首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tight junctions (TJs) are an important component of the blood-brain barrier, and claudin-1, -3, -5 and -12 have been reported to be localized at the TJs of brain capillary endothelial cells (BCECs). To understand the contribution of each claudin subtype to TJ formation, we have measured the mRNA expression levels of claudin subtypes (claudin-1 to -23) and other relevant proteins in highly purified mouse BCECs. Mouse BCECs were labeled with anti-platelet endothelial cellular adhesion molecule-1 antibody and 2.3 × 106 cells were isolated from 15 mice by magnetic cell sorting. Expression of Tie-2, Mdr1a and GLUT1 mRNAs was concentrated in the isolated fraction, and contamination with neurons and astrocytes was substantially less than in the brain capillary fraction prepared by the standard glass-beads column method. Expression of occludin, junctional adhesion molecule and endothelial-specific adhesion molecule mRNAs was concentrated in the isolated fraction, suggesting that the corresponding proteins are selectively expressed in mouse BCECs. Among claudin subtypes, claudin-5 was most highly expressed, at a level which was at least 593-fold greater that that of claudin-1, -3 or -12. Expression of mRNAs of claudin-8, -10, -15, -17, -19, -20, -22 or -23 was also concentrated in the isolated fraction, suggesting these subtypes are expressed in mouse BCECs. The levels of claudin-10 and -22 mRNAs were comparable with that of occludin mRNA. These results indicate that claudin-5 is the most abundant claudin subtype in mouse BCECs, and are consistent with the idea that claudin-10 and -22 are involved in TJ formation at the blood-brain barrier in cooperation with claudin-5.  相似文献   

2.
Endothelial cell-selective adhesion molecule (ESAM) is an immunoglobulin-like transmembrane protein associated with endothelial tight junctions (TJ). Based on a yeast two-hybrid screen, we have identified the membrane-associated guanylate kinase protein MAGI-1 as an intracellular binding partner of ESAM. MAGI-1 is a multidomain adaptor protein, which binds to transmembrane, cytoskeletal, and signaling molecules, and has been localized to tight junctions in epithelial cells. MAGI-1 associates with the very C-terminal sequence of ESAM most likely through a PDZ domain-mediated interaction. The direct interaction between ESAM and MAGI-1 was confirmed by pull-down experiments. The two proteins formed stable complexes in transfected Chinese hamster ovary (CHO) cells, which could be immunoisolated. We found MAGI-1 to be associated with cell-cell contacts in human umbilical vein endothelial cells (HUVECs) and in mouse endothelium, where it colocalizes with ESAM. In CHO cells, recruitment of MAGI-1 to cell contacts required the presence of ESAM. Hence, ESAM may be involved in anchoring MAGI-1 at endothelial tight junctions.  相似文献   

3.
The apicomplexan parasite Toxoplasma gondii invades tissues and traverses non‐permissive biological barriers in infected humans and other vertebrates. Following ingestion, the parasite penetrates the intestinal wall and disseminates to immune‐privileged sites such as the brain parenchyma, after crossing the blood–brain barrier. In the present study, we have established a protocol for high‐purification of primary mouse brain endothelial cells to generate stably polarised monolayers that allowed assessment of cellular barrier traversal by T. gondii. We report that T. gondii tachyzoites translocate across polarised monolayers of mouse brain endothelial cells and human intestinal Caco2 cells without significantly perturbing barrier impermeability and with minimal change in transcellular electrical resistance. In contrast, challenge with parasite lysate or LPS increased barrier permeability by destabilising intercellular tight junctions (TJs) and accentuated transmigration of T. gondii. Conversely, reduced phosphorylation of the TJ‐regulator focal adhesion kinase (FAK) was observed dose‐dependently upon challenge of monolayers with live T. gondii but not with parasite lysate or LPS. Pharmacological inhibition of FAK phosphorylation reversibly altered barrier integrity and facilitated T. gondii translocation. Finally, gene silencing of FAK by shRNA facilitated transmigration of T. gondii across epithelial and endothelial monolayers. Jointly, the data demonstrate that T. gondii infection transiently alters the TJ stability through FAK dysregulation to facilitate transmigration. This work identifies the implication of the TJ regulator FAK in the transmigration of T. gondii across polarised cellular monolayers and provides novel insights in how microbes overcome the restrictiveness of biological barriers.  相似文献   

4.
Impairment of epithelial barrier integrity caused by environmental triggers is associated with the pathogenesis of airway inflammation. Using human airway epithelial cells, we attempted to identify molecule(s) that promote airway epithelial barrier integrity. Microarray analyses were conducted using the Affimetrix human whole genome gene chip, and we identified the N‐myc downstream‐regulated gene 1 (NDRG1) gene, which was induced during the development of the epithelial cell barrier. Immunohistochemical analysis revealed strong NDRG1 expression in ciliated epithelial cells in nasal tissues sampled from patients with chronic rhinosinusitis (CRS), and the low expression of NDRG1 was observed in goblet cells or damaged epithelial cells. NDRG1 gene knockdown with its specific siRNA decreased the transepithelial electrical resistance and increased the dextran permeability. Immunocytochemistry revealed that NDRG1 knockdown disrupted tight junctions of airway epithelial cells. Next, we analyzed the effects of NDRG1 knockdown on the expression of tight and adhesion junction molecules. NDRG1 knockdown significantly decreased only claudin‐9 expression, but did not decrease other claudin family molecules, such as E‐cadherin, and ZO‐1, ‐2, or ‐3. Knockdown of claudin‐9 markedly impaired the barrier function in airway epithelial cells. These results suggest that NDRG1 is important for the barrier integrity in airway epithelial cells.  相似文献   

5.
The protective effect of erythropoietin (Epo) is based on its ability to reduce oxidation and to stabilize the cells. The aim of the study was to evaluate the influence of Epo on malonyl dialdehyde (MDA), intercellular adhesion molecule‐1 (ICAM‐1) (CD54) and platelet–endothelial cell adhesion molecule‐1 (PECAM‐1) (CD31) levels on human umbilical vein endothelial cells (HUVECs) stimulated by tumour necrosis factor‐α (TNF‐α). HUVECs were incubated with Epo (10–40 IU ml−1) or TNF‐α (10–40 ng ml−1) alone or preincubated with Epo (20 IU ml−1) and subsequently stimulated with TNF‐α (10–40 ng ml−1). MDA concentrations were measured using the high‐performance liquid chromatography, whereas ICAM‐1 and PECAM‐1 expressions were evaluated by flow cytometry. Incubation with Epo resulted in a decrease in MDA and the increased expressions of ICAM‐1 and PECAM‐1. Exposure to TNF‐α reflected an increase in MDA, ICAM‐1 and PECAM‐1 levels. These changes were inhibited by preincubation with Epo. The cytoprotective activity proven in this study points to new applications and therapeutic possibilities for Epo. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
Platelet endothelialcell adhesion molecule (PECAM)-1 has been implicated inangiogenesis, but a number of issues remain unsettled, including theindependent involvement of human PECAM-1 (huPECAM-1) in tumorangiogenesis and the mechanisms of its participation in vesselformation. We report for tumors grown in human skin transplanted on severe combined immunodeficiency mice that antibodies against huPECAM-1 (without simultaneous treatment with anti-VE-cadherin antibody) decreased the density of human, but not murine, vessels associated with the tumors. Anti-huPECAM-1 antibody alsoinhibited tube formation by human umbilical vein endothelial cells(HUVEC) and the migration of HUVEC through Matrigel-coated filters or during the repair of wounded cell monolayers. The involvement ofhuPECAM-1 in these processes was confirmed by the finding that expression of huPECAM-1 in cellular transfectants induced tube formation and enhanced cell motility. These data provide evidence of arole for PECAM-1 in human tumor angiogenesis (independent ofVE-cadherin) and suggest that during angiogenesis PECAM-1 participates in adhesive and/or signaling phenomena required for the motility ofendothelial cells and/or their subsequent organization into vascular tubes.

  相似文献   

7.
Disruption of the intestinal epithelial barrier, that involves the activation of C‐Jun N‐terminal kinase (JNK), contributes to initiate and accelerate inflammation in inflammatory bowel disease. Metformin has unexpected beneficial effects other than glucose‐lowering effects. Here, we provided evidence that metformin can protect against intestinal barrier dysfunction in colitis. We showed that metformin alleviated dextran sodium sulphate (DSS)‐induced decreases in transepithelial electrical resistance, FITC‐dextran hyperpermeability, loss of the tight junction (TJ) proteins occludin and ZO‐1 and bacterial translocation in Caco‐2 cell monolayers or in colitis mice models. Metformin also improved TJ proteins expression in ulcerative colitis patients with type 2 diabetes mellitus. We found that metformin ameliorated the induction of colitis and reduced the levels of pro‐inflammatory cytokines IL‐6, TNF‐a and IL‐1β. In addition, metformin suppressed DSS‐induced JNK activation, an effect dependent on AMP‐activated protein kinase α1 (AMPKα1) activation. Consistent with this finding, metformin could not maintain the barrier function of AMPKα1‐silenced cell monolayers after DSS administration. These findings highlight metformin protects against intestinal barrier dysfunction. The potential mechanism may involve in the inhibition of JNK activation via an AMPKα1‐dependent signalling pathway.  相似文献   

8.
Recent studies have indicated that the inflammasome plays a critical role in the pathogenesis of vascular diseases. However, the pathological relevance of this inflammasome activation, particularly in vascular cells, remains largely unknown. Here, we investigated the role of endothelial (Nucleotide‐binding Oligomerization Domain) NOD‐like receptor family pyrin domain containing three (Nlrp3) inflammasomes in modulating inter‐endothelial junction proteins, which are associated with endothelial barrier dysfunction, an early onset of obesity‐associated endothelial injury. Our findings demonstrate that the activation of Nlrp3 inflammasome by visfatin markedly decreased the expression of inter‐endothelial junction proteins including tight junction proteins ZO‐1, ZO‐2 and occludin, and adherens junction protein VE‐cadherin in cultured mouse vascular endothelial (VE) cell monolayers. Such visfatin‐induced down‐regulation of junction proteins in endothelial cells was attributed to high mobility group box protein 1 (HMGB1) release derived from endothelial inflammasome‐dependent caspase‐1 activity. Similarly, in the coronary arteries of wild‐type mice, high‐fat diet (HFD) treatment caused a down‐regulation of inter‐endothelial junction proteins ZO‐1, ZO‐2, occludin and VE‐cadherin, which was accompanied with enhanced inflammasome activation and HMGB1 expression in the endothelium as well as transmigration of CD43+ T cells into the coronary arterial wall. In contrast, all these HFD‐induced alterations in coronary arteries were prevented in mice with Nlrp3 gene deletion. Taken together, these data strongly suggest that the activation of endothelial Nlrp3 inflammasomes as a result of the increased actions of injurious adipokines such as visfatin produces HMGB1, which act in paracrine or autocrine fashion to disrupt inter‐endothelial junctions and increase paracellular permeability of the endothelium contributing to the early onset of endothelial injury during metabolic disorders such as obesity or high‐fat/cholesterol diet.  相似文献   

9.
Gräbner R  Till U  Heller R 《Cytometry》2000,40(3):238-244
BACKGROUND: Endothelial cell adhesion molecules are involved in initiation and progression of vascular diseases. The purpose of this study was to determine conditions of fixation and dissociation of human umbilical vein endothelial cell (HUVEC) monolayers that permit a reliable flow cytometric determination of intracellular and surface content of E-selectin, vascular cell adhesion molecule-1 (VCAM-1), and intercellular adhesion molecule-1 (ICAM-1). METHODS: TNFalpha-treated HUVEC monolayers were fixed with 0.5% formaldehyde at the end of the experimental incubation. Subsequently, either the monolayer was trypsinized and thereafter the cells were subjected to indirect fluorescence labeling or the monolayer was first labeled and then dissociated by trypsinization. Cell integrity was assessed by vimentin staining. Total adhesion molecule content was detected in saponin-permeabilized cells. RESULTS: HUVEC integrity was maintained when the fixation time of the monolayer did not exceed 5 min and trypsin/EDTA was used for dissociation. Surface adhesion molecules were partially hydrolyzed by trypsin when trypsinization preceded labeling but antibody binding protected adhesion molecules from degradation. VCAM-1 and E-selectin exhibited substantial trypsin-sensitive surface fractions but surface ICAM-1 was mainly trypsin resistant. Permeabilization with 0.06% saponin allowed the detection of considerable intracellular pools of the investigated adhesion molecules. CONCLUSIONS: The described method permits the reliable determination of surface and intracellular fractions of adhesion molecules in formaldehyde-fixed HUVEC monolayers and may be used for studies on the regulation of adhesion molecule expression.  相似文献   

10.
Heat shock protein A12B (HSPA12B) is a newly discovered member of the HSP70 protein family. This study investigated the effects of HSPA12B on lipopolysaccharide (LPS)‐induced inflammatory responses in human umbilical vein endothelial cells (HUVECs) and the possible mechanisms involved. A HUVECs inflammatory model was induced by LPS. Overexpression of HSPA12B in HUVECs was achieved by infection with recombinant adenoviruses encoding green fluorescence protein‐HSPA12B. Knockdown of HSPA12B was achieved by siRNA technique. Twenty four hours after virus infection or siRNA transfection, HUVECs were stimulated with 1 μg/ml LPS for 4 hrs. Endothelial cell permeability ability was determined by transwell permeability assay. The binding rate of human neutrophilic polymorphonuclear leucocytes (PMN) with HUVECs was examined using myeloperoxidase assay. Cell migrating ability was determined by the wound‐healing assay. The mRNA and protein expression levels of interested genes were analyzed by RT‐qPCR and Western blot, respectively. The release of cytokines interleukin‐6 and tumour necrosis factor‐α was measured by ELISA. HSPA12B suppressed LPS‐induced HUVEC permeability and reduced PMN adhesion to HUVECs. HSPA12B also inhibited LPS‐induced up‐regulation of adhesion molecules and inflammatory cytokine expression. By contrast, knockdown of HSPA12B enhanced LPS‐induced increases in the expression of adhesion molecules and inflammatory cytokines. Moreover, HSPA12B activated PI3K/Akt signalling pathway and pharmacological inhibition of this pathway by Wortmannin completely abrogated the protection of HSPA12B against inflammatory response in HUVECs. Our results suggest that HSPA12B attenuates LPS‐induced inflammatory responses in HUVECs via activation of PI3K/Akt signalling pathway.  相似文献   

11.
目的:建立体外氧糖剥夺模型模拟脑缺血缺氧损伤,探讨氧糖剥夺对人脐静脉内皮细胞(HUVECS)屏障功能的影响。方法:细胞培养至完全融合后换成无糖培养基置于低氧手套箱(0.3% O2)分别处理0.5 h、1 h、2 h和4 h后,利用CCk-8法检测细胞存活,利用跨内皮细胞电阻(trans-endothelial electrical resistant,TEER)方法检测HU-VECs细胞通透性的变化,以及Western blot检测紧密连接相关蛋白的表达。结果:氧糖剥夺处理0.5 h、1 h、2 h和4h后,HUVECs细胞存活率逐渐下降,TEER值逐渐降低,紧密连接蛋白Occludin、VE-cadherin的表达明显降低。结论:氧糖剥夺破坏内皮细胞间的紧密连接功能,增加HUVECs细胞的通透性,导致细胞的存活率明显降低。  相似文献   

12.
Induction of the adhesion molecules ELAM-1 and ICAM-1 on endothelial cells is a key pro-inflammatory effect of tumour necrosis factor (TNF). Earlier work in non-human systems has suggested that unlike other cell types, endothelial cells interact with the N-terminus of the TNF molecule, thereby implying novel TNF receptors on endothelial cells. This is also supported by 125I-TNF cross-linking studies on bovine endothelial cells. The present study aimed to see whether TNF induction of ELAM-1 and ICAM-1 on human umbilical vein endothelial cells (HUVECs) involved novel TNF-receptor interactions. Three approaches were employed. First, antibodies directed at different sites on the TNF molecule were tested for inhibition of TNF-induction of ELAM-1 and ICAM-1 on HUVECs. Inhibition was seen only with antibodies reacting with epitopes outside the N-terminal region. Second, an N-terminal TNF peptide (residues 1-26) failed to induce ELAM-1 and ICAM-1 on HUVECs or antagonise TNF induction of these molecules. Third, HUVEC/125I-TNF cross-linking revealed a major complex characteristic of the known 55 kDa TNF receptor: this was confirmed with receptor-specific monoclonal antibodies. It is concluded that (a) the same part of the TNF molecule interacts with TNF-receptors on HUVECs and other cell types and (b) TNF induction of ELAM-1 and ICAM-1 on HUVECs is mediated via the well-characterized 55 kDa TNF receptor.  相似文献   

13.
Frequent episodes of hyperketonemia are associated with a higher incidence of vascular disease. The objective of this study was to examine the hypothesis that hyperketonemia increases monocyte-endothelial cell (EC) adhesion and the development of vascular disease in diabetes. Human U937 and THP-1 monocyte cell lines and human umbilical vein endothelial cells (HUVECs) were cultured with acetoacetate (AA) (0-10 mM) or β-hydroxybutyrate (BHB) (0-10 mM) for 24 h prior to evaluating adhesion and adhesion molecule expression. The results demonstrate a significant (P < 0.01) increase in both U937 and THP-1 adhesion to HUVEC monolayers treated with 4 mM AA compared with control. Equal concentrations of BHB resulted in similar increases in monocyte-EC adhesion. Similarly, treatments of AA or BHB to isolated monocytes from human blood also show increases in adhesion to endothelial cells. intercellular adhesion molecule-1 (ICAM-1) was significantly increased on the surface of HUVECs and an increase in total protein expression with AA treatment compared with control. The expression level of lymphocyte function-associated antigen-1 (LFA-1) was increased in monocytes treated with AA, and LFA-1 affinity was altered from low to high affinity following treatment with both AA and BHB. Monocyte adhesion could be blocked when cells were preincubated with an antibody to ICAM-1 or LFA-1. Results also show a significant increase in IL-8 and MCP-1 secretion in monocytes and HUVECs treated with 0-10 mM AA. These results suggest that hyperketonemia can induce monocyte adhesion to endothelial cells and that it is mediated via increased ICAM-1 expression in endothelial cells and increased expression and affinity of LFA-1 in monocytes.  相似文献   

14.
To gain fundamental information regarding the molecular basis of endothelial cell adhesive interactions during vascular formation, we have cloned and characterized a unique cell adhesion molecule. This molecule, named endothelial cell-selective adhesion molecule (ESAM), is a new member of the immunoglobulin superfamily. The conceptual protein encoded by cDNA clones consists of V-type and C2-type immunoglobulin domains as well as a hydrophobic signal sequence, a single transmembrane region, and a cytoplasmic domain. Northern blot analysis showed ESAM to be selectively expressed in cultured human and murine vascular endothelial cells and revealed high level expression in lung and heart and low level expression in kidney and skin. In situ hybridization analysis indicated that ESAM is primarily expressed in the developing vasculature of the embryo in an endothelial cell-restricted pattern. Epitope-tagged ESAM was shown to co-localize with cadherins and catenins in cell-cell junctions. In aggregation assays employing ESAM-expressing Chinese hamster ovary cells, this novel molecule was shown to mediate cell-cell adhesion through homophilic interactions. The endothelial cell-selective expression of this immunoglobulin-like adhesion molecule coupled with its in vitro functional profile strongly suggests a role in cell-cell interactions that is critical for vascular development or function.  相似文献   

15.

Background

The blood‐brain barrier (BBB) contains tight junctions (TJs) which reduce the space between adjacent endothelial cells lining the fine capillaries of the microvasculature of the brain to form a selective and regulatable barrier.

Methods

Using a hydrodynamic approach, we delivered siRNA targeting the TJ protein claudin‐5 to the endothelial cells of the BBB in mice.

Results

We have shown a significant decrease in claudin‐5 mRNA levels 24 and 48 hours post‐delivery of siRNA, with levels of protein expression decreasing up to 48 hours post‐injection compared to uninjected, phosphate‐buffered saline (PBS)‐injected and non‐targeting siRNA‐injected mice. We observed increased permeability at the BBB to molecules up to 742 Da, but not 4400 Da, using tracer molecule perfusion and MRI analysis. To illustrate the functional efficacy of size‐selective and transient barrier opening, we have shown that enhanced delivery of the small neuropeptide thyrotropin‐releasing hormone (TRH) (MW 360 Da) to the brains of mice 48 hours post‐injection of siRNA targeting claudin‐5 significantly modifies behavioural output.

Conclusions

These data demonstrate that it is now possible to transiently and size‐selectively open the BBB in mice, allowing in principle the delivery of a wide range of agents for the establishment and treatment of experimental mouse models of neurodegenerative, neuropsychiatric and malignant diseases. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
Vascular endothelial cell adhesion molecule 1 (VCAM-1) is an adherence molecule that is induced on endothelial cells by cytokine stimulation and can mediate binding of lymphocytes or tumor cells to endothelium. Because these interactions often occur at the level of the microvasculature, we have examined the regulation of expression of VCAM-1 in human dermal microvascular endothelial cells (HDMEC) and compared it to the regulation of VCAM-1 in large vessel human umbilical vein endothelial cells (HUVEC). Both cell populations were judged pure as assessed by expression of von Willebrand factor and uptake of acetylated low density lipoprotein. Expression of VCAM-1 was not detectable on either unstimulated HDMEC or HUVEC when assessed by ELISA or flow cytometry. Stimulation of either HDMEC or HUVEC with TNF-alpha resulted in a time- and dose-dependent induction of VCAM-1. However, although TNF-alpha-induced cell surface and mRNA expression of VCAM-1 in HDMEC was transient, peaking after 16 h of stimulation, TNF stimulation led to persistently elevated cell surface expression of VCAM-1 on HUVEC. IL-1 alpha also induced cell surface expression of VCAM-1 on HUVEC in a time- and dose-dependent manner, but stimulation of HDMEC with IL-1 alpha at doses up to 1000 U/ml failed to induce significant cell surface expression. However, IL-1 alpha induced time- and dose-dependent increases in ICAM-1 on HDMEC. Similarly, IL-4 induced VCAM-1 expression and augmented TNF-alpha-induced expression on HUVEC but did not affect VCAM-1 expression on HDMEC. Binding of Ramos cells to cytokine-stimulated endothelial cell monolayers correlated with VCAM-1 induction. Increased binding was seen after stimulation of HDMEC with TNF-alpha, which was blocked by anti-VCAM-1 mAb, but no increases in binding were noted after stimulation of HDMEC monolayers with IL-1 alpha. These data provide additional evidence for the existence of endothelial cell heterogeneity and differences in cell adhesion molecule regulation on endothelial cells derived from different vascular beds.  相似文献   

17.
Bonafide claudin proteins are functional and structural components of tight junctions and are largely responsible for barrier formation across epithelial and endothelial membranes. However, current advances in the understanding of claudin biology have revealed their unexpected functions in the brain. Apart from maintaining blood‐brain barriers in the brain, other functions of claudins in neurons and at synapses have been largely elusive and are just coming to light. In this review, we summarize the functions of claudins in the brain and their association in neuronal diseases. Further, we go on to cover some recent studies that show that claudins play signaling functions in neurons by regulating trafficking of postsynaptic receptors and controlling dendritic morphogenesis in the model organism Caenorhabditis elegans.  相似文献   

18.
LL-37 peptide is a multifunctional host defense molecule essential for normal immune responses to infection or tissue injury. In this study we assess the impact of LL-37 on endothelial stiffness and barrier permeability. Fluorescence microscopy reveals membrane localization of LL-37 after its incubation with human umbilical vein endothelial cells (HUVECs). A concentration-dependent increase in stiffness was observed in HUVECs, bovine aortic endothelial cells (BAECs), human pulmonary microvascular endothelial cells, and mouse aorta upon LL-37 (0.5-5 μM) addition. Stiffening of BAECs by LL-37 was blocked by P2X7 receptor antagonists and by the intracellular Ca2(+) chelator BAPTA-AM. Increased cellular stiffness correlated with a decrease in permeability of HUVEC cell monolayers after LL-37 addition compared with nontreated cells, which was similar to the effect observed upon treatment with sphingosine 1-phosphate, and both treatments increased F-actin content in the cortical region of the cells. These results suggest that the antiinflammatory effect of LL-37 at the site of infection or injury involves an LL-37-mediated increase in cell stiffening that prevents increased pericellular permeability. Such a mechanism may help to maintain tissue fluid homeostasis.  相似文献   

19.
Previous studies have implicated a role for E-selectin in carcinoma cell adhesion to vascular endothelium. We examined the role of colon cancer cell adhesion to vascular endothelium via E-selectin using adenoviral vector-mediated transfection in human umbilical vein endothelial cells (HUVECs). We found that the amount of HUVEC detachment from the gelatin matrix 24 h after LS-180 cell adhesion was inhibited only when the HUVECs were transduced with wild-type E-selectin, but not with a cytoplasmic domain truncated mutant E-selectin or the control Lac-Z vector. We also found that the adhesion of LS-180 cells to wild-type E-selectin transduced HUVEC-induced activation of beta(1)-integrin receptors without affecting MMP activity. These results indicate that colon cancer cell adhesion via E-selectin inhibits HUVEC detachment from the monolayer, at least in part by modulating beta(1)-integrin activity in HUVECs. In addition, they indicate the importance of the cytoplasmic domain of E-selectin with this phenomenon.  相似文献   

20.
Intermittent hypoxia (IH), the key property of obstructive sleep apnea (OSA), is closely associated with endothelial dysfunction. Endothelial-cell-specific molecule-1 (ESM-1, Endocan) is a novel, reported molecule linked to endothelial dysfunction. The aim of this study is to evaluate the effect of IH on ESM-1 expression and the role of ESM-1 in endothelial dysfunction. We found that serum concentration of ESM-1, inter-cellular adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1) is significantly higher in patients with OSA than healthy volunteers (p < 0.01). The expression of ESM-1, hypoxia-inducible factor-1 alpha (HIF-1α), and vascular endothelial growth factor (VEGF) was significantly increased in human umbilical vein endothelial cells (HUVECs) by treated IH in a time-dependent manner. HIF-1α short hairpin RNA and vascular endothelial growth factor receptor (VEGFR) inhibitor inhibited the expression of ESM-1 in HUVECs. ICAM-1 and VCAM-1 expressions were significantly enhanced under IH status, accompanied by increased monocyte–endothelial cell adhesion rate ( p < 0.001). Accordingly, ESM-1 silencing decreased the expression of ICAM-1 and VCAM-1 in HUVECs, whereas ESM-1 treatment significantly enhanced ICAM-1 expression accompanied by increasing adhesion ability. ESM-1 is significantly upregulated by the HIF-1α/VEGF pathway under IH in endothelial cells, playing a critical role in enhancing adhesion between monocytes and endothelial cells, which might be a potential target for IH-induced endothelial dysfunction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号