首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mechanosensory hair cells of the inner ear are especially sensitive to death induced by exposure to aminoglycoside antibiotics. This aminoglycoside‐induced hair cell death involves activation of an intrinsic program of cellular suicide. Aminoglycoside‐induced hair cell death can be prevented by broad‐spectrum inhibition of caspases, a family of proteases that mediate apoptotic and programmed cell death in a wide variety of systems. More specifically, aminoglycoside‐induced hair cell death requires activation of caspase‐9. Caspase‐9 activation requires release of mitochondrial cytochrome c into the cytoplasm, indicating that aminoglycoside‐induced hair cell death is mediated by the mitochondrial (or “intrinsic”) cell death pathway. The Bcl‐2 family of pro‐apoptotic and anti‐apoptotic proteins are important upstream regulators of the mitochondrial apoptotic pathway. Bcl‐2 is an anti‐apoptotic protein that localizes to the mitochondria and promotes cell survival by preventing cytochrome c release. Here we have utilized transgenic mice that overexpress Bcl‐2 to examine the role of Bcl‐2 in neomycin‐induced hair cell death. Overexpression of Bcl‐2 significantly increased hair cell survival following neomycin exposure in organotypic cultures of the adult mouse utricle. Furthermore, Bcl‐2 overexpression prevented neomycin‐induced activation of caspase‐9 in hair cells. These results suggest that the expression level of Bcl‐2 has important effects on the pathway(s) important for the regulation of aminoglycoside‐induced hair cell death. © 2004 Wiley Periodicals, Inc. J Neurobiol 60: 89–100, 2004  相似文献   

2.
Background information. Caspase‐dependent and ‐independent death mechanisms are involved in apoptosis in a variety of human carcinoma cells treated with antineoplastic compounds. Our laboratory has reported that p53 is a key contributor of mitochondrial apoptosis in cervical carcinoma cells after staurosporine exposure. However, higher mitochondrial membrane potential dissipation and greater DNA fragmentation were observed in p53wt (wild‐type p53) HeLa cells compared with p53mt (mutated p53) C‐33A cells. Here, we have studied events linked to the mitochondrial apoptotic pathway. Results. Staurosporine can induce death of HeLa cells via a cytochrome c/caspase‐9/caspase‐3 mitochondrial‐dependent apoptotic pathway and via a delayed caspase‐independent pathway. In contrast with p53wt cells, p53mt C‐33A cells exhibit firstly caspase‐8 activation leading to caspase‐3 activation and Bid cleavage followed by cytochrome c release. Attenuation of PARP‐1 [poly(ADP‐ribose) polymerase‐1] cleavage as well as oligonucleosomal DNA fragmentation in the presence of z‐VAD‐fmk points toward a major involvement of a caspase‐dependent pathway in staurosporine‐induced apoptosis in p53wt HeLa cells, which is not the case in p53mt C‐33A cells. Meanwhile, the use of 3‐aminobenzamide, a PARP‐1 inhibitor known to prevent AIF (apoptosis‐inducing factor) release, significantly decreases staurosporine‐induced death in these p53mt carcinoma cells, suggesting a preferential implication of caspase‐independent apoptosis. On the other hand, we show that p53, whose activity is modulated by pifithrin‐α, isolated as a suppressor of p53‐mediated transactivation, or by PRIMA‐1 (p53 reactivation and induction of massive apoptosis), that reactivates mutant p53, causes cytochrome c release as well as mitochondrio—nuclear AIF translocation in staurosporine‐induced apoptosis of cervical carcinoma cells. Conclusions. The present paper highlights that staurosporine engages the intrinsic mitochondrial apoptotic pathway via caspase‐8 or caspase‐9 signalling cascades and via caspase‐independent cell death, as well as through p53 activity.  相似文献   

3.
Upon nutrient deprivation during culture, recombinant Chinese hamster ovary (rCHO) cells are subjected to two types of programmed cell death (PCD), apoptosis and autophagy. To investigate the effect of Bcl‐xL overexpression on apoptosis and autophagy in rCHO cells, an erythropoietin (EPO)‐producing rCHO cell line with regulated Bcl‐xL overexpression (EPO‐off‐Bcl‐xL) was established using the Tet‐off system. The expression level of Bcl‐xL in EPO‐off‐Bcl‐xL cells was tightly regulated by doxycycline in a dose‐dependent manner. Bcl‐xL overexpression enhanced cell viability and extended culture longevity in batch culture. Upon nutrient depletion in the later stage of batch culture, Bcl‐xL overexpression suppressed apoptosis by inhibiting the activation of caspase‐3 and ‐7. Simultaneously, Bcl‐xL overexpression also delayed autophagy, characterized by LC3‐II accumulation. Immunoprecipitation analysis with a Flag‐tagged Bcl‐xL revealed that Bcl‐xL interacts with Bax and Bak, essential mediators of caspase‐dependent apoptosis, as well as with Beclin‐1, an essential mediator of autophagy, and may inhibit their pro‐cell death function. Taken together, it was found that Bcl‐xL overexpression inhibits both apoptosis and autophagy in rCHO cell culture. Biotechnol. Bioeng. 2009;103: 757–766. © 2009 Wiley Periodicals, Inc.  相似文献   

4.
The aim of the present study was to evaluate the potential of Lactobacillus plantarum CS24.2 to antagonize Escherichia coli adhesion and modulate expression of the responses by HT‐29 cells of inflammatory molecules to E. coli adhesion. Experiments were performed under different adhesion conditions and findings compared with the responses of Lactobacillus rhamnosus GG. Tests of competitive adhesion, adhesion inhibition and displacement assays were performed for lactobacilli (L. rhamnosus GG and L. plantarum CS24.2) and E. coli O26:H11 to HT‐29 cells. Both the lactobacilli significantly reduced E. coli adhesion to HT‐29 cells (P < 0.05). The ability of lactobacilli to modulate tumor necrosis factor‐α and interleukin‐8 expression was analyzed in HT‐29 cells stimulated with E. coli using qRT‐PCR. L. plantarum CS24.2 significantly down regulated expression of both the genes induced by E. coli in HT‐29 cells at 6 hr as well as 24 hr, which was more significant than the corresponding findings for L. rhamnosus GG. The present findings suggest that L. plantarum CS24.2 inhibits pathogen adhesion to a similar extent as does the established probiotic strain L. rhamnosus GG. It may also attenuate tumor necrosis factor‐α and interleukin‐8 expression in HT‐29 cells stimulated with E. coli.  相似文献   

5.
Background and Aim: Our previous study of Helicobacter pylori‐induced apoptosis showed the involvement of Bcl‐2 family proteins and cytochrome c release from mitochondria. Here, we examine the release of other factors from mitochondria, such as apoptosis‐inducing factor (AIF), and upstream events involving caspase‐8 and Bid. Methods: Human gastric adenocarcinoma (AGS) cells were incubated with a cagA‐positive H. pylori strain for 0, 3, 6, and 24 hours and either total protein or cytoplasmic, nuclear, and mitochondrial membrane fractions were collected. Results: Proteins were immunoblotted for AIF, Bid, polyadenosine ribose polymerase (PARP), caspase‐8, and β‐catenin. H. pylori activated caspase‐8, caused PARP cleavage, and attenuated mitochondrial membrane potential. A time‐dependent decrease in β‐catenin protein expression was detected in cytoplasmic and nuclear extracts, coupled with a decrease in β‐actin. An increase in the cytoplasmic pool of AIF was seen as early as 3 hours after H. pylori exposure, and a concomitant increase was seen in nuclear AIF levels up to 6 hours. A band corresponding to full‐length Bid was seen in both the cytoplasmic and the nuclear fractions of controls, but not after H. pylori exposure. Active AIF staining was markedly increased in gastric mucosa from infected persons, compared to uninfected controls. Conclusion: H. pylori might trigger apoptosis in AGS cells via interaction with death receptors in the plasma membrane, leading to the cleavage of procaspase‐8, release of cytochrome c and AIF from mitochondria, and activation of subsequent downstream apoptotic events, as reported previously for chlorophyllin. This is consistent with AIF activation that was found in the gastric mucosa of humans infected with H. pylori. Hence, the balance between apoptosis and proliferation in these cells may be altered in response to injury caused by H. pylori infection, leading to an increased risk of cancer.  相似文献   

6.
Apoptosis or programmed cell death is a regulatory process in cells in response to stimuli perturbing physiological conditions. The Bcl‐2 family of proteins plays an important role in regulating homeostasis during apoptosis. In the process, the molecular interactions among the three members of this family, the pro‐apoptotic, anti‐apoptotic and BH3‐only proteins at the mitochondrial outer membrane define the fate of a cell. Here, we report the crystal structures of the human anti‐apoptotic protein Bcl‐XL in complex with BH3‐only BIDBH3 and BIMBH3 peptides determined at 2.0 Å and 1.5 Å resolution, respectively. The BH3 peptides bind to the canonical hydrophobic pocket in Bcl‐XL and adopt an alpha helical conformation in the bound form. Despite a similar structural fold, a comparison with other BH3 complexes revealed structural differences due to their sequence variations. In the Bcl‐XL‐BIDBH3 complex we observed a large pocket, in comparison with other BH3 complexes, lined by residues from helices α1, α2, α3, and α5 located adjacent to the canonical hydrophobic pocket. These results suggest that there are differences in the mode of interactions by the BH3 peptides that may translate into functional differences in apoptotic regulation. Proteins 2015; 83:1262–1272. © 2015 Wiley Periodicals, Inc.  相似文献   

7.
In developing rats, sex differences in the number of apoptotic cells are found in the central division of the medial preoptic nucleus (MPNc), which is a significant component of the sexually dimorphic nucleus of the preoptic area, and in the anteroventral periventricular nucleus (AVPV). Specifically, male rats have more apoptotic cells in the developing AVPV, whereas females have more apoptotic cells in the developing MPNc. To determine the mechanisms for the sex differences in apoptosis in these nuclei, we compared the expression of the Bcl‐2 family members and active caspase‐3 in postnatal female and male rats. Western blot analyses for the Bcl‐2 family proteins were performed using preoptic tissues isolated from the brain on postnatal day (PD) 1 (day of birth) or on PD8. In the AVPV‐containing tissues of PD1 rats, there were significant sex differences in the level of Bcl‐2 (female > male) and Bax (female < male) proteins, but not of Bcl‐xL or Bad proteins. In the MPNc‐containing tissues of PD8 rats, there were significant sex differences in the protein levels for Bcl‐2 (female < male), Bax (female > male), and Bad (female < male), but not for Bcl‐xL. Immunohistochemical analyses showed significant sex differences in the number of active caspase‐3‐immunoreactive cells in the AVPV on PD1 (female < male) and in the MPNc on PD8 (female > male). We further found that active caspase‐3‐immunoreactive cells of the AVPV and MPNc were immunoreactive for NeuN, a neuronal marker. These results suggest that there are sex differences in the induction of apoptosis via the mitochondrial pathway during development of the AVPV and MPNc. © 2006 Wiley Periodicals, Inc. J Neurobiol, 2006  相似文献   

8.
LIGHT recruits and activates naive T cells in the islets at the onset of diabetes. IFN‐γ secreted by activated T lymphocytes is involved in beta cell apoptosis. However, whether LIGHT sensitizes IFNγ‐induced beta cells destruction remains unclear. In this study, we used the murine beta cell line MIN6 and primary islet cells as models for investigating the underlying cellular mechanisms involved in LIGHT/IFNγ – induced pancreatic beta cell destruction. LIGHT and IFN‐γ synergistically reduced MIN6 and primary islet cells viability; decreased cell viability was due to apoptosis, as demonstrated by a significant increase in Annexin V+ cell percentage, detected by flow cytometry. In addition to marked increases in cytochrome c release and NF‐κB activation, the combination of LIGHT and IFN‐γ caused an obvious decrease in expression of the anti‐apoptotic proteins Bcl‐2 and Bcl‐xL, but an increase in expression of the pro‐apoptotic proteins Bak and Bax in MIN6 cells. Accordingly, LIGHT deficiency led to a decrease in NF‐κB activation and Bak expression, and peri‐insulitis in non‐obese diabetes mice. Inhibition of NF‐κB activation with the specific NF‐κB inhibitor, PDTC (pyrrolidine dithiocarbamate), reversed Bcl‐xL down‐regulation and Bax up‐regulation, and led to a significant increase in LIGHT‐ and IFN‐γ‐treated cell viability. Moreover, cleaved caspase‐9, ‐3, and PARP (poly (ADP‐ribose) polymerase) were observed after LIGHT and IFN‐γ treatment. Pretreatment with caspase inhibitors remarkably attenuated LIGHT‐ and IFNγ‐induced cell apoptosis. Taken together, our results indicate that LIGHT signalling pathway combined with IFN‐γ induces beta cells apoptosis via an NF‐κB/Bcl2‐dependent mitochondrial pathway.  相似文献   

9.
When the chlorophyte alga Dunaliella tertiolecta Butcher is placed in darkness, a form of programmed cell death with many similarities to apoptosis is induced, including the induction of caspase‐like proteases. Many uncertainties about the regulation and mediators that participate in the process remain. To examine the relationship between caspase‐like activities and different apoptotic events (i.e., phosphatidylserine [PS] translocation), increases in membrane permeability and numbers of dead cells revealed by SYTOX‐green staining, and the generation of reactive oxygen species (ROS), we used the broad‐range caspase inhibitor Boc‐D‐FMK to block the activity of the whole class of caspase‐like proteins simultaneously. In the presence of the inhibitor, ROS were not produced, and cells did not die. Loss of membrane asymmetry, indicated by external labeling of PS by annexin V, was apparent at midstages of light deprivation, although it did not conform to the typical pattern for PS exposure observed in metazoans or vascular plants, which occurs at early stages of the apoptotic event. Thus, we have evidence for a link between ROS and cell death involving caspase‐like enzymes in an alga. The fact that caspase‐like inhibitors prevent not only cell death, but also ROS and loss of cell membrane integrity and asymmetry, suggests that caspase‐like proteases might have regulatory roles early in cell death, in addition to dismantling functions.  相似文献   

10.
Previously, overexpression of anti‐apoptotic proteins, such as E1B‐19K and Aven, was reported to alter lactate metabolism of CHO cells in culture. To investigate the effect of Bcl‐xL, a well‐known anti‐apoptotic protein, on lactate metabolism of recombinant CHO (rCHO) cells, two antibody‐producing rCHO cell lines with regulated Bcl‐xL overexpression (CS13*‐0.02‐off‐Bcl‐xL and CS13*‐1.00‐off‐Bcl‐xL) were established using the Tet‐off system. When cells were cultivated without Bcl‐xL overexpression, the specific lactate production rate (qLac) of CS13*‐0.02‐off‐Bcl‐xL and CS13*‐1.00‐off‐Bcl‐xL were 7.32 ± 0.37 and 6.78 ± 0.56 pmol/cell/day, respectively. Bcl‐xL overexpression, in the absence of doxycycline, did not affect the qLac of either cell line, though it enhanced the viability during cultures. Furthermore, activities of the enzymes related to glucose and lactate metabolism, such as hexokinase, glucose‐6‐phosphate dehydrogenase, lactate dehydrogenases, and alanine aminotransferase, were not affected by Bcl‐xL overexpression either. Taken together, Bcl‐xL overexpression showed no significant effect on the lactate metabolism of rCHO cells. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:1594–1598, 2013  相似文献   

11.
Maternal diabetes causes neural tube defects in embryos, which are associated with increased apoptosis in the neuroepithelium. Many factors, including effector caspases, have been shown to be involved in the events. However, the key regulators have not been identified and the underlying mechanisms remain to be addressed. Caspase‐8, an initiator caspase, has been shown to be altered in diabetic embryopathy, suggesting a role as an upstream apoptotic regulator. Using mouse embryos as a model system, this study demonstrates that caspase‐8 is required for the production of hyperglycemia‐associated embryonic malformations. Caspase‐8 was shown to be expressed in the developing neural tube. Its activity, as evidenced by enhanced cleavage, was increased by hyperglycemia. These changes were associated with increased formation of the active cleavage of Bid. Inhibition of caspase‐8 activity in high glucose–challenged embryos reduced the rate of embryonic malformation and this was associated with decreased apoptosis in the neuroepithelium of the neural tube. Inhibition of caspase‐8 activity also reduced hyperglycemia‐induced Bid activation and caspase‐9 cleavage. These data suggest that caspase‐8 may control diabetic embryopathy‐associated apoptosis via regulation of the Bid‐stimulated mitochondrion/caspase‐9 pathway. Birth Defects Res (Part B)86:72‐77, 2009. ©2009 Wiley‐Liss, Inc.  相似文献   

12.
Autophagy, an evolutionarily conserved process, has functions both in cytoprotective and programmed cell death mechanisms. Beclin 1, an essential autophagic protein, was recently identified as a BH3‐domain‐only protein that binds to Bcl‐2 anti‐apoptotic family members. The dissociation of beclin 1 from its Bcl‐2 inhibitors is essential for its autophagic activity, and therefore should be tightly controlled. Here, we show that death‐associated protein kinase (DAPK) regulates this process. The activated form of DAPK triggers autophagy in a beclin‐1‐dependent manner. DAPK phosphorylates beclin 1 on Thr 119 located at a crucial position within its BH3 domain, and thus promotes the dissociation of beclin 1 from Bcl‐XL and the induction of autophagy. These results reveal a substrate for DAPK that acts as one of the core proteins of the autophagic machinery, and they provide a new phosphorylation‐based mechanism that reduces the interaction of beclin 1 with its inhibitors to activate the autophagic machinery.  相似文献   

13.
Substance P (SP) and its receptor, the neurokinin‐1 receptor (NK‐1 R), are expressed by human tenocytes, and they are both up‐regulated in cases of tendinosis, a condition associated with excessive apoptosis. It is known that SP can phosphorylate/activate the protein kinase Akt, which has anti‐apoptotic effects. This mechanism has not been studied for tenocytes. The aims of this study were to investigate if Anti‐Fas treatment is a good apoptosis model for human tenocytes in vitro, if SP protects from Anti‐Fas‐induced apoptosis, and by which mechanisms SP mediates an anti‐apoptotic response. Anti‐Fas treatment resulted in a time‐ and dose‐dependent release of lactate dehydrogenase (LDH), i.e. induction of cell death, and SP dose‐dependently reduced the Anti‐Fas‐induced cell death through a NK‐1 R specific pathway. The same trend was seen for the TUNEL assay, i.e. SP reduced Anti‐Fas‐induced apoptosis via NK‐1 R. In addition, it was shown that SP reduces Anti‐Fas‐induced decrease in cell viability as shown with crystal violet assay. Protein analysis using Western blot confirmed that Anti‐Fas induces cleavage/activation of caspase‐3 and cleavage of PARP; both of which were inhibited by SP via NK‐1 R. Finally, SP treatment resulted in phosphorylation/activation of Akt as shown with Western blot, and it was confirmed that the anti‐apoptotic effect of SP was, at least partly, induced through the Akt‐dependent pathway. In conclusion, we show that SP reduces Anti‐Fas‐induced apoptosis in human tenocytes and that this anti‐apoptotic effect of SP is mediated through NK‐1 R and Akt‐specific pathways.  相似文献   

14.
Aim: Lactic acid bacteria (LAB) are beneficial micro‐organisms that have been associated with several probiotic effects in both humans and animals. Here, using proteome analysis, we investigate the antitumour effects of cell‐bound exopolysaccharides (cb‐EPS) isolated from Lactobacillus acidophilus 606 on colon cancer cells and explore the proteins critical for their antitumour activity. Methods and Results: cb‐EPS inhibited the proliferation of HT‐29 colon cancer cells by directly affecting cell morphology and not the cell cycle. Using two‐dimensional polyacrylamide gel electrophoresis coupled with matrix‐assisted laser desorption‐ionization time‐of‐flight mass spectrometry (MALDI‐TOF/MS) and immunoblot analysis, we found that cb‐EPS dramatically induced Beclin‐1 and GRP78, and affected Bcl‐2 and Bak regulation. Conclusions: The results of this study indicate that cb‐EPS are antitumourigenic against HT‐29 colon cancer cells and that this activity is because of the activation of autophagic cell death promoted directly by the induction of Beclin‐1 and GRP78, as well as indirectly through the induction of Bcl‐2 and Bak. Significance and Impact of the Study: These results may contribute to understanding the novel mechanisms by which probiotic bacteria induce tumour cell death via autophagy.  相似文献   

15.
Both neurons and glia succumb to programmed cell death (PCD) when deprived of growth factors at critical periods in development or following injury. Insulin‐like growth factor‐I (IGF‐I) prevents apoptosis in neurons in vitro. To investigate whether IGF‐I can protect Schwann cells (SC) from apoptosis, SC were harvested from postnatal day 3 rats and maintained in serum‐containing media until confluency. When cells were switched to serum‐free defined media (DM) for 12–72 h, they underwent PCD. Addition of insulin or IGF‐I prevented apoptosis. Bisbenzamide staining revealed nuclear condensation and formation of apoptotic bodies in SC grown in DM alone, but SC grown in DM plus IGF‐I had normal nuclear morphology. The phosphatidylinositol 3‐kinase (PI 3‐K) inhibitor LY294002 blocked IGF‐I–mediated protection. Caspase‐3 activity was rapidly activated upon serum withdrawal in SC, and the caspase inhibitor BAF blocked apoptosis. These results suggest that IGF‐I rescues SC from apoptosis via PI 3‐K signaling which is upstream from caspase activation. © 1999 John Wiley & Sons, Inc. J Neurobiol 41: 540–548, 1999  相似文献   

16.
In the pursuit of novel anticancer leads, new bisindole‐oxadiazoles were synthesized using propyl phosphonic anhydride as a mild and efficient reagent. The molecule, 3‐[5‐(1H‐indol‐3‐ylmethyl)‐1,3,4‐oxadiazol‐2‐yl]‐1H‐indole ( 3a ) exhibited selective cytotoxicity to MCF‐7 cells with a cell cycle arrest in the G1 phase. The mechanism of cytotoxicity of 3a involved caspase‐2‐dependent apoptotic pathway with characteristic apoptotic morphological alterations as observed in acridine orange/ethidium bromide and Hoechst staining. The wound healing migratory assay exhibited an intense impairment in the motility of MCF‐7 cells on incubation with 3a . Docking simulations with anti‐apoptotic protein Bcl‐2, which is also involved in cancer metastasis displayed good affinity and high binding energy of 3a into the well characterized BH3 binding site. The positive correlation between the Bcl‐2 binding studies and the results of in vitro investigations exemplifies compound 3a as a lead molecule exhibiting MCF‐7 differential cytotoxicity via apoptotic mode of cell death in addition to its anti‐metastatic activity.  相似文献   

17.
18.
The apoptotic initiator caspase‐2 has been implicated in oocyte death, in DNA damage‐ and heat shock‐induced death, and in mitotic catastrophe. We show here that the mitosis‐promoting kinase, cdk1–cyclin B1, suppresses apoptosis upstream of mitochondrial cytochrome c release by phosphorylating caspase‐2 within an evolutionarily conserved sequence at Ser 340. Phosphorylation of this residue, situated in the caspase‐2 interdomain, prevents caspase‐2 activation. S340 was susceptible to phosphatase 1 dephosphorylation, and an interaction between phosphatase 1 and caspase‐2 detected during interphase was lost in mitosis. Expression of S340A non‐phosphorylatable caspase‐2 abrogated mitotic suppression of caspase‐2 and apoptosis in various settings, including oocytes induced to undergo cdk1‐dependent maturation. Moreover, U2OS cells treated with nocodazole were found to undergo mitotic catastrophe more readily when endogenous caspase‐2 was replaced with the S340A mutant to lift mitotic inhibition. These data demonstrate that for apoptotic stimuli transduced by caspase‐2, cell death is prevented during mitosis through the inhibitory phosphorylation of caspase‐2 and suggest that under conditions of mitotic arrest, cdk1–cyclin B1 activity must be overcome for apoptosis to occur.  相似文献   

19.
Caspase activation and dependence on caspases has been observed in different paradigms of apoptotic cell death in vivo and in vitro. The present study examines the role of caspases in ionizing radiation‐induced apoptosis in the developing cerebellum of rats subjected to a single dose (2‐Gy γ rays) of whole‐body irradiation at postnatal day 3. Radiation‐induced apoptosis in the external granule cell layer, as defined by the presence of cells by extremely condensed, often fragmented nucleus, which were stained with the method of in situ end‐labeling of nuclear DNA fragmentation, first appeared at 3 h and peaked at 6 h following irradiation. Increased expression of the precursors of caspase 1 (ICE), 2 (Nedd2), 3 (CPP32), 6 (Mch2), and 8 (Mch5 and FLICE), and increased expression of active caspase 3, as revealed by immunohistochemistry, were observed in the external granule cell layer of the cerebellum. Radiation‐induced apoptosis was accompanied by an increase in the expression of the poly(ADP‐ribose) polymerase (PARP) fragment of about 89 kD, as revealed by Western blots of cerebellar homogenates. This was not associated with modifications of protein kinase Cδ and Lamin B. Concomitant injection in the culmen of the cerebellum in irradiated rats of high doses of Y‐VAD‐cmk, DEV‐fmk, or IETD‐fmk resulted in decreased expression of the PARP fragment in cerebellar homogenates. This was accompanied by a decrease in the expression of active caspase 3, as shown by immunohistochemistry. These observations suggest caspase activation following ionizing radiation. However, no differences in the number and morphological and biochemical characteristics of apoptotic cells, including strong nuclear and cytoplasmic c‐Jun/AP‐1 (N) expression, were observed between irradiated and both irradiated and caspase inhibitor–treated rats. Taken together, these observations suggest that the caspases examined are not essential for radiation‐induced apoptosis in the developing cerebellum. © 1999 John Wiley & Sons, Inc. J Neurobiol 41: 549–558, 1999  相似文献   

20.
Bcl‐xL, a member of the Bcl‐2 family, is known to inhibit apoptosis of recombinant Chinese hamster ovary (rCHO) cells induced by the addition of sodium butyrate (NaBu), which is used for the elevated expression of recombinant protein. In order to understand the intracellular effects of Bcl‐xL overexpression on CHO cells treated with NaBu, changes to the proteome caused by controlled Bcl‐xL expression in rCHO cells producing erythropoietin (EPO) in the presence of 3 mM NaBu were evaluated using two‐dimensional differential in‐gel electrophoresis (2D‐DIGE) and MS analysis. The consequences of Bcl‐xL overexpression were not limited to the apoptotic signaling pathway. Out of eight proteins regulated significantly by Bcl‐xL overexpression in 3 mM NaBu addition culture, four proteins were related to cell survival (Iq motif‐containing GTPase‐activating protein 1), cell proliferation (dihydrolipoamide‐S‐acetyltransferase, guanine nucleotide binding protein alpha interacting 2), and repair of DNA damage (BRCA and CDKN1A interacting protein). Taken together, a DIGE approach reveals that overexpression of Bcl‐xL not only inhibits apoptosis in the presence of NaBu but also affects cell proliferation and survival in various aspects. Biotechnol. Bioeng. 2010; 105: 358–367. © 2009 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号