首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The chemical composition of 50 samples of leaf oil isolated from Algerian Juniperus phoenicea var. turbinata L. harvested in eight locations (littoral zone and highlands) was investigated by GC‐FID (in combination with retention indices), GC/MS, and 13C‐NMR analyses. The composition of the J. phoenicea var. turbinata leaf oils was dominated by monoterpenes. Hierarchical cluster and principal component analyses confirmed the chemical variability of the leaf oil of this species. Indeed, three clusters were distinguished on the basis of the α‐pinene, α‐terpinyl acetate, β‐phellandrene, and germacrene D contents. In most oil samples, α‐pinene (30.2–76.7%) was the major compound, associated with β‐phellandrene (up to 22.5%) and α‐terpinyl acetate (up to 13.4%). However, five out of the 50 samples exhibited an atypical composition characterized by the predominance of germacrene D (16.7–22.7%), α‐pinene (15.8–20.4%), and α‐terpinyl acetate (6.1–22.6%).  相似文献   

2.
The essential‐oil composition of 60 individual trees of Juniperus phoenicea L. from four Tunisian populations in three different periods were investigated by GC and GC/MS analyses. 59 Compounds were identified in the oils, and a relatively high variation in their contents was found. All the oils were dominated by the terpenic hydrocarbon fraction, and the main component was α‐pinene (20.28–40.86%). The results of the oil compositions were processed by hierarchical clustering and principal component analysis (PCA) allowing establishing four groups of essential‐oils differentiated by one compound or more. Pattern of geographic variation in essential‐oil composition indicated that individuals from the continental site (Makthar) were clearly distinguished from those from littoral localities (Tabarka, Hawaria, and Rimel).  相似文献   

3.
Legionella pneumophila is accounted for more than 80% of Legionella infection. However it is difficult to discriminate between the L. pneumophila and non-L. pneumophila species rapidly. In order to detect the Legionella spp. and distinguish L. pneumophila from Legionella spp., a real-time loop-mediated isothermal amplification (LAMP) platform that targets a specific sequence of the 16S rRNA gene was developed. LS-LAMP amplifies the fragment of the 16S rRNA gene to detect all species of Legionella genus. A specific sequence appears at the 16S rRNA gene of L. pneumophila, while non-L. pneumophila strains have a variable sequence in this site, which can be recognized by the primer of LP-LAMP. In the present study, 61 reference strains were used for the method verification. We found that the specificity was 100% for both LS-LAMP and LP-LAMP, and the sensitivity of LAMP assay for L. pneumophila detection was between 52 and 5.2 copies per reaction. In the environmental water samples detection, a total of 107 water samples were identified by the method. The culture and serological test were used as reference methods. The specificity of LS-LAMP and LP-LAMP for the samples detection were 91.59% (98/107) and 93.33% (56/60), respectively. The sensitivity of LS-LAMP and LP-LAMP were 100% (51/51) and 100% (18/18). The results suggest that real-time LAMP, as a new assay, provides a specific and sensitive method for rapid detection and differentiation of Legionella spp. and L. pneumophila and should be utilized to test environmental water samples for increased rates of detection.  相似文献   

4.
Aims: This study was designed to evaluate the usefulness of quantification by real‐time PCR as a management tool to monitor concentrations of Legionella spp. and Legionella pneumophila in industrial cooling systems and its ability to anticipate culture trends by the French standard method (AFNOR T90‐431). Methods and Results: Quantifications of Legionella bacteria were achieved by both methods on samples from nine cooling systems with different water qualities. Proportion of positive samples for L. pneumophila quantified by PCR was clearly lower in deionized or river waters submitted to a biocide treatment than in raw river waters, while positive samples for Legionella spp. were quantified for almost all the samples. For some samples containing PCR inhibitors, high quantification limits (up to 4·80 × 105 GU l?1) did not allow us to quantify L. pneumophila, when they were quantified by culture. Finally, the monitoring of concentrations of L. pneumophila by both methods showed similar trends for 57–100% of the samples. Conclusions: These results suggest that, if some methodological steps designed to reduce inhibitory problems and thus decrease the quantification limits, could be developed to quantify Legionella in complex waters, the real‐time PCR could be a valuable complementary tool to monitor the evolution of L. pneumophila concentrations. Significance and Impact of the Study: This study shows the possibility of using real‐time PCR to monitor L. pneumophila proliferations in cooling systems and the importance to adapt nucleic acid extraction and purification protocols to raw waters.  相似文献   

5.
Legionella species are ubiquitous bacteria in aquatic environments. To examine the effect of anthropogenic impacts and physicochemical characteristics on the Legionellaceae population, we collected water from two sites in the Itanhaém River system in the Atlantic Forest of Brazil. One sample was collected from an upstream pristine region, the other from a downstream estuarine region moderately affected by untreated domestic sewage. Cultures on a selective medium failed to isolate Legionella species. Culture-independent methods showed that water from the estuarine aquatic habitat contained DNA sequences homologous to the 16S ribosomal DNA gene of Legionella pneumophila and non-pneumophila species. In pristine water, only two sequences related to L. pneumophila were detected. The results suggest that salinity and anthropogenic factors, such as wastewater discharge, favor a diversity of Legionella species, whereas pristine freshwater selects for Legionella pneumophila.  相似文献   

6.
A chemical analysis of essential oils from leaves of eleven Eucalyptus L’Herit taxa, grown in Viçosa, Brazil were carried out. The identification and quantification of essential oils constituents were carried out by GC‐FID and GC/MS. The leaves of E. camaldulensis and E. tereticornis presented the highest oil content (3.00% and 2.30% respectively). In total, 48 compounds were identified in the oils. Higher levels of 1,8‐cineole were found for oils produced by E. microcorys (66.2%), E. urophylla (65.4%) and E. camaldulensis (44.8%) and the hybrid E. urophylla × E. grandis (33.0%). The oil from E. saligna was composed mainly by α‐pinene (92.3%). High concentrations of α‐phellandrene were found in the oils produced by E. camaldulensis (22.9%) and E. robusta (36.6%). The oils from E. grandis and E. pilularis were rich in p‐cymene (59.5% and 46.0%, respectively). Samples with high levels of 1,8‐cineole were classified by principal component analysis (PCA) using the accumulated variance of the PC1 and PC2 into major groups. Other samples were grouped based on their content of p‐cymene; α‐phellandrene, α‐ and β‐eudesmol; α‐pinene. The PCA allowed the separation and classification of samples with the highest levels of different compounds, a procedure that can help in the decision of grouping oils from different sources for industrial use.  相似文献   

7.
The essential oils from needles, twigs, bark, wood, and cones of Pinus cembra were analyzed by GC‐FID, GC/MS, and 1H‐NMR spectroscopy. More than 130 compounds were identified. The oils differed in the quantitative composition. The principal components of the oil from twigs with needles were α‐pinene (36.3%), limonene (22.7%) and β‐phellandrene (12.0%). The needle oil was dominated by α‐pinene (48.4%), whereas in the oil from bark and in the oil from twigs without needles there were limonene (36.2% and 33.6%, resp.) and β‐phellandrene (18.8% and 17.1%, resp.). The main constituents of the wood oil as well as cone oil were α‐pinene (35.2% and 39.0%, resp.) and β‐pinene (10.4% and 18.9%, resp.). The wood oil and the cone oil contained large amounts of oxygenated diterpenes in comparison with needle, twig, and bark oils.  相似文献   

8.
Legionnaires'' disease is a severe form of pneumonia caused by Legionella spp., organisms often isolated from environmental sources, including soil and water. Legionella spp. are capable of replicating intracellularly within free-living protozoa, and once this has occurred, Legionella is particularly resistant to disinfectants. Citrus essential oil (EO) vapors are effective antimicrobials against a range of microorganisms, with reductions of 5 log cells ml−1 on a variety of surfaces. The aim of this investigation was to assess the efficacy of a citrus EO vapor against Legionella spp. in water and in soil systems. Reductions of viable cells of Legionella pneumophila, Legionella longbeachae, Legionella bozemanii, and an intra-amoebal culture of Legionella pneumophila (water system only) were assessed in soil and in water after exposure to a citrus EO vapor at concentrations ranging from 3.75 mg/liter air to 15g/liter air. Antimicrobial efficacy via different delivery systems (passive and active sintering of the vapor) was determined in water, and gas chromatography-mass spectrometry (GC-MS) analysis of the antimicrobial components (linalool, citral, and β-pinene) was conducted. There was up to a 5-log cells ml−1 reduction in Legionella spp. in soil after exposure to the citrus EO vapors (15 mg/liter air). The most susceptible strain in water was L. pneumophila, with a 4-log cells ml−1 reduction after 24 h via sintering (15 g/liter air). Sintering the vapor through water increased the presence of the antimicrobial components, with a 61% increase of linalool. Therefore, the appropriate method of delivery of an antimicrobial citrus EO vapor may go some way in controlling Legionella spp. from environmental sources.  相似文献   

9.
Deoxyribonucleic acid (DNA) relatedness was used to distinguish strains ofLegionella-like organisms (LLO) fromLegionella pneumophila. Two of these LLO strains, WIGA and MI 15, showed sufficient DNA relatedness to one another to be classified in the same species. The nameLegionella bozemanii species nova is proposed for this new species. The type strain ofL. bozemanii is WIGA (=ATCC 33217) Two other LLO strains, NY 23 and Tex-KL, were shown to represent a new species. The nameLegionella dumoffii species nova is proposed for this species. The type strain ofL. dumoffii is NY 23 (=ATCC 33279). These two species joinL. pneumophila andL. micdadei in the genusLegionella.  相似文献   

10.
A total of 25 gyrB gene sequences from 20 Legionella pneumophila subsp. pneumophila strains and five L. pneumophila subsp. fraseri strains were obtained and analyzed, and a multiplex PCR for the simultaneous detection of Legionella bozemanae, Legionella longbeachae, Legionella micdadei and Legioenella pneumophila, and two single PCRs for the differentiation of L. pneumophila subsp. pneumophila and L. pneumophila subsp. fraseri were established. The multiplex PCR method was shown to be highly specific and reproducible when tested against 41 target strains and 17 strains of other bacteria species. The sensitivity of the multiplex PCR was also analyzed and was shown to detect levels as low as 1 ng of genomic DNA or 10 colony-forming units (CFUs) per milliliter in mock water samples. Sixty-three air conditioner condensed water samples from Shanghai City were examined, and the result was validated using 16S rRNA sequencing. The data reported here demonstrate that the multiplex PCR method described is efficient and convenient for the detection of Legionella species in water samples. Twenty L. pneumophila subsp. pneumophila strains and five L. pneumophila subsp. fraseri strains were used for the validation of the two L. pneumophila subspecies-specific PCR methods, and the results indicated that the two PCR methods were both highly specific and convenient for the identification of L. pneumophila at the subspecies level.  相似文献   

11.
The environmental pathogen Legionella pneumophila encodes three proteins containing F‐box domains and additional protein–protein interaction domains, reminiscent of eukaryotic SCF ubiquitin–protein ligases. Here we show that the F‐box proteins of L. pneumophila strain Paris are Dot/Icm effectors involved in the accumulation of ubiquitinated proteins associated with the Legionella‐containing vacuole. Single, double and triple mutants of the F‐box protein encoding genes were impaired in infection of Acanthamoeba castellanii, THP‐1 macrophages and human lung epithelial cells. Lpp2082/AnkB was essential for infection of the lungs of A/J mice in vivo , and bound Skp1, the interaction partner of the SCF complex in mammalian cells, similar to AnkB from strain AA100/130b. Using a yeast two‐hybrid screen and co‐immunoprecipitation analysis we identified ParvB a protein present in focal adhesions and in lamellipodia, as a target. Immunofluorescence analysis confirmed that ectopically expressed Lpp2082/AnkB colocalized with ParvB at the periphery of lamellipodia. Unexpectedly, ubiquitination tests revealed that Lpp2082/AnkB diminishes endogenous ubiquitination of ParvB. Based on these results we propose that L. pneumophila modulates ubiquitination of ParvB by competing with eukaryotic E3 ligases for the specific protein–protein interaction site of ParvB, thereby revealing a new mechanism by which L. pneumophila may employ translocated effector proteins to promote bacterial survival.  相似文献   

12.
Aims: To compare the standard culture method with a new, rapid test (ScanVIT‐Legionella?) using fluorescently labelled gene probes for the detection and enumeration of Legionella spp. The new technique was validated through experiments conducted on both artificially and naturally contaminated water and through an inter‐laboratory comparison. Methods and Results: All samples were processed by the ScanVIT test according to the manufacturer’s instructions and by a culture method (ISO 11731). ScanVIT detected significantly more positive samples, although concentrations were similar and a strong positive correlation between the two methods was observed (r = 0·888, P < 0·001). The new test was more accurate in identifying the co‐presence of Legionella pneumophila and Leg. non‐pneumophila. ScanVIT showed a slightly higher Legionella recovery from water samples artificially contaminated with Leg. pneumophila alone or together with Pseudomonas aeruginosa. Lastly, the inter‐laboratory comparison revealed that the ScanVIT test exhibits a lower variability than the traditional culture test (mean coefficient of variation 8·7 vs 16·1%). Conclusions: The results confirmed that the ScanVIT largely overlaps the reference method and offers advantages in terms of sensitivity, quantitative reliability and reduced assay time. Significance and Impact of the Study: The proposed method may represent a useful validated alternative to traditional culture for the rapid detection and quantification of Legionella spp. in water.  相似文献   

13.
Diverse species of Legionella and Legionella‐like amoebal pathogens (LLAPs) have been identified as intracellular bacteria in many amoeboid protists. There are, however, other amoeboid groups such as testate amoeba for which we know little about their potential to host such bacteria. In this study, we assessed the occurrence and diversity of Legionella spp. in cultures and environmental isolates of freshwater arcellinid testate amoebae species, Arcella hemispherica, Arcella intermedia, and Arcella vulgaris, via 16S rRNA gene sequence analyses and fluorescent in situ hybridization (FISH). Analysis of the 16S rRNA gene sequences indicated that A. hemispherica, A. intermedia, and A. vulgaris host Legionella‐like bacteria with 94–98% identity to other Legionella spp. based on NCBI BLAST search. Phylogenetic analysis placed Legionella‐like Arcella‐associated bacteria (LLAB) in three different clusters within a tree containing all other members of Legionella and LLAPs. The intracellular localization of the Legionella within Arcella hosts was confirmed using FISH with a Legionella‐specific probe. This study demonstrates that the host range of Legionella and Legionella‐like bacteria in the Amoebozoa extends beyond members of “naked” amoebae species, with members of the testate amoebae potentially serving an ecological role in the dispersal, protection, and replication of Legionella spp. in natural environments.  相似文献   

14.
Legionella bacteria are ubiquitous in aquatic environments. Members of the species Legionella pneumophila are responsible for more than 98% of cases of Legionnaires' disease in France. Our objective was to validate a molecular typing method called infrequent restriction site PCR (IRS PCR), applied to the study of the ecology of Legionella and to compare this method with reference typing methods, pulsed‐field gel electrophoresis (PFGE) and sequence‐based Typing (SBT). PFGE and SBT are considered as gold methods for the epidemiological typing of Leg. pneumophila strains. However, these methods are not suitable to an ecological monitoring of Legionella in natural environments where a large number of strains has to be typed. Validation of IRS PCR method was performed by the identification of 45 Leg. pneumophila isolates from cooling circuits of thermal power plants by IRS PCR, PFGE and SBT. The parameters of each method were measured and compared to evaluate the effectiveness of IRS PCR. The results of this study showed that IRS PCR has a discriminating power similar or better than that of the reference methods and thus that, by its speed and low cost represents an appropriate tool for the study of the ecology of Legionella in cooling circuits.  相似文献   

15.
The essential oils isolated from leaves, wood, and cones of the Tunisian endemic cypress Cupressus sempervirens L. var. numidica Trab. collected from three natural populations were characterized by GC‐FID and GC/MS analyses. In the wood, leaf, and cone oils, 38, 35, and 26 constituents, representing 94.4, 97.8, and 98.5% of the total oil composition, respectively, were identified. Monoterpenes constituted the major fraction of the oils from all organs and for all populations. The oils were found to be of an α‐pinene (64.2%)/δ‐car‐3‐ene (11.1%) chemotype with considerable contents of α‐humulene (3.4%) in the leaf oil, cedrol (2.8%) in the wood oil, and sabinene (3.2%) in the cone oil, respectively. α‐Pinene, δ‐car‐3‐ene, limonene, carvacrol methyl ether, α‐humulene, and α‐amorphene were the main components that differentiated the oils of the three organs in the cypress of Makthar.  相似文献   

16.
A novel Legionella species was identified based on sequencing, cellular fatty acid analysis, biochemical reactions, and biofilm characterization. Strain D5610 was originally isolated from the bronchial wash of a patient in Ohio, USA. The bacteria were gram‐negative, rod‐shaped, and exhibited green fluorescence under long wave UV light. Phylogenetic analysis and fatty acid composition revealed a distinct separation within the genus. The strain grows between 26–45°C and forms biofilms equivalent to L. pneumophila Philadelphia 1. These characteristics suggest that this isolate is a novel Legionella species, for which the name Legionella clemsonensis sp nov. is proposed.  相似文献   

17.
Legionella pneumophila, the aetiological agent of 90% of legionellosis cases, is a common inhabitant of natural and anthropogenic freshwater environments, where it resides in biofilms. Biofilms are defined as complex, natural assemblages of microorganisms that involve a multitude of trophic interactions. A thorough knowledge and understanding of Legionella ecology in relation to biofilm communities is of primary importance in the search for innovative and effective control strategies to prevent the occurrence of disease cases. This review provides a critical update on the state‐of‐the‐art progress in understanding the mechanisms and factors affecting the biofilm life cycle of L. pneumophila. Particular emphasis is given to discussing the different strategies this human pathogen uses to grow and retain itself in biofilm communities. Biofilms develop not only at solid‐water interfaces (substrate‐associated biofilms), but also at the water‐air interface (floating biofilms). Disturbance of the water surface can lead to liberation of aerosols derived from the floating biofilm into the atmosphere that allow transmission of biofilm‐associated pathogens over considerable distances. Recent data concerning the occurrence and replication of L. pneumophila in floating biofilms are also elaborated and discussed.  相似文献   

18.
In the ecology of Legionella pneumophila a crucial role may be played by its relationship with the natural flora; thus we investigated the interactions between Legionella and other aquatic bacteria, particularly within biofilms. Among 80 aquatic bacteria screened for the production of bacteriocin-like substances (BLSs), 66.2% of them were active against L. pneumophila. The possible effect of some of these aquatic bacteria on the development and stability of L. pneumophila biofilms was studied. Pseudomonas fluorescens, the best BLS producer, showed the greatest negative effect on biofilm formation and strongly enhanced the detachment of Legionella. Pseudomonas aeruginosa, Burkholderia cepacia, Pseudomonas putida, Aeromonas hydrophila, and Stenotrophomonas maltophilia, although producing BLSs at different levels, were less active in the biofilm experiments. Acinetobacter lwoffii did not produce any antagonistic compound and was the only one able to strongly enhance L. pneumophila biofilm. Our results highlight that BLS production may contribute to determining the fate of L. pneumophila within ecological niches. The interactions observed in this study are important features of L. pneumophila ecology, which knowledge may lead to more effective measures to control the persistance of the germ in the environment.  相似文献   

19.
Hydrodistillation of the dried leaves of eleven species of the genus Eucalyptus L 'Hér ., i.e., E. astringens Maiden , E. camaldulensis Dehnh ., E. diversifolia Bonpl ., E. falcata Turcz ., E. ficifolia F. Muell ., E. gomphocephala DC., E. lehmannii (Schauer ) Benth ., E. maculata Hook ., E. platypus Hook ., E. polyanthemos Schauer, and E. rudis Endl ., harvested from Korbous arboreta (region of Nabeul, northeast of Tunisia) in April 2006, afforded essential oils in yields varying from 0.1±0.1 to 3.8±0.1%, dependent on the species. E. astringens and E. ficifolia showed the highest and the lowest mean percentage of essential oil amongst all the species examined, respectively. Analysis by GC (RI) and GC/MS allowed the identification of 138 components, representing 74.0 to 99.1% of the total oil. The contents of the different samples varied according to the species. The main components were 1,8‐cineole, followed by trans‐pinocarveol ( 1 ), spathulenol ( 2 ), α‐pinene, p‐cymene, (E,E)‐farnesol, cryptone, globulol ( 3 ), β‐phellandrene, α‐terpineol, viridiflorol, and α‐eudesmol. The principal‐component and the hierarchical‐cluster analyses separated the eleven Eucalyptus leaf essential oils into seven groups, each constituting a chemotype.  相似文献   

20.
In the present work, the leaf essential oil from 97 individuals of Juniperus phoenicea var. turbinata (Guss .) Parl . from the Balkan Peninsula was analyzed. The essential oil was dominated by monoterpene hydrocarbons (45.5 – 71.8%), of which α‐pinene was the most abundant in almost all of the samples (38.2 – 55.8%). Several other monoterpenes and sesquiterpenes were also present in relatively high abundances in samples such as myrcene, δ‐3‐carene, β‐phellandrene, α‐terpinyl acetate, (E)‐caryophyllene and germacrene D. Multivariate statistical analysis suggested the existence of three possible chemotypes based on the abundance of the four components. Even though the intrapopulation variability was high, discriminant analysis (DA) was able to separate populations. DA showed high separation between western and eastern populations but also grouped geographically closer populations along the west Balkan shoreline. The potential influence of the climate on the composition of the essential oil was also studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号