首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ovule primordium of Costus is trizonate and both its integuments are dermally initiated. With other evidence, this strongly suggests that most, if not all, monocotyledons have dermally initiated integuments, indicating a derived status. The mature seed coat of Costus is completely formed by the outer integument and its principal mechanical layer is the endotesta.
The seed of Costus has an aril, an operculum and a micropylar collar. These structures, characteristic of zingiberalean seeds, are each initiated in a different, specific cell layer of the exostome. The aril is completely dermally initiated. The parenchymatic part of the operculum and the micropylar collar are of dual origin, namely dermal at me integumentary region and subdermal at the raphe.  相似文献   

2.
Ovular development of Magnolia grandiflora was examined to determine the morphology of the outer integument. At the time the ovular primordium begins incurving, the outer integument is initiated subdermally, and later the inner integument arises from the dermal layer. Whereas the inner integument is annular, the outer integument is formed as a semiannular rim interrupted on the concave side of the funiculus. Later the outer integument becomes a hood-shaped envelope. The obturator is formed as a transversely elongate outgrowth on the concave side of the funiculus and intervenes in the gap of the outer integument. During further development the inner integument produces several distal lobes, and the outer integument becomes bilobed. The exostome is a transverse slit with a middle notch, formed by the outer integument and the obturator. Presumed wide occurrence of the hood-shaped outer integument in primitive families suggests that it is a primitive state. The outer integument is compared with the ovuliferous sporophylls of the glossopterid and caytonialean seed ferns.  相似文献   

3.
Abstract: The embryology and seed structure of Paepalanthus sect. Actinocephalus species were studied. The embryological and structural seed characters fit well with those of the other commelinaceous families. Within the Commelinales sensu Dahlgren, Eriocaulaceae and Xyridaceae represent two embryologically close families. In Paepalanthus sect. Actinocephalus the ovule is orthotropus, bitegmic, and tenuicellate with a micropyle formed by the inner integument. The seeds are endotestal. The outer cell layer of the testa and the outer periclinal wall of the endotesta disintegrate during development. The endotegmen is tanniniferous. The outer layer of the tegmen becomes compressed and is no longer recognizable in the mature seed. The seeds are operculate.  相似文献   

4.
Dnyansagab , Vishnu R., and Delmer C. Cooper . (U. Wisconsin, Madison.) Development of the seed of Solanum phureja. Amer. Jour. Bot. 47(3) : 176—186. Illus. 1960.—Ontogeny of the seed of Solanum phureja Juz. et Buk. is described. The megagametophyte, during the course of its development, ruptures the nucellus and at maturity lies in direct contact with the inner layer (endothelium) of the single massive integument. The mature megagametophyte, a 7-celled structure, consists of a 3-celled egg apparatus, an endosperm mother cell with fused polar nuclei and 3 persistent antipodals. Both 2- and 3-celled mature pollen grains are formed within anthers of the same flower; hence this character cannot be considered of any taxonomic value. Double fertilization occurs between 24 and 72 hr. after pollination. A cellular endosperm is formed, the peripheral layer acting as an absorbing tissue during the early ontogeny of the seed. Later this layer becomes organized as an aleurone layer and thereafter the source of nutrients is via the basal portion of the endosperm immediately adjacent to the apical end of the vascular tissue of the developing seed. Embryo development follows the Nicotiana variation of the Solanad type. The mature testa is composed of an outer layer of thick-walled epidermal cells, an inner layer of thin-walled cells and an intervening mass of disorganized tissue. In those instances where the ovule or young seed aborts, the endothelial cells of the integument become hyperactive and proliferate to such an extent that the space formerly occupied by the gametophyte or the developing endosperm and embryo becomes completely filled with endothelial tissue.  相似文献   

5.
6.
Development of ovule and seed in Rapateaceae   总被引:1,自引:0,他引:1  
VENTURELLI, M. & BOUMAN, F., 1988. Development of ovule and seed in Rapateaceae. The structure of the ovules and/or seeds of twelve species of Rapateaceae were studied, some additional embryological characters also being recorded. The ovules are always anatropous, bitegmic and crassinucellate, but they differ in the shape, size and in thickness of the outer integument. In Rapateaceae the outer integument is initiated subdermally. The seed coat of the Rapateaceae shows two mechanical layers: an endotesta with silica present as bodies or as incrustations in cell walls, in conjunction with an exotegmen with a jigsaw cell pattern complicated by a labyrinth-like sculpturing of the outer cell walls. The innermost layer of the inner integument is tanniniferous. Large hilar scars with tracheidal plates on the corresponding fruit wall and a persistent obturator are recorded in Rapateaceae. On the basis of embryological characters the family fits well into the Commelinales. Testa structure most closely resembles that of the Commelinaceae. The differences in ovule and seed structure agree with the currently accepted tribal classification.  相似文献   

7.
TOMLINSON, P. B., TAKASO, T. & RATTENBURY, J. A., 1989. Cone and ovule ontogeny in Phyllocladus (Podocarpaceae). Cones are borne directly on phylloclades, usually in the position of basal segments or as segment appendages. Each cone consists of a series of spirally arranged bracts, of which the middle bracts each subtend a single, sessile ovule. There is no ovuliferous scale. Ovules arise as ovoid outgrowths; integument development involves periclinal divisions of hypodermal cells with the integument becoming bilobed and extended laterally. The mature ovule is flask-shaped. The integument includes an extensive middle region bounded by an inner and outer epidermis; the outer hypodermis is differentiated as two contrasted cell layers. An aril differentiates late by periclinal divisions of the outer hypodermal cells at the base of the ovule. The three outermost layers of the integument become differentiated in the mature seed as an epidermis, with thick, cutinized outer tangential walls, an outer hypodermal tanniniferous layer and a sclerotic inner layer. Each ovule is vascularized by two strands that diverge from the axial bundles delimiting the gap left by the departing bract trace.  相似文献   

8.
长豇豆的胚珠具内外两层珠被,内珠被在种子发育早期退化消失,种皮仅由外珠被发育而成。外珠被的外表皮细胞径向伸长,外壁和经向壁增厚,形成约占成熟种皮厚度一半的栅栏层;亚表皮细胞发育为骨状石细胞层。第三层细胞类似于亚表皮层但细胞壁增厚不明显,其内方的多层薄壁细胞形成海绵组织。种脐具两层栅栏细胞,外栅栏层及其以外部分由珠柄组织发育而成管胞群。本文还对脐缝和管胞群的作用以及豆科种子的吸水机制进行了讨论。  相似文献   

9.
10.
All members of Aristolochiaceae have anatropous, bitegmic, crassinucellate ovules, which are endostomic except in Saruma and Asarum arifolium where ovules are amphistomic. The outer integument is two cell-layered and the inner integument is three cell-layered. The chalazal megaspore is the functional one. All these conditions appear to be plesiomorphic for the order Piperales, which consists of five families, Aristolochiaceae, Hydnoraceae, Lactoridaceae, Piperaceae and Saururaceae. The embryo sac in Aristolochiaceae is eight-nucleate and corresponds to the Polygonum type; a hypostase is frequently present in this family. The seed coat of Aristolochia s.l., Asarum, Saruma and some Thottea species consists primarily of a two cell-layered testa, and a three cell-layered tegmen. In some species the cells of the outer epidermis become radially elongated, forming reticulate wall thickenings. Cells of the inner layer of the testa have crystals and thickened inner walls. The three layers of the tegmen are tangentially elongated, and become cross fibres at maturity, as fibres of the outer and inner layers are parallel to the seed axis, whereas those of the middle layer are perpendicular to it. This type of seed coat anatomy is synapomorphic for Aristolochiaceae. In addition, the gross morphology of the seed and elaiosome histology are remarkably similar in Asarum and Saruma, thus supporting a sister-group relationship between them. Embryological and seed characters do not supply any synapomorphy that support a close relationship between Aristolochiaceae, Hydnoraceae and Lactoridaceae. Instead, some seed features such as the absence of seed appendages and the collapsed cells of endotesta may indicate a close relationship of Lactoris with Piperaceae plus Saururaceae, although this is the subject of further analysis.  相似文献   

11.
Rice caryopsis as one of the most important food sources for humans has a complex structure that is composed of maternal tissues including the pericarp and testa and filial tissues including the endosperm and embryo. Although rice caryopsis studies have been conducted previously, a systematic characterization throughout the entire developmental process is still lacking. In this study, detailed morphological examinations of caryopses were made during the entire 30‐day developmental process. We observed some rapid changes in cell differentiation events and cataloged how cellular degeneration processes occurred in maternal tissues. The differentiations of tube cells and cross cells were achieved by 9 days after pollination (DAP). In the testa, the outer integument was degenerated by 3 DAP, while the outer layer of the inner integument degenerated by 7 DAP. In the nucellus, all tissues with the exception of the nucellar projection and the nucellar epidermis degenerated in the first 5 DAP. By 21 DAP, all maternal tissues, including vascular bundles, the nucellar projection and the nucellar epidermal cells were degenerated. In summary, this study provides a complete atlas of the dynamic changes in cell differentiation and degeneration for individual maternal cell layers of rice caryopsis.  相似文献   

12.
Rice caryopsis as one of the most important food sources for humans has a complex structure that is composed of maternal tissues including the pericarp and testa and filial tissues including the endosperm and embryo. Although rice caryopsis studies have been conducted previously, a systematic characterization throughout the entire developmental process is still lacking. In this study, detailed morphological examinations of caryopses were made during the entire 30-day developmental process. We observed some rapid changes in cell differentiation events and cataloged how cellular degeneration processes occurred in maternal tissues. The differentiations of tube cells and cross cells were achieved by 9 days after pollination(DAP). In the testa, the outer integument was degenerated by 3 DAP, while the outer layer of the inner integument degenerated by 7 DAP. In the nucellus, all tissues with the exception of the nucellar projection and the nucellar epidermis degenerated in the first 5 DAP. By 21 DAP, all maternal tissues, including vascular bundles, the nucellar projection and the nucellar epidermal cells were degenerated. In summary, this study provides a complete atlas of the dynamic changes in cell differentiation and degeneration for individual maternal cell layers of rice caryopsis.  相似文献   

13.
In the ovules of Vanilla (Vanilla planifolia Andr.) before fertilization, outer integument surrounded the lower part of ovule. Uranin got into ovule through funiculus, forming, the first center of fluorescence at the chalaza zone of ovule. Then uranin was transported to micropyle end along inner integument, forming the second center of fluorescence at micropyle end of inner integument. Soon, fluorescence appeared in the egg apparatua. After fertilization, the outer integument ovule extended upward, forming micropyle ogerber with inner integument. After getting into ovule through funiculus, uranin spreads to- ward several directions: l. transported to outer integument at the entrance of micropyle; 2. transported downward to chalaza zone along outer integument at the side of funiculus; 3. extended from chalaza zone to the inside and to the outer integument at the side far from funiculus The ovules of Vanilla had no vascular bundles. On transporting in inner integument, however, the cells in inner layer next to the embryo sac appeared to be the major passage. In mature embryo sac, there was cuticle between inner integument and embryo sac at the half of micropyle end. But between embryo sac at the half of chalaza end and nucellus, cuticle was absent. Nutrient could get into embryo sac from chalaza end undoubtedly. As egg apparatus showed the fluorescence after formation of fluorescence center of inner integument at micropylar end, the possibility that nutrient got into embryo sac from micropyle could not be excluded.  相似文献   

14.
Although the development of the soybean ovule has been fairlywell studied, knowledge of the sequence of events in the seedcoat during the first 3 weeks after flowering is incomplete.The goal of the present study was to document, using light microscopy,the early development of the soybean seed coat with respectto changes in structure and histochemistry. At anthesis, theseed coat consists of an outer layer of cuboidal epidermal cellssurrounding several layers of undifferentiated parenchyma (whichtogether constitute the outer integument), and an inner layerof cuboidal endothelial cells (the inner integument). At 3 dpost anthesis (dpa), the inner integument has expanded to includethree to five layers of relatively large cells with thick, heavily-stainingcell walls immediately adjacent to the endothelium. By 18 dpa,the outer integument has developed into a complex of tissuescomprised of an inner layer of thick-walled parenchyma, an outerlayer of thin-walled parenchyma containing vascular tissue whichhas grown down from the lateral vascular bundles in the hilumregion, a hypodermis of hourglass cells, and palisade layer(epidermis). The thick-walled parenchyma of the inner integumenthas become completely stretched and compressed, leaving a single,deeply staining wall layer directly above the endothelium. At21 dpa, the outermost cells of the endosperm have begun to compressthe endothelium. At 45 dpa (physiological maturity) the seedcoat retains only the palisade layer, hourglass cells, and afew layers of thin-walled parenchyma. The innermost layer ofthe endosperm, the aleurone layer, adheres to the inside ofthe seed coat. This knowledge will be invaluable in future studiesof manipulation of gene expression in the seed coat to modifyseed or seed coat characteristics. Copyright 1999 Annals ofBotany Company Soybean, Glycine max, seed coat, development, aleurone.  相似文献   

15.
A maternal plant exquisitely promotes the success of its offspring by orchestrating embryo development and endowing protection even after the embryos mature. It uses ovule integuments for physical and physiological contact with the developing embryo and for subsequently equipping the seed with a seed coat (testa). The testa is developmentally and metabolically dynamic, but its molecular biology is not well understood. We show here that the inner integument in Brassica napus undergoes organized development and then programmed cell death (PCD), as evident from vacuolation, starch mobilization, DNA fragmentation and eventual compression. We have identified a cysteine proteinase gene (BnCysP1) that is expressed only in the inner integument as it undergoes PCD, well before the embryo begins storage protein synthesis. Two paralogous Cys proteinases have been recruited in rapeseed for the PCD of testa and for leaf senescence, and these differ 25% in their primary structure and post-translational modifications. Despite Arabidopsis being closely related to rapeseed, and an indication of developmental compression of its inner integument, the Arabidopsis genome is suggestive of only one Cys proteinase that shows approximately 72% identity to BnCysP1. It is, however, leaf senescence-associated, and the other Cys proteinases are <52% identical. BnCysP1 also differs from ricinosome-deployed PCD Cys endopeptidases in lacking the hallmark KDEL tail and being glycosylated. BnCysP1, one of the very few plant genes known to function only in the seed coat, will be useful in dissecting post-fertilization development of this important organ in rapeseed.  相似文献   

16.
MANNING, J. C. & BRITS, G. J., 1993. Seed coat development in Leucospermum cordifolium (Knight) Fourcade (Proteaceae) and a clarification of the seed covering structures in Proteaceae . The development of the seed coat and pericarp is studied in Leucospermum cordifolium from ovule to mature seed. The ovule and seed are characterized by a tegmic pachychalaza. The pericarp is adnate to the integuments from anthesis and remains unthickened to maturity. The outer integument forms the seed coat and the seed is endotestal: the outer epidermis becomes tanniniferous and the inner epidermis develops into a crystalliferous palisade. The inner integument degenerates at an early stage. Examination of the literature reveals that the crystal palisade layer of the outer integument has been erroneously assumed to constitute an endocarp. This finding indicates that a re-interpretation of all published information on the seed coat in indehiscent Proteaceae is necessary before any speculations on the phylogenetic significance of the seed coat can be entertained.  相似文献   

17.
Ovular development and morphology in some magnoliaceae species   总被引:1,自引:0,他引:1  
Floral phenology and ovular development ofLiriodendron tulipifera are described. The ovule primordia are initiated in December, followed by prominent development in March, and the ovules are mature in May. The inner integument is formed as an annular rim on the incurving ovule primordia, but the outer integument develops as a semi-annular rim interrupted on the concave side of the funicle. Later, an outgrowth, which is interpreted here as an obturator, arises on the concave side of the funicle. The funicular outgrowth arises far from the inner integument, while the outer integument is close to the inner. The outer integument and the funicular outgrowth together form an envelope complex. Later the outer integument produces two distal lobes, which disappear at maturity. Mature ovules of the threeMagnolia species examined have similar lobes. It is suggested that the hood-shaped outer integument is primitive in angiosperms.  相似文献   

18.
In Sararanga , the fruit is a berry as in Freycinetia. The testa comprises a lignifled outer integument with several cell layers, and an unlignified inner integument with two cell layers. Abortive fruits are frequent; they correspond to normal fruits that do not have carpels and sometimes have a lateral process that suggests an abortive carpel. The staminate flowers have a pistillode as in Freycinetia. The anther walls have 1–3 cell layers with endothecial thickenings, one layer in the distal part, 2–3 layers in the proximal part, as in Pandanus. Thus, within the family Pandanaceae, Sararanga has an intermediate position between Pandanus and Freycinetia. Generally speaking, there is a gradient in the vascularization of the bracts on the inflorescences: upper bracts are unvascularized, lower bracts vascularized. Anatomy suggests that the cupules are a perianth.  相似文献   

19.
M. Weigend  A. Grger  M. Ackermann 《Flora》2005,200(6):569-591
South Andean Loasas (Blumenbachia, Caiophora, Loasa, Scyphanthus) are a monophyletic group of taxa within Loasaceae subfam. Loasoideae, comprising some 100 species, 49 of which are investigated here. They retain a many-layered testa in the mature seeds and usually have passive transfer testas with complex, spongiose wall outgrowths. Additional modifications concern the undulations of the testa epidermis, presence or absence of the outer periclinal wall, secondary sculpturing, the presence or absence of spines, warts and finally spongiose structures on the anticlinal walls of the testa epidermis and the inner periclinal wall. Seeds of the widespread “deeply pitted” type are plesiomorphic, while various subclades of South Andean Loasas have derivations underscoring their relationships and confirming the relationships found with molecular markers and other morphological characters. The genus Blumenbachia has either seeds with a many-layered testa forming longitudinal lamellae (sect. Angulatae), or balloon seeds with a loose outer testa layer and spongiose wall outgrowths on the inner periclinal walls (sect. Blumenbachia and sect. Gripidea) and is clearly monophyletic. Loasa s.str. (ser. Loasa, ser. Macrospermae, ser. Floribundae, ser. Deserticolae) is characterized by the presence of a subterminal hilum or hilar scar and one subgroup (ser. Loasa, ser. Macrospermae) by very large and heavy seeds with a collapsed testa. L. ser. Pinnatae, ser. Acaules, ser. Volubiles, Scyphanthus and Caiophora share more or less one seed types with minor modifications. Within Caiophora various derivations are observed, of which the gradual loss of the secondary sculpture of the inner periclinal wall is the most striking one. Anemochoria is the most widespread dispersal mechanism in South Andean Loasas and is achieved in at least five structurally different ways.  相似文献   

20.
The main aspects of seed ontogeny in Senna corymbosa were studied by standard anatomical microtechniques for light microscope observations. The results revealed an ana-campylotropous, bitegmic, and crassinucelate mature ovule. A single archesporocyte developed by an archesporial cell enlargement from the subhypodermal multicellular archesporium. Meiosis originated linear or T-shaped megasporic tetrads. The functional megaspore was the chalazal one. Megagametophytic development conformed to the Polygonum type. Fertilization was porogamic. Endosperm development was free nuclear and conformed to a chalazal haustorium. Cellular endosperm was initiated from the micropylar end during the globular embryo stage. Embryogeny derived from a linear proembryonal tetrad. The mature embryo showed an oblique axis. The testa derived from the outer ovular integument. Nucellar and endosperm remnants, and the micropylar region of the inner ovular integument, persisted at embryo maturity. The absence of a pleurogram would be adaptative to wetland habitats. The taxonomic use of the mature embryo axis in the Cassieae and the phylogenetic employment of megasporic arrangements in Leguminosae needs some reinterpretation.  © 2007 The Linnean Society of London, Botanical Journal of the Linnean Society , 2007, 153 , 169–179.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号