obligatory process by which cells accommodate an osmotically driven decrease in membrane surface area. Received: 4 May 1999 / Accepted: 19 August 1999  相似文献   

9.
We examined the effects of climate and allocation patterns on stem respiration in ponderosa pine (Pinus ponderosa) growing on identical substrate in the cool, moist Sierra Nevada mountains and the warm, dry, Great Basin Desert. These environments are representative of current climatic conditions and those predicted to accompany a doubling of atmospheric CO2, respectively, throughout the range of many western north American conifers. A previous study found that trees growing in the desert allocate proportionally more biomass to sapwood and less to leaf area than montane trees. We tested the hypothesis that respiration rates of sapwood are lower in desert trees than in montane trees due to reduced stem maintenance respiration (physiological acclimation) or reduced construction cost of stem tissue (structural acclimation). Maintenance respiration per unit sapwood volume at 15°C did not differ between populations (desert: 6.39 ± 1.14 SE μmol m−3 s−1, montane: 6.54 ± 1.13 SE μmol m−3 s−1, P = 0.71) and declined with increasing stem diameter (P = 0.001). The temperature coefficient of respiration (Q 10) varied seasonally within both environments (P = 0.05). Construction cost of stem sapwood was the same in both environments (desert: 1.46 ± 0.009 SE g glucose g−1 sapwood, montane: 1.48 ± 0.009 SE glucose g−1 sapwood, P = 0.14). Annual construction respiration calculated from construction cost, percent carbon and relative growth rate was greater in montane populations due to higher growth rates. These data provide no evidence of respiratory acclimation by desert trees. Estimated yearly stem maintenance respiration was greater in large desert trees than in large montane trees because of higher temperatures in the desert and because of increased allocation of biomass to sapwood. By analogy, these data suggest that under predicted increases in temperature and aridity, potential increases in aboveground carbon gain due to enhanced photosynthetic rates may be partially offset by increases in maintenance respiration in large trees growing in CO2-enriched atmospheres. Received: 4 November 1996 / Accepted: 23 January 1997  相似文献   

10.
Summary. Heat shock proteins (HSPs) are synthesised by cells subsequent to a stress exposure and are known to confer protection to the cell in response to a second challenge. HSP induction and decay are correlated to thermotolerance and may therefore be used as a biomarker of thermal history. The current study tested the temperature-dependent nature of the heat shock response and characterised its time profile of induction. Whole blood from 6 healthy males (Age: 26 ± (SD) 2 yrs; Body mass 74.2 ± 3.8 kgs; VO2max: 49.1 ± 4.0 ml·kg−1·min−1) were isolated and exposed to in vitro heat shock (HS) at 37, 38, 39, 40, and 41 °C for a period of 90 min. After HS the temperature was returned to 37 °C and intracellular HSP70 was quantified from the leukocytes at 0, 2, 4, and 6 h after heat treatment. The concentration of HSP70 was not different between temperatures (P > 0.05), but the time-profile of HSP70 synthesis appeared temperature-dependent. At control (37 °C) and lower temperatures (38–39 °C) the mean HSP70 concentration increased up to 4 h post HS (P < 0.05) and then returned towards baseline values by 6 h post HS. With in vitro hyperthermic conditions (40–41 °C), the time-profile was characterised by a sharp rise in HSP70 levels immediately after treatment (P < 0.05 for 40 °C at 0 h), followed by a progressive decline over time. The results suggest a temperature-dependent time-profile of HSP70 synthesis. In addition, the temperature at which HSP70 is inducted might be lower than 37 °C.  相似文献   

11.
Sitbon F  Astot C  Edlund A  Crozier A  Sandberg G 《Planta》2000,211(5):715-721
A quantitative study of indole-3-acetic acid (IAA) turnover, and the contribution of tryptophan-dependent and tryptophan-independent IAA-biosynthesis pathways, was carried out using protoplast preparations and shoot apices obtained from wild-type and transgenic, IAA-overproducing tobacco (Nicotiana tabacum L.) plants, during a phase of growth when the level of endogenous IAA was stable. Based on the rate of disappearance of [13C6]IAA, the half-life of the IAA pool was calculated to be 1.1 h in wild-type protoplasts and 0.8 h in protoplasts from the IAA-overproducing line, corresponding to metabolic rates of 59 and 160 pg IAA (μg Chl)−1 h−1, respectively. The rate of conversion of tryptophan to IAA was 15 pg IAA (μg Chl)−1 h−1 in wild-type protoplasts and 101 pg IAA (μg Chl)−1 h−1 in protoplasts from IAA-overproducing plants. In both instances, IAA was metabolised more rapidly than it was synthesised from tryptophan. As the endogenous IAA pools were in a steady state, these findings indicate that IAA biosynthesis via the tryptophan-independent pathway was 44 pg IAA (μg Chl)−1 h−1 and 59 pg IAA (μg Chl)−1 h−1, respectively, in the wild-type and transformed protoplast preparations. In a parallel study with apical shoot tissue, the presumed site of IAA biosynthesis, the rate of tryptophan-dependent IAA biosynthesis exceeded the rate of metabolism of [13C6]IAA despite the steady state of the endogenous IAA pool. The most likely explanation for this anomaly is that, unlike the protoplast system, injection of substrates into the apical tissues did not result in uniform distribution of label, and that at least some of the [2H5]tryptophan was metabolised in compartments not normally active in IAA biosynthesis. This demonstrates the importance of using experimental systems where labelling of the precursor pool can be strictly controlled. Received: 18 January 2000 / Accepted 24 February 2000  相似文献   

12.
 The levels of different cytokinins, indole-3-acetic acid (IAA) and abscisic acid (ABA) in roots of Glycine max [L.] Merr. cv. Bragg and its supernodulating mutant nts382 were compared for the first time. Forty-eight hours after inoculation with Bradyrhizobium, quantitative and qualitative differences were found in the root's endogenous hormone status between cultivar Bragg and the mutant nts382. The six quantified cytokinins, ranking similarly in each genotype, were present at higher concentrations (30–196% on average for isopentenyl adenosine and dihydrozeatin riboside, respectively) in mutant roots. By contrast, the ABA content was 2-fold higher in Bragg, while the basal levels of IAA [0.53 μmol (g DW)−1, on average] were similar in both genotypes. In 1 mM NO3 -fed Bragg roots 48 h post-inoculation, IAA, ABA and the cytokinins isopentenyl adenine, and isopentenyl adenosine quantitatively increased with respect to uninoculated controls. However, only the two cytokinins increased in the mutant. High NO3 (8 mM) markedly reduced root auxin concentration, and neither genotypic differences nor the inoculation-induced increase in auxin concentration in Bragg was observed under these conditions. Cytokinins and ABA, on the other hand, were little affected by 8 mM NO3 . Root IAA/cytokinin and ABA/cytokinin ratios were always higher in Bragg relative to the mutant, and responded to inoculation (mainly in Bragg) and nitrate (both genotypes). The overall results are consistent with the auxin-burst-control hypothesis for the explanation of autoregulation and supernodulation in soybean. However, they are still inconclusive with respect to the inhibitory effect of NO3 . Received: 16 April 1999 / Accepted: 13 December 1999  相似文献   

13.
Halocidin was isolated from hemocytes, Halocynthia aurantium as a heterodimeric peptide consisting of two α-helical subunits, Hal15 and Hal18. Hal18 was shown to have antibacterial properties against Bacillus subtilis (MLC = 15 μM) and Escherichia coli (MLC = 100 μM). The peptide was shown to produce stable monolayers, which were characteristic of α-helical peptides predicted to orientate parallel to the surface of the interface. Constant area assays showed that Hal18 was surface active (4 μM) inducing surface pressure changes >30 mN m−1 characteristic of membrane interactive peptides. The peptide induced stable surface pressure changes in monolayers that were mimetic of B. subtilis membranes (circa 7 mN m−1) and E. coli membrane-mimics (circa 4 mN m−1). Hal18 inserted readily into zwitterionic DOPE and anionic DOPG monolayers inducing surface pressure changes circa 8 mN m−1 in both cases, providing evidence that interaction is not headgroup specific. Thermodynamic analysis of compression isotherms showed that the presence of Hal18 destabilised B. subtilis membranes (ΔG Mix > 0), which is in contrast to its stabilising effect on E. coli lipid extract implying the differential antimicrobial efficacy may be driven by lipid packing.  相似文献   

14.
Recent studies on global climate change report that increase in seawater temperature leads to coastal ecosystem change, including coral bleaching in the tropic. In order to assess the effect of increased seawater temperature on a temperate coastal ecosystem, we studied the inter-annual variation in productivity of Laminaria japonica using long-term oceanographic observations for the Uwa Sea, southern Japan. The annual productivity estimates for L. japonica were 2.7 ± 2.5 (mean ± SD) kg wet wt. m−1 (length of rope) (2003/2004), 1.0 ± 0.6 kg wet wt. m−1 (2004/2005) and 12.1 ± 12.5 kg wet wt. m−1 (2005/2006). Our previous study using the same methodology at the same locality reported that the productivity was estimated for the 2001/2002 (33.3 ± 15.2 kg wet wt. m−1) and 2002/2003 (34.0 ± 8.7 kg wet wt. m−1) seasons. Productivity in 2003/2004 and 2004/2005 was significantly lower than in years 2001/2002, 2002/2003 and 2005/2006. A comparison of oceanographic conditions among the 5 years revealed the presence of threshold seawater temperature effects. When the average seawater temperature during the first 45 days of each experiment exceeded 15.5°C, productivity was reduced to about 10 % of that in cooler years. Moreover the analysis of growth and erosion rates indicates that when the seawater temperature was over 17.5°C, erosion rate exceeded growth rate. Thus, an increase of seawater temperature of just 1°C during winter drastically reduces the productivity of L. japonica in the Uwa Sea.  相似文献   

15.
Pectin methyltransferase (PMT) catalyzing the transfer of the methyl group from S-adenosyl-L-methionine (SAM) to the C-6 carboxyl group of galactosyluronic acid residues in pectin was found in a membrane preparation of etiolated hypocotyls from 6-d-old soybean (Glycinemax Merr.). The enzyme was maximally active at pH 6.8 and 35–40 °C, and required 0.5% (w/v) Triton X-100. The incorporation of the methyl group was significantly enhanced by addition of a pectin with a low (22%) degree of methyl-esterification (DE) as exogenous acceptor substrate. The apparent Michaelis constants for SAM and the pectin (DE22) were 0.23 mM and 66 μg · ml−1, respectively. Attachment of the methyl group to the carboxyl group of the pectin via ester linkage was confirmed by analyzing radiolabeled product from incubation of the enzyme with [14C]methyl SAM and the acceptor pectin. Size-exclusion chromatography showed that both enzymatic hydrolysis with a pectin methylesterase and a mild alkali treatment (saponification) led to the release of radioactive methanol from the product. Enzymatic hydrolysis of the product with an endopolygalacturonase degraded it into small pectic fragments with low relative molecular mass, which also supports the idea that the methyl group is incorporated into the pectin. The soybean hypocotyls were fractionated into their cell wall components by successive extraction with water, EDTA, and alkali treatment. Among the resulting polysaccharide fractions, high PMT activity was observed when a de-esterified polysaccharide derived from the EDTA-soluble fraction (the pectic fraction) was added as an alternative acceptor substrate, indicating that the enzyme may be responsible for producing methyl-esterified pectin in vivo. Received: 10 September 1999 / Accepted: 11 October 1999  相似文献   

16.
MDCK cells display several acid-base transport systems found in intercalated cells, such as Na+-H+ exchange, H+–K+ ATPase and Cl/HCO 3 exchange. In this work we studied the functional activity of a vacuolar H+-ATPase in MDCK cells and its chloride dependence. We measured intracellular pH (pHi) in monolayers grown on glass cover slips utilizing the pH sensitive probe BCECF. To analyze the functional activity of the H+ transporters we observed the intracellular alkalinization in response to an acute acid load due to a 20 mm NH+ 4 pulse, and calculated the initial rate of pHi recovery (dpHi/dt). The cells have a basal pHi of 7.17 ± 0.01 (n= 23) and control dpHi/dt of 0.121 ± 0.006 (n= 23) pHi units/min. This pHi recovery rate is markedly decreased when Na+ was removed, to 0.069 ± 0.004 (n= 16). It was further reduced to 0.042 ± 0.005 (n= 12) when concanamycin 4.6 × 10−8 m (a specific inhibitor of the vacuolar H+-ATPase) was added to the zero Na+ solution. When using a solution with zero Na+, low K+ (0.5 mm) plus concanamycin, pHi recovery fell again, significantly, to 0.023 ± 0.006 (n= 14) as expected in the presence of a H+–K+-ATPase. This result was confirmed by the use of 5 × 10−5 m Schering 28080. The Na+ independent pHi recovery was significantly reduced from 0.069 ± 0.004 to 0.042 ± 0.004 (n= 12) when NPPB 10−5 m (a specific blocker of Cl channels in renal tubules) was utilized. When the cells were preincubated in 0 Cl/normal Na+ solution for 8 min. before the ammonium pulse, the pHi recovery fell from 0.069 ± 0.004 to 0.041 ± 0.007 (n= 12) in a Na+ and Cl free solution. From these results we conclude that: (i) MDCK cells have two Na+-independent mechanisms of pHi recovery, a concanamycin sensitive H+-ATPase and a K+ dependent, Schering 28080 sensitive H+–K+ ATPase; and, (ii) pHi recovery in Na+-free medium depends on the presence of a chloride current which can be blocked by NPPB and impaired by preincubation in Cl–free medium. This finding supports a role for chloride in the function of the H+ ATPase, which might be electrical shunting or a biochemical interaction. Received: 24 October 1997/Revised: 19 February 1998  相似文献   

17.
Mancuso S  Papeschi G  Marras AM 《Planta》2000,211(3):384-389
 A simple procedure is described for the fabrication of micrometer to nanometer-scale platinum electrodes to be used in a vibrating oxygen-selective system. The electrode was prepared by etching a fine platinum wire and insulating it with an electrophoretic paint. The dimensions allowed this electrode to be used with the “vibrating probe technique” in exploratory studies aimed at mapping and measuring the patterns of net influxes as well as effluxes of oxygen in Olea europaea L. leaves and roots with spatial and temporal resolutions of a few microns and a few seconds, respectively. The magnitude and spatial localisation of O2 influxes in roots was characterised by two distinct peaks. The first, in the division zone, averaged 38 ± 5 nmol m−2 s−1; the second, in the elongation region, averaged 68 ± 6 nmol m−2 s−1. Long-term records of oxygen influx in the elongation region of the root showed an oscillatory regime characterised by a fast oscillation with periods of about 8–9 min. In leaves, the system allowed the measurement of real-time changes in O2 evolution following changes in light. Furthermore, it was possible to obtain “topographical” images of the photosynthetically generated oxygen diffusing through different stomata from a region of the leaf of 120 μm × 120 μm. The combination of topographic and electrochemical information at the micrometer scale makes the system an efficient tool for studying biological phenomena involving oxygen diffusion. Received: 12 November 1999 / Accepted: 1 February 2000  相似文献   

18.
Unlike northern hemisphere conifer families, the southern family, Podocarpaceae, produces a great variety of foliage forms ranging from functionally broad-, to needle-leaved. The production of broad photosynthetic surfaces in podocarps has been linked qualitatively to low-light-environments, and we undertook to assess the validity of this assumption by measuring the light response of a morphologically diverse group of podocarps. The light response, as apparent photochemical electron transport rate (ETR), was measured by modulated fluorescence in ten species of this family and six associated species (including five Cupressaceae and one functionally needle-leaved angiosperm) all grown under identical glasshouse conditions. In all species, ETR was found to increase as light intensity increased, reaching a peak value (ETRmax) at saturating quantum flux (PPFDsat), and decreasing thereafter. ETRmax ranged from 217 μmol electrons · m−2 · s−1 at a PPFDsat of 1725 μmol photons · m−2 · s−1 in Actinostrobus acuminatus to an ETR of 60 μmol electrons · m−2 · s−1 at a PPFDsat of 745 μmol electrons · m−2 · s−1 in Podocarpus dispermis. Good correlations were observed between ETRmax and both PPFDsat and maximum assimilation rate measured by gas-exchange analysis. The effective quantum yield at light saturation remained constant in all species with an average value of 0.278 ± 0.0035 determined for all 16 species. Differences in the shapes of light response curves were related to differences in the response of non-photochemical quenching (q n), with q n saturating faster in species with low PPFDsat. Amongst the species of Podocarpaceae, the log of average shoot width was well correlated with PPFDsat, wider leaves saturating at lower light intensities. This suggests that broadly flattened shoots in the Podocarpaceae are an adaptation to low light intensity. Received: 15 April 1996 / Accepted: 30 September 1996  相似文献   

19.
This study investigated the effects on running economy (RE) of ingesting either no fluid or an electrolyte solution with or without 6% carbohydrate (counterbalanced design) during 60-min running bouts at 80% maximal oxygen consumption (O2max). Tests were undertaken in either a thermoneutral (22–23°C; 56–62% relative humidity, RH) or a hot and humid natural environment (Singapore: 25–35°C; 66–77% RH). The subjects were 15 young adult male Singaporeans [O2max = 55.5 (4.4 SD) ml kg−1 min−1]. The RE was measured at 3 m s−1 [65 (6)% O2max] before (RE1) and after each prolonged run (RE2). Fluids were administered every 2 min, at an individual rate determined from prior tests, to maintain body mass (group mean = 17.4 ml min−1). The O2 during RE2 was higher (P < 0.05) than that during the RE1 test for all treatments, with no differences between treatments (ANOVA). The mean increase in O2 from RE1 to RE2 ranged from 3.4 to 4.7 ml kg−1 min−1 across treatments. In conclusion, the deterioration in RE at 3 m s−1 (65% O2max) after 60 min of running at 80% O2max appears to occur independently of whether fluid is ingested and regardless of whether the fluid contains carbohydrates or electrolytes, in both a thermoneutral and in a hot, humid environment. Accepted: 30 October 1997  相似文献   

20.
Cardiac output, blood flow to the coeliac and mesenteric arteries, dorsal aortic blood pressure and heart rate were recorded simultaneously at rest and postprandial for 6 days in a teleost, the red Irish lord (Hemilepidotus hemilepidotus). We anticipated that gastrointestinal blood flow would increase postprandially, supported by an increase in cardiac output. However, we had no predictions for either the exact time-course of this response, or for the regional distribution of blood flow between to the two major arteries comprising the splanchnic circulation. In resting, unfed animals, blood flow to the coeliac artery and mesenteric artery was 4.1 ± 0.6 ml min−1 kg−1 and 4.9 ± 1.3 ml min−1 kg−1, respectively (mean ± SEM, n=7), which together represented 34% of cardiac output. Feeding increased blood flow to the coeliac and mesenteric arteries in a time-dependent manner. The increase in coeliac artery blood flow preceded that in the mesenteric artery, a finding that is consistent with the coeliac artery supplying blood to the liver and stomach, while the mesenteric artery supplies blood to the stomach and intestine. Coeliac blood flow had increased by 84 ± 18% after 1 day and had a peak increase of 112 ± 40% at day 4 postprandial. Mesenteric blood flow was not significantly elevated at day 1, but had increased by 94 ± 19% at day 4 postprandial. Cardiac output also increased progressively, increasing by a maximum of 90 ± 30% at day 4. Because the increase in cardiac output was adequate to meet the postprandial increase in gut blood flow, the postprandial decreases in vascular resistance for the coeliac and mesenteric circulations mirrored the increases in blood flow. Intra-arterial injections of adrenaline and noradrenaline into resting fish more than doubled coeliac and mesenteric vascular resistances, and blood flow decreased proportionately. This adrenergic vasoconstriction was totally abolished by pretreatment with the α-adrenoceptor antagonist phentolamine, which in itself approximately halved coeliac and mesenteric vascular resistances. These observations indicate a significant α-adrenergic tone in the gastrointestinal circulation of the red Irish lord, the loss of which could not entirely account for the postprandial increase in gastrointestinal blood flow. Other control mechanisms are suggested. Accepted: 17 November 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号