首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glucocorticoids (GCs), the adrenal steroids secreted during stress, compromise the ability of hippocampal neurons to survive various necrotic insults. We have previously observed that GCs enhance the hippocampal neurotoxicity of reactive oxygen species and, as a potential contributor to this, decrease the activity of the antioxidant enzyme, glutathione peroxidase (GSPx). In this report, we have studied the possible mechanisms underlying this GC effect upon GSPx in primary hippocampal cultures and have observed several results. (i) Corticosterone (the GC of rats) decreased glutathione levels; this was predominately a result of a decrease in levels of reduced glutathione (GSH), the form of glutathione which facilitates GSPx activity. (ii) Corticosterone also decreased levels of NADPH; this may help explain the effect on GSH as NADPH is required for regeneration of GSH from oxidized glutathione. (iii) However, the corticosterone effect on total glutathione levels could not just be caused by the NADPH effect, as there were also reduced levels of oxidized glutathione. (iv) Corticosterone caused a small but significant decrease in GSPx activity over a range of glucose concentrations; this occurred under circumstances of an excess of glutathione as a substrate, suggesting a direct effect of corticosterone on GSPx activity. (v) This corticosterone effect was likely to have functional implications, in that enhancement of GSPx activity (to the same magnitude as activity was inhibited by corticosterone) by GSPx overexpression protected against an excitotoxin. Thus, GCs have various effects, both energetic and non-energetic in nature, upon steps in GSPx biochemistry that, collectively, may impair hippocampal antioxidant capacity.  相似文献   

2.
3.
Energy Dependency of Glucocorticoid Exacerbation of gp120 Neurotoxicity   总被引:3,自引:2,他引:1  
Abstract: The HIV envelope glycoprotein, gp120, a well documented neurotoxin, may be involved in AIDS-related dementia complex. gp120 works through an NMDA receptor- and calcium-dependent mechanism to damage neurons. We have previously demonstrated that both natural and synthetic glucocorticoids (GCs) exacerbate gp120-induced neurotoxicity and calcium mobilization in hippocampal mixed cultures. GCs, steroid hormones secreted during stress, are now shown to work in conjunction with gp120 to decrease ATP levels and to work synergistically with gp120 to decrease the mitochondrial potential in hippocampal cultures. Furthermore, energy supplementation blocked the ability of GCs to worsen gp120's effects on neuronal survival and calcium mobilization. A GC-induced reduction in glucose transport in hippocampal neurons, as previously documented, may contribute to this energetic dependency. These results may have clinical significance, considering the common treatment of severe cases of Pneumocystis carinii pneumonia, typical of HIV infection, with large doses of synthetic GCs.  相似文献   

4.
Yang S  Luo A  Hao X  Lai Z  Ding T  Ma X  Mayinuer M  Shen W  Wang X  Lu Y  Ma D  Wang S 《Biology of reproduction》2011,84(6):1182-1189
Peroxiredoxin 2 (PRDX2) has been known to act as an antioxidant enzyme whose main function is H(2)O(2) reduction in cells. We aimed to study the expression patterns of PRDX2 in mouse ovaries and explore the function of this protein in apoptosis of granulosa cells (GCs). We found that the expression of the PRDX2 protein in atretic follicle GCs was markedly higher than in healthy follicle GCs. In vitro, the transfection of siRNA targeting the Prdx2 gene inhibited the proliferation and induced the apoptosis of primary cultured GCs. Furthermore, suppression of PRDX2 resulted in the augmentation of endogenous H(2)O(2), and the ability to eliminate the exogenous H(2)O(2) was attenuated. The expression of PRDX2 and nuclear factor kappa-light-chain-enhancer of activated B cells (NFKB), whose activity was inhibited by binding to IKB, increased in GCs treated with various concentrations of H(2)O(2) for 30 min. However, no significant change in cytoplasmic IKB expression was observed. At 2 h after treatment with H(2)O(2), nuclear NFKB expression level was reduced, cytoplasmic IKB expression was increased, and PRDX2 expression was unchanged. Silencing of the Prdx2 gene caused early changes in NFKB and IKB expression in the primary cultured GCs compared to that in control cells. Taken together, these data suggest that PRDX2 plays an important role in inhibiting apoptosis in GCs and that PRDX2 actions may be related to the expression of NFKB and IKB.  相似文献   

5.
Ischemic preconditioning (IP) has been shown to protect the lung against ischemia-reperfusion (I/R) injury. Although the production of reactive oxygen species (ROS) has been postulated to play a crucial role in I/R injury, the sources of these radicals in I/R and the mechanisms of protection in IP remain unknown. Since it was postulated that deamination of endogenous and exogenous amines by semicarbazide-sensitive amine oxidase (SSAO) in tissue damage leads to the overproduction of hydrogen peroxide (H2O2), we investigated the possible contribution of tissue SSAO to excess ROS generation and lipid peroxidation during I/R and IP of the lung. Male Wistar rats were randomized into 6 groups: control lungs were subjected to 30 min of perfusion in absence and presence of SSAO inhibitor, whereas the lungs of the I/R group were subjected to 2 h of cold ischemia following the 30 min of perfusion in absence and presence of SSAO inhibitor. IP was performed by two cycles of 5 min ischemia followed by 5 min of reperfusion prior to 2 h of hypothermic ischemia in absence and presence of SSAO inhibitor. Lipid peroxidation, reduced (GSH) and oxidized (GSSG) glutathione levels, antioxidant enzyme activities, SSAO activity, and H2O2 release were determined in tissue samples of the study groups. Lipid peroxidation, glutathione disulfide (GSSG) content, SSAO activity and H2O2 release were increased in the I/R group, whereas GSH content, GSH/GSSG ratio and antioxidant enzyme activities were decreased. SSAO activity, H2O2 release, GSSG content and lipid peroxidation were markedly decreased in the IP group, whereas GSH content, GSH/GSSG ratio and antioxidant enzyme activities were significantly increased. SSAO activity was found to be positively correlated with H2O2 production in all study groups. Increased lipid peroxidation, SSAO activity, GSSG and H2O2 contents as well as decreased GSH and antioxidant enzyme levels in I/R returned to their basal levels when IP and SSAO inhibition were applied together. The present study suggests that application of IP and SSAO inhibition together may be more effective than IP alone against I/R injury in the lung.  相似文献   

6.
The antioxidant property of butin was investigated for cytoprotective effect against H(2)O(2)-induced cell damage. This compound showed intracellular reactive oxygen species (ROS) scavenging, 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging, inhibition of lipid peroxidation, and DNA damage. This radical scavenging activity of butin protected cell damage exposed to H(2)O(2). Also, butin reduced the apoptotic cells induced by H(2)O(2), as demonstrated by the decreased DNA fragmentation, apoptotic body formation, and caspase 3 activity. In addition, butin restored the activity and protein expression of cellular antioxidant enzymes, superoxide dismutase (SOD), and catalase (CAT) in H(2)O(2)-treated cells. Taken together, these findings suggest that butin protected cells against H(2)O(2)-induced cell damage via antioxidant property.  相似文献   

7.
Bai X  Yang L  Tian M  Chen J  Shi J  Yang Y  Hu X 《PloS one》2011,6(6):e20714
The viability of recalcitrant seeds is lost following stress from either drying or freezing. Reactive oxygen species (ROS) resulting from uncontrolled metabolic activity are likely responsible for seed sensitivity to drying. Nitric oxide (NO) and the ascorbate-glutathione cycle can be used for the detoxification of ROS, but their roles in the seed response to desiccation remain poorly understood. Here, we report that desiccation induces rapid accumulation of H(2)O(2), which blocks recalcitrant Antiaris toxicaria seed germination; however, pretreatment with NO increases the activity of antioxidant ascorbate-glutathione pathway enzymes and metabolites, diminishes H(2)O(2) production and assuages the inhibitory effects of desiccation on seed germination. Desiccation increases the protein carbonylation levels and reduces protein S-nitrosylation of these antioxidant enzymes; these effects can be reversed with NO treatment. Antioxidant protein S-nitrosylation levels can be further increased by the application of S-nitrosoglutathione reductase inhibitors, which further enhances NO-induced seed germination rates after desiccation and reduces desiccation-induced H(2)O(2) accumulation. These findings suggest that NO reinforces recalcitrant seed desiccation tolerance by regulating antioxidant enzyme activities to stabilize H(2)O(2) accumulation at an appropriate concentration. During this process, protein carbonylation and S-nitrosylation patterns are used as a specific molecular switch to control antioxidant enzyme activities.  相似文献   

8.
Glucocorticoids (GCs), the adrenal steroids secreted during stress, can compromise the ability of hippocampal neurons to survive numerous necrotic insults. We have previously observed that GCs worsen the deleterious effects of gp120, the glycoprotein of the acquired immune deficiency syndrome virus, which can indirectly damage neurons and which is thought to play a role in the neuropathological features of human immunodeficiency virus infection. Specifically, GCs augment gp120-induced calcium mobilization, ATP depletion, decline in mitochondrial potential, and neurotoxicity in fetal monolayer cultures from a number of brain regions. In the present report, we demonstrate a similar gp120/GC synergy in adult hippocampal and cortical explants. We generated explants from rats that were either adrenalectomized, adrenally intact, or intact and treated with corticosterone to produce levels seen in response to major stressors. Metabolic rates in explants were then indirectly assessed with silicon microphysiometry, and cytosolic calcium concentrations were assessed with fura-2 fluorescent microscopy. We observed that basal levels of GCs tonically augment the disruptive effects of gp120 on metabolism in the CA1 cell field of the hippocampus and in the cortex. Moreover, raising GC concentrations into the stress range exacerbated the ability of gp120 to mobilize cytosolic calcium in a number of hippocampal cell fields. Finally, we observed that the synthetic GC prednisone had similarly exacerbating effects on gp120. Thus, GCs can worsen the deleterious effects of gp120 in a system that is more physiologically relevant than the fetal monolayer culture and in a region-specific manner.  相似文献   

9.
Seed oil of Celastrus paniculatus Willd. (CP) has been reported to improve memory and the methanolic extract (ME) of CP was shown to exhibit free-radical-scavenging properties and anti-oxidant effects in human non-immortalized fibroblasts. In the present study, we have investigated the free-radical-scavenging capacity of CP seed oil (CPO) and two extracts, an ethanolic extract (EE) and a ME. CPO and EE showed dose-dependent, free-radical-scavenging capacity, but to a lesser degree than observed for ME. Oxidative stress involves the generation of free radicals and free radical scavenging is one of the mechanisms of neuroprotection. We therefore investigated the effects of CPO, ME, and EE for protection against hydrogen peroxide (H(2)O(2))- and glutamate-induced neurotoxicity in embryonic rat forebrain neuronal cells (FBNC). Pre-treatment of neuronal cells with CPO dose-dependently attenuated H(2)O(2)-induced neuronal death. Pre-treatment with ME and EE partially attenuated H(2)O(2)-induced toxicity, but these extracts were less effective than CPO for neuronal survival. In H(2)O(2)-treated cells, cellular superoxide dismutase (SOD) activity was unaffected, but catalase activity was decreased and levels of malondialdehyde (MDA) were increased. Pre-treatment with CPO, ME, or EE increased catalase activity and decreased MDA levels significantly. Also, CPO pre-treatment attenuated glutamate-induced neuronal death dose-dependently. The activity of cellular acetylcholinesterase (AChE) was not affected by CPO, ME, or EE, suggesting that the neuroprotection offered by CPO was independent of changes in AChE activity. Taken together, the data suggest that CPO, ME, and EE protected neuronal cells against H(2)O(2)-induced toxicity in part by virtue of their antioxidant properties, and their ability to induce antioxidant enzymes. However, CPO, which exhibited the least antioxidant properties, was the most effective in preventing neuronal cells against H(2)O(2)- and glutamate-induced toxicities. Thus, in addition to free-radical scavenging attributes, the mechanism of CP seed component (CP-C) neuroprotection must be elucidated.  相似文献   

10.
蛋白磷酸化在植物细胞脱落酸(ABA)介导的信号转导中起重要作用。然而,很多参与ABA信号途径的蛋白元件仍不清楚。使用改进的体外激酶试验方法的研究结果表明,在玉米叶片中,ABA和H2O2能够快速活化蛋白激酶总活性和Ca2+依赖型蛋白激酶总活性;ABA诱导的蛋白激酶总活性增加可以被活性氧的抑制剂和清除剂抑制,蛋白激酶抑制剂不仅可以降低ABA和H2O2诱导的激酶活性增加,而且也可以弱化它们对抗氧化防护酶活性的诱导作用;ABA和H2O2引发的蛋白磷酸化作用显著居先于它们诱导的抗氧化防护作用。使用凝胶激酶试验方法进行研究发现,一组分子量分别为66kDa, 52kDa, 49kDa和35kDa的蛋白激酶可能介导了ABA和H2O2诱导的抗氧化防护反应,并且66kDa和49kDa的蛋白激酶可能在ROS的下游起作用, 而52kDa和35kDa的蛋白激酶可能在ABA和ROS的下游起作用。  相似文献   

11.
Protein phosphorylation plays a central role in mediating abscisic acid (ABA) signaling transduction in plant cells, whereas many of the sensory proteins involving in ABA signaling pathway remain unclear. Here, using a modified in vitro kinase assay, our results showed that ABA and H2O2 induced a rapid activation of total protein kinases and calcium dependent protein kinases in the leaves of maize seedlings. However, ABA-induced activation of protein kinases was inhibited by reactive oxygen species (ROS) inhibitors or scavengers. Protein kinase inhibitors decelerated not only the ABA and H2O2 -induced kinase activity but also ABA or H2O2-induced antioxidant enzyme activity. Protein phosphorylation caused by ABA and H2O2 preceded ABA or H2O2 -induced antioxidant defense obviously. Using in-gel kinase assays, our results showed that several protein kinases with molecular masses of 66kDa, 52kDa, 49kDa and 35kDa respectively might mediate ABA and H2O2-induced antioxidant defense. And the 66kDa and 49kDa protein kinases may act downstream of ROS, and the 52kDa and 35kDa protein kinases may act between ABA and ROS in ABA-induced antioxidant defensive signaling.  相似文献   

12.
Hepatocytes from cirrhotic murine livers exhibit increased basal ROS activity and resistance to TGFbeta-induced apoptosis, yet when ROS levels are decreased by antioxidant pretreatment, these cells recover susceptibility to apoptotic stimuli. To further study these redox events, hepatocytes from cirrhotic murine livers were pretreated with various antioxidants prior to TGFbeta treatment and the ROS activity, apoptotic response, and mitochondrial ROS generation were assessed. In addition, normal hepatocytes were treated with low-dose H(2)O(2) and ROS and apoptotic responses determined. Treatment of cirrhotic hepatocytes with various antioxidants decreased basal ROS and rendered them susceptible to apoptosis. Examination of normal hepatocytes by confocal microscopy demonstrated colocalization of ROS activity and respiring mitochondria. Basal assessment of cirrhotic hepatocytes showed nonfocal ROS activity that was abolished by antioxidants. After pretreatment with an adenovirus expressing MnSOD, basal cirrhotic hepatocyte ROS were decreased and TGFbeta-induced colocalization of ROS and mitochondrial respiration was present. Treatment of normal hepatocytes with H(2)O(2) resulted in a sustained increase in ROS and resistance to TGFbeta apoptosis that was reversed when these cells were pretreated with an antioxidant. In conclusion, cirrhotic hepatocytes have a nonfocal distribution of ROS. However, normal and cirrhotic hepatocytes exhibit mitochondrial localization of ROS that is necessary for apoptosis.  相似文献   

13.
Endothelium-dependent, nitric oxide (NO)-mediated vasodilation can be impaired by reactive oxygen species (ROS), and this deleterious effect of ROS on NO availability may increase with aging. Endothelial function declines rapidly after menopause, possibly because of loss of circulating estrogen and its antioxidant effects. The purpose of the current study was to determine the role of O(2)(-) and H(2)O(2) in regulating flow-induced dilation in coronary arterioles of young (6-mo) and aged (24-mo) intact, ovariectomized (OVX), or OVX + estrogen-treated (OVE) female Fischer 344 rats. Both aging and OVX reduced flow-induced NO production, whereas flow-induced H(2)O(2) production was not altered by age or estrogen status. Flow-induced vasodilation was evaluated before and after treatment with the superoxide dismutase (SOD) mimetic Tempol (100 μM) or the H(2)O(2) scavenger catalase (100 U/ml). Removal of H(2)O(2) with catalase reduced flow-induced dilation in all groups, whereas Tempol diminished vasodilation in intact and OVE, but not OVX, rats. Immunoblot analysis revealed elevated nitrotyrosine with aging and OVX. In young rats, OVX reduced SOD protein while OVE increased SOD in aged rats; catalase protein did not differ in any group. Collectively, these studies suggest that O(2)(-) and H(2)O(2) are critical components of flow-induced vasodilation in coronary arterioles from female rats; however, a chronic deficiency of O(2)(-) buffering by SOD contributes to impaired flow-induced dilation with aging and loss of estrogen. Furthermore, these data indicate that estrogen replacement restores O(2)(-) homeostasis and flow-induced dilation of coronary arterioles, even at an advanced age.  相似文献   

14.
As encountered with a plethora of other natural products, the antioxidant activity of beta-carotene has been proposed as one of the mechanisms by which diets rich in this pro-vitamin A active carotenoid apparently afford chemoprevention. Here, we report the ability of beta-carotene to alter endogenous reactive oxygen levels and antioxidant defences within non-stressed 'differentiated' monolayers of an intestinal epithelial cell line (Caco-2) and to subsequently effect resistance to general oxidative insult. The differentiated monolayers efficiently absorbed beta-carotene. Between 3 and 8 days post confluence, cultures exhibited a progressive increase in antioxidant enzyme activity and a corresponding reduction to intracellular ROS levels. The profile for antioxidant enzyme activity was unaffected by sustained daily supplementation with beta-carotene. However, after two daily treatments with 50 microM beta-carotene intracellular ROS levels were significantly reduced and there was a trend towards reduced intracellular ROS within monolayers subject to five daily treatments with 0.5 and 5 microM beta-carotene. Prolonged supplementation with 0.1 and 0.5 microM beta-carotene or short supplementation periods with 5 and 50 microM beta-carotene did not alter susceptibility to H(2)O(2). However, cultures treated daily between 3 and 8 days post confluence with 5 or 50 microM beta-carotene exhibited enhanced LDH release, increased non-adherence and enhanced Trypan blue staining when challenged with 10 mM H(2)O(2). In the absence of H(2)O(2), the beta-carotene treatments were not overtly toxic to the monolayers. These results indicate that beta-carotene does not enhance antioxidant defences within Caco-2 monolayers. The enhancement of H(2)O(2) toxicity by persistent, high doses of beta-carotene may contribute to the failure of this carotenoid to protect high risk individuals from certain degenerative conditions.  相似文献   

15.
We have elucidated the cytoprotective effect of annphenone (2,4-dihyroxy-6-methoxy-acetophenone 4-O-beta-d-glucopyranoside) against oxidative stress-induced apoptosis. Annphenone scavenged intracellular reactive oxygen species (ROS) and increased antioxidant enzyme activities. It thereby prevented lipid peroxidation and DNA damage, which was demonstrated by the inhibition of the formation of thiobarbituric acid reactive substance (TBARS), inhibition of the comet tail and decreased phospho-H2A.X expression. Annphenone protected Chinese hamster lung fibroblast (V79-4) cells from cell death via the inhibition of apoptosis induced by hydrogen peroxide (H(2)O(2)), as shown by decreased apoptotic nuclear fragmentation, decreased sub-G(1) cell population and inhibited mitochondrial membrane potential (Deltapsi) loss. Taken together, these findings suggest that annphenone exhibits antioxidant properties by inhibiting ROS generation and thus protecting cells from H(2)O(2)-induced cell damage.  相似文献   

16.
Human immunodeficiency virus type-1 coat glycoprotein gp 120 causes delayed programmed cell death (apoptosis) in rat brain neocortex. Here, we investigated the possible role of the arachidonate cascade and membrane peroxidation in this process. It is shown that gp 120 causes a rapid increase in the activity and expression of the arachidonate-metabolizing enzyme prostaglandin H synthase, paralleled by increased prostaglandin E(2) levels. The selective inhibitor of prostaglandin H synthase indomethacin inhibited enzyme activity, reduced prostaglandin E(2) content, and partially protected neocortex against gp 120-induced apoptosis. Conversely, the activity and expression of the arachidonate-metabolizing enzyme 5-lipoxygenase decreased upon gp 120 treatment, as well as the level of its product, leukotriene B(4). Treatment with gp 120 also reduced membrane lipid peroxidation, and this may be implicated in the execution of programmed cell death. These results suggest that early derangement of the arachidonate cascade in favor of prostanoids may be instrumental in the execution of delayed apoptosis in the brain neocortex of rats.  相似文献   

17.
Recent studies implicate of reactive oxygen species (ROS) in hypertension; however, whether reactive oxygen species promote hypertensive derangements is not fully clear. We thus investigated the effects of an antioxidant, N-acetyl-L-cysteine, on hypertensive Dahl salt-sensitive rats. High-salt intake for 4 weeks markedly elevated systolic arterial pressure, urinary excretion of protein, 8-isoprostane, and H(2)O(2), and the enzyme activity of reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase along with the elevated expression of its subunits gp91phox and p47phox at the levels of mRNA and protein. Supplement with N-acetyl-L-cysteine reduced the increase in systolic arterial pressure and counteracted the elevation of urinary excretion of protein, 8-isoprostane, and H(2)O(2), and the increases in NADPH oxidase activity/expression in high-salt-loaded Dahl salt-sensitive rats. N-acetyl-L-cysteine supplement ameliorated plasma and urinary levels of thromboxane B(2) (an end metabolite of thromboxane A(2)), associated with improvement of both the abnormal contraction and the impaired nitric oxide-dependent relaxation in renal arteries. These results revealed that oxidative stress mediates hypertensive changes in Dahl salt-sensitive rats, because thiol antioxidant N-acetyl-L-cysteine attenuated the augmentation of local ROS production by diminishing the elevation of NADPH oxidase expression and ameliorated renal/vascular hypertensive changes.  相似文献   

18.
Increase of intracellular reactive oxygen species (ROS) has been proposed to cause endothelial injury, and oxidized LDL (oxLDL) actions are associated with an early increase of ROS. Estrogen protects vascular cells partly via its antioxidant effects and by preventing lipid peroxidation. However, whether it can inhibit oxLDL-induced stimulation of ROS generation in endothelial cells is unknown. We utilized the fluorescent dye (DCFH-DA) to measure ROS generation and compared the stimulant effect of tert-butylhydroperoxide (TBH) and oxLDL in human umbilical vein endothelial cells (HUVECs). We found that TBH, H2O2, and oxLDL rapidly stimulated ROS generation, and in a dose-dependent manner with TBH. A concentration of estrogen effective in preventing lipid peroxidation was employed either by pretreatment of cells 18 h prior to or by direct co-incubation (30 min) with HUVEC and oxLDL. Estrogen (54 microM) pretreatment significantly suppressed both TBH- and oxLDL- induced stimulation of ROS generation. Both 1 and 54 microM concentration of estrogen could directly inhibit oxLDL-induced ROS production in HUVECs. Thus, either 18 h pretreatment or 30 min co-incubation with estrogen reduced stimulated ROS generation, suggesting that both cellular and direct actions of estrogen may be involved.  相似文献   

19.
Curcumin is a molecule found in turmeric root that has anti-inflammatory, antioxidant, and anti-tumor properties and has been widely used as both an herbal drug and a food additive to treat or prevent neurodegenerative diseases. To explore whether curcumin is able to ameliorate HIV-1-associated neurotoxicity, we treated a murine microglial cell line (N9) and primary rat cortical neurons with curcumin in the presence or absence of neurotoxic HIV-1 gp120 (V3 loop) protein. We found that HIV-1 gp120 profoundly induced N9 cells to produce reactive oxygen species (ROS), tumor necrosis factor-α (TNF-α) and monocyte chemoattractant protein-1 (MCP-1). HIV-1 gp120 also induced apoptosis of primary rat cortical neurons. Curcumin exerted a powerful inhibitory effect against HIV-1 gp120-induced neuronal damage, reducing the production of ROS, TNF-α and MCP-1 by N9 cells and inhibiting apoptosis of primary rat cortical neurons. Curcumin may exert its biological activities through inhibition of the delayed rectification and transient outward potassium (K+) current, as curcumin effectively reduced HIV-1 gp120-mediated elevation of the delayed rectification and transient outward K+ channel current in neurons. We conclude that HIV-1 gp120 increases ROS, TNF-α and MCP-1 production in microglia, and induces cortical neuron apoptosis by affecting the delayed rectification and transient outward K+ channel current. Curcumin reduces production of ROS and inflammatory mediators in HIV-1-gp120-stimulated microglia, and protects cortical neurons against HIV-1-mediated apoptosis, most likely through inhibition of HIV-1 gp120-induced elevation of the delayed rectification and transient outward K+ current.  相似文献   

20.
Curcumin has anti-oxidative activity. In view of the increasing evidence for a biochemical link between increased oxidative stress and reduced bone density we hypothesized that curcumin might increase bone density by elevating antioxidant activity in some target cell type. We measured bone density by Micro-CT, enzyme expression levels by quantitative PCR or enzyme activity, and osteoclast (OC) formation by tartrate-resistant acid phosphatase staining. The bone mineral density of the femurs of curcumin-administered mice was significantly higher than that of vehicle-treated mice after ovariectomy (OVX) and this was accompanied by reduced amounts of serum collagen-type I fragments, which are markers of bone resorption. Curcumin suppressed OC formation by increasing receptor activator of nuclear factor-κB ligand (RANKL)-induced glutathione peroxidase-1, and reversed the stimulatory effect of homocysteine, a known H(2) O(2) generator, on OC formation by restoring Gpx activity. Curcumin generated an aberrant RANKL signal characterized by reduced expression of nuclear factor of activated T cells 2 (NFAT2) and attenuated activation of mitogen-activated protein kinases (ERK, JNK, and p38). Curcumin thus inhibited OVX-induced bone loss, at least in part by reducing osteoclastogenesis as a result of increased antioxidant activity and impaired RANKL signaling. These findings suggest that bone loss associated with estrogen deficiency could be attenuated by curcumin administration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号