首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
分析了171个中国蒿属植物样品的精油化学成分,鉴定出305个化合物。这些样品代表64个种,其中蒿亚属47种,龙蒿亚属17种。 分析结果表明,这些化合物在两亚属中的分布有一定的规律性。在蒿亚属精油中主要含单萜类和倍半萜类化合物,而在龙蒿亚屑精油中主要含倍半萜类化合物和芳香族化合物。这种分布与中国蒿属植物从较原始到进化划分为7个组的系统分类有一定的相关性,即蒿亚属:莳萝蒿组(单萜类化合物)→艾蒿组(单萜类化合物)→艾组(单萜类化合物)→腺毛蒿组(单萜类化合物和倍半萜类化合物)→白苞蒿组(倍半萜类化合物)。龙蒿亚属:龙蒿组(倍半萜类化合物和芳香族化合物)→牡蒿组(倍半萜类化合物和芳香族化合物)。  相似文献   

2.
Analyses by GC, GC/MS, and NMR spectroscopy (1D‐ and 2D‐experiments) of the essential oil and Et2O extract of Trinia glauca (L .) Dumort . (Apiaceae) aerial parts allowed a successful identification of 220 constituents, in total. The major identified compounds of the essential oil were (Z)‐falcarinol (10.6%), bicyclogermacrene (8.0%), germacrene D (7.4%), δ‐cadinene (4.3%), and β‐caryophyllene (3.2%), whereas (Z)‐falcarinol (47.2%), nonacosane (7.4%), and 5‐O‐methylvisamminol (4.0%) were the dominant constituents of the extract of T. glauca. One significant difference between the compositions of the herein and the previously analyzed T. glauca essential oils (only two reports) was noted. (Z)‐Falcarinol was the major constituent in our case, whereas germacrene D (14.4 and 19.6%) was the major component of the previously studied oils. Possible explanations for this discrepancy were discussed. 5‐O‐Methylvisamminol, a (furo)chromone identified in the extract of T. glauca, has a limited occurrence in the plant kingdom and is a possible excellent chemotaxonomic marker (family and/or subfamily level) for Apiaceae.  相似文献   

3.
The possible applicability of (un)targeted metabolomics (volatile metabolites) for revealing taxonomic/evolutionary relationships among Senecio L. species (Asteraceae; tribe Senecioneae) was explored. Essential‐oil compositional data of selected Senecio/Senecioneae/Asteraceae taxa (93 samples in total) were mutually compared by means of multivariate statistical analysis (MVA), i.e., agglomerative hierarchical clustering and principal component analysis. The MVA input data set included the very first compositional data on the essential oil extracted from the aerial parts of S. viscosus L. as well as on four different Serbian populations of S. vernalis Waldst . & Kit . (oils from aerial parts and roots; eight samples in total). This metabolomic screening of Senecio/Senecioneae/Asteraceae species (herein presented results and data from the literature) pointed to short‐chain alk‐1‐enes (e.g., oct‐1‐ene, non‐1‐ene, and undec‐1‐ene), with up to now restricted general occurrence in Plantae, as characteristic chemotaxonomic markers/targets for future metabolomic studies of Senecio/Senecioneae taxa. The MVA additionally showed that the evolution of the terpene metabolism (volatile mono‐ and sesquiterpenoids) within the Asteraceae tribe Senecioneae was not genera specific. However, the MVA did confirm plant‐organ specific production/accumulation of volatiles within S. vernalis and suggested the existence of at least two volatile chemotypes for this species.  相似文献   

4.
The fruit essential oils of Heracleum persicum, H. rechingeri, H. gorganicum, H. rawianum, H. pastinacifolium, and H. anisactis from Iran were obtained by hydrodistillation and characterized by GC‐FID and GC/MS analyses. The oils of the six species were compared to determine the similarities and differences among their compositions. Overall, 36 compounds were identified in the fruit oils, accounting for 92.40–96.74% of the total oil compositions. Aliphatic esters constituted the main fraction of the oils (86.61–94.31%), with octyl acetate and hexyl butyrate as the major components. The oil compositions of species belonging to section Pubescentia (H. persicum, H. gorganicum, and H. rechingeri) were discriminated by equally high contents of both octyl acetate (13.84–20.48%) and hexyl butyrate (17.73–38.36%). On the other hand, the oils of H. rawianum, H. pastinacifolium and H. anisactis, belonging to section Wendia, showed lower hexyl butyrate contents (3.62–6.6%) and higher octyl acetate contents (48.71–75.36%) than the former. Moreover, isoelemicin was identified at low amounts (0.10–2.51%) only in the oils of the latter species. The differences in the oil composition among the six species were investigated by hierarchical cluster and principal component analyses, which indicated that the oil composition confirmed well the taxonomical classification based on the morphological and botanical data, and, thus, may provide a reliable marker to discriminate Heracleum species at the intersectional level.  相似文献   

5.
6.
The fruit essential oils of two populations of Astrantia major L. (Apiaceae, subfamily Saniculoideae) were analyzed in detail by GC and GC/MS analyses. Seventy‐six constituents identified accounted for 92.7–94.0% of the oils. The two oils differed significantly: the wild‐growing population from Serbia contained zingiberene (47.9%), β‐bisabolene (9.7%), and β‐sesquiphellandrene (7.9%), while the one from Poland (botanical gardens) was sesquiterpene‐poor with the major contributors oleic acid (38.6%), nonacosane (15.4%), and linoleic acid (5.1%). Motivated by the unresolved taxonomical relations between the Saniculoideae and Apioideae subfamilies, we performed multivariate statistical analyses on the compositional data of these A. major samples, and additional 14 Saniculoideae and 31 Apioideae taxa. This allowed us to assess the chemotaxonomical usefulness of such chemical data in differentiating taxa from these two Apiaceae subfamilies and to corroborate the existence of at least two A. major chemotypes. Diethyl ether extracts of the two samples of A. major fruits yielded seven diaryltetrahydrofurofurano lignans. Except for eudesmin that has been found for the first time in a Saniculoideae taxon, all other lignans (magnolin, epimagnolins A and B, epieudesmin, yangambin, and epiyangambin) are new for the entire plant family Apiaceae. The lignan profiles also supported the existence of two separate A. major chemotypes.  相似文献   

7.
The chemical composition of the essential oil isolated from the aerial parts of Pulicaria sicula (L.) Moris was characterized by GC‐FID and GC/MS analyses. The oil was particularly rich in oxygenated terpenoids. Among the oxygenated monoterpenes (content of 44.5%), the most abundant were borneol (23.7%), bornyl acetate (6.5%), and isothymol isobutyrate (6.2%). Caryophyllene oxide (10.2%), caryophylladienol I (4.3%), and caryophylla‐3,8(13)‐dien‐5β‐ol (4.4%) were identified as the main constituents among the oxygenated sesquiterpenes. Furthermore, a complete literature review on the composition of the essential oils of all the Pulicaria taxa studied so far was performed and a principal component analysis (PCA) was carried out.  相似文献   

8.
The essential oils isolated from fresh aerial parts of Ballota macedonica (two populations) and Ballota nigra ssp. foetida were analyzed by GC and GC/MS. Eighty five components were identified in total; 60 components in B. macedonica oil (population from the Former Yugoslav Republic of Macedonia), 34 components in B. macedonica oil (population from the Republic of Serbia), and 33 components in the oil of B. nigra ssp. foetida accounting for 93.9%, 98.4%, and 95.8% of the total oils, respectively. The most abundant components in B. macedonica oils were carotol (13.7 – 52.1%), germacrene D (8.6 – 24.6%), and (E)‐caryophyllene (6.5 – 16.5%), while B. nigra ssp. foetida oil was dominated by (E)‐phytol (56.9%), germacrene D (10.0%), and (E)‐caryophyllene (4.7%). Multivariate statistical analyses (agglomerative hierarchical cluster analysis and principal component analysis) were used to compare and discuss relationships among Ballota species examined so far based on their volatile profiles. The chemical compositions of B. macedonica essential oils are reported for the first time.  相似文献   

9.
Analyses by GC and GC/MS of an essential‐oil sample obtained from dry fruits of Scandix balansae Reut. ex Boiss . allowed the identification of 81 components, comprising 91.4% of the total oil composition. Interestingly, the major identified volatile compounds were medium‐chain‐length n‐alkanes, i.e., tridecane (6.7%), pentadecane (13.4%), and heptadecane (19.3%), and a long‐chain homolog nonacosane (7.6%). A number of minor oil constituents, among them tetradecyl 3‐methylbutanoate, and octadecyl 2‐methylpropanoate, 3‐methylbutanoate, and pentanoate, turned out to have a restricted natural occurrence not only in umbellifers but also in the Plant Kingdom, whereas the last ester is a new natural compound in general. The identity of these rare plant constituents that present excellent chemotaxonomic marker candidates for Scandix species was unambiguously confirmed by co‐injection of the oil sample with appropriate standards, which were synthesized for this purpose and fully characterized (1H‐ and 13C‐NMR, IR, MS). To explore the possible applicability of the essential oils' compositional data in the taxonomy of Apiaceae, the herein studied and additional 58 oils obtained from Scandiceae taxa were compared using multivariate statistical analyses (MVA). MVA demonstrated that the evolution of the volatiles' metabolism of Scandiceae taxa was neither genera‐specific nor follows their morphological evolution.  相似文献   

10.
The chemical composition of the essential oils of nine taxa from seven sections of Hypericum L. (Guttiferae; H. perforatum subsp. perforatum, H. perforatum subsp. veronense, H. calycinum, H. montanum, H. richeri subsp. richeri, H. hyssopifolium, H. hirsutum, H. hircinum subsp. majus, and H. tetrapterum) occurring in central Italy (Appennino Umbro‐Marchigiano) was analyzed by GC/FID and GC/MS. A total of 186 compounds were identified in the different species and subspecies, accounting for 86.9–92.8% of the total oils. The major fraction of the oil was always represented by sesquiterpene hydrocarbons (30.3–77.2%), while quantitative differences occurred between the other classes of volatiles depending on the taxa considered. Chemical composition of the nine Hypericum entities with respect to the taxonomical classification was discussed. Essential oils obtained from six taxa, i.e., H. perforatum subsp. perforatum, H. perforatum subsp. veronense, H. calycinum, H. richeri subsp. richeri, H. hirsutum and H. tetrapterum, were also tested for their antimicrobial properties against five different microbial strains by the broth‐microdilution method, and they were found to have significant activity (expressed as MIC) on B. subtilis, moderate activity on C. albicans and S. aureus, and weak activity on E. coli and E. faecalis, the most active being those from H. hirsutum, H. richeri subsp. richeri, and H. tetrapterum.  相似文献   

11.
Helianthus tuberosus L. (Jerusalem artichoke) is cultivated in Europe and other parts of the world as a food crop and ornamental plant. The volatile oils of the aerial parts of H. tuberosus were investigated more than 30 years ago, but no study could be found to date on the constituents of the tuber essential oil. Herein, the first characterization by GC‐FID, GC/MS, and 13C‐NMR analyses of a hydrodistilled essential oil of Jerusalem artichoke tubers was reported. Fresh plant material collected in Serbia (Sample A) and a commercial sample (Sample B) yielded only small amounts of oil (0.0014 and 0.0021% (w/w), resp.). In total, 195 constituents were identified, representing 88.2 and 93.6% of the oil compositions for Samples A and B, respectively. The main constituents identified were β‐bisabolene ( 1 ; 22.9–30.5%), undecanal (0–12.7%), α‐pinene (7.6–0.8%), kauran‐16‐ol ( 2 ; 6.9–9.8%), 2‐pentylfuran (0.0–5.7%), and (E)‐tetradec‐2‐enal (0.0–4.9%). Several rare compounds characteristic for Helianthus ssp. were also detected: helianthol A ( 6 ; 2.1–1.9%), dihydroeuparin ( 10 ; 0.0–2.3%), euparin ( 9 ; 0.0–0.4%), desmethoxyencecalin ( 7 ; traces – 0.2%), desmethylencecalin ( 8 ; 0.0–0.4%), and an isomer of desmethylencecalin (0.0%‐traces). The essential oils isolated from the tuber and the aerial parts share the common major component 1 .  相似文献   

12.
The hydrodistilled essential oils obtained from aerial flowering parts of Teucrium stocksianum ssp. stocksianum (TSS) and T. stocksianum ssp. gabrielae (TSG) from Iran were analyzed by capillary GC and GC/MS. The oil analysis of two subspecies led to the identification of 65 compounds that accounted for 93.3 and 95.1% of the total oil compositions, respectively. Sesquiterpenoids (52.9%) constituted the main compounds in the essential oil of TSS represented mainly by cis‐sesquisabinene hydrate (12.0%), followed by epiβ‐bisabolol (6.6%), guaiol (5.4%), and β‐eudesmol (4.4%), whilst monoterpenoids (61.2%) were found to be the major components of the oil of TSG, represented by α‐pinene (23.0%), β‐pinene (13.0%), myrcene (6.3%), and sabinene (6.3%). The principal component in both subspecies, TSS and TSG, was α‐pinene (22.0 and 23.0%, resp.) and β‐pinene (6.5 and 13.0%, resp.). epiα‐Cadinol, myrcene, and sabinene, which were detected as principal compounds of TSG, were characterized in lower amounts (<1.5%) in the oil of TSS. Seven components were identified in the oil of TSS corresponding to 25.9% of total oil, which were totally absent in the oil of TSG, of which cis‐sesquisabinene hydrate (12.0%), guaiol (5.4%), and β‐eudesmol (4.4%) were in considerable amounts. Taxonomic position of the subspecies is discussed on the basis of phytochemical data.  相似文献   

13.
The chemical composition of the essential oils isolated from the aerial parts of Anthemis pignattiorum Guarino, Raimondo & Domina and A. ismelia Lojac . and the aerial parts and flowers of Anthemis cupaniana Tod . ex Nyman , three endemic Sicilian species belonging to the section Hiorthia, was determined by GC‐FID and GC/MS analyses. (Z)‐Muurola‐4(14),5‐diene (27.3%) was recognized as the main constituent of the A. pignattiorum essential oil, together with isospathulenol (10.6%), sabinene (7.7%), and artemisyl acetate (6.8%), while in the oil obtained from the aerial parts of A. ismelia, geranyl propionate (8.8%), bornyl acetate (7.9%), β‐thujone (7.8%), neryl propionate (6.5%), and τ‐muurolol (6.5%) prevailed. α‐Pinene was the main compound of both the aerial part and flower oils of A. cupaniana (18.4 and 13.2%, resp.). Also noteworthy are the considerable amounts of artemisyl acetate (12.7%) and β‐thujone (11.8%) found in the oil from the aerial parts and those of tricosane (9.8%) and sabinene (7.6%) evidenced in the flower oil. Furthermore, an update on the main compounds identified in the essential oils of all the Anthemis taxa studied so far was presented, and cluster analyses were carried out, to compare the essential oils of these taxa.  相似文献   

14.
The essential oils of Artemisia arborescens growing in Sardinia (Italy), collected during three plant growth stages, i.e., from the vegetative stage to post‐blooming time, were characterized. Moreover, the in vitro antiproliferative and antioxidant activities of the oil isolated from aerial parts collected in February were evaluated. The essential oils belonged to the β‐thujone/chamazulene chemotype, notably with the highest amount of chamazulene (ca. 52%) ever detected up to now in the genus Artemisia and, in general, in essential oils. Quantitative variations in the oil composition were observed as the plant passes from the vegetative to the blooming stage. The oil was tested for its potential tumor cell growth‐inhibitory effect on T98G, MDA‐MB 435S, A375, and HCT116 human cell lines, using the MTT (=3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyl‐2H‐tetrazolium bromide) assay. The highest activity was observed on A375 and HCT116 cell lines, with IC50 values of 14 μg/ml. Moreover, the in vitro antioxidant and free radical‐scavenging assays revealed the oil to be an effective scavenger of the ABTS radical cation, with an activity comparable to that of Trolox®. These results support the use of A. arborescens oil for the treatment of inflamed skin conditions. Finally, the composition of the polar fraction of the A. arborescens aerial parts was also examined, and the main component detected was 5‐O‐caffeoylquinic acid, which was identified for the first time in this plant.  相似文献   

15.
Here we report, for the first time, the results of detailed GC and GC/MS analyses of the essential oil of a rare taxon in Serbia, Hypericum elegans Stephan ex Willd . One hundred and sixty two constituents identified accounted for 98.6% of the oil. The major components of the oil were undecane (31.9%), α‐pinene (16.7%), nonane (6.1%), bicyclogermacrene (5.8%), 2‐methyloctane (3.7%), and germacrene D (3.6%). Non‐terpenoids as chemotaxonomic markers constituted the main fraction of H. elegans oil, whereby n‐alkanes were the most abundant contributors of this fraction. Based on these results and previously published ones, we performed an intrasectional multivariate statistical comparison of corresponding essential‐oil chemical compositions. Principal component analysis (PCA) and agglomerative hierarchical clustering (AHC) of the data on the volatile profiles of section Hypericum taxa revealed that H. elegans either represents an oil chemotype of its own (AHC) or could be considered related to H. perforatum (PCA).  相似文献   

16.
This study aimed at assessing the chemical composition of the essential oils from leaves and fruits of Conchocarpus fontanesianus, an endemic Brazilian species of Rutaceae. The plant material was harvested from two regions of the Atlantic rainforest in the State of São Paulo. The volatile compounds in the essential oils were extracted by hydrodistillation (HD), and analyzed by GC/FID and GC/MS, allowing the quantification and identification of 54 components in total, which comprise about 97% of the total oil composition. From the leaves collected in Caraguatatuba and Juréia‐Itatins, the major volatile compounds identified were as follows: spathulenol (22.32% and 16.67%) and α‐cadinol (9.7% and 14.76%). However, β‐myrcene (34.56%), (+)‐epi‐bicyclosesquiphellandrene (8.71%), and bicyclogermacrene (5.80%) were dominant in the fruits collected only in Juréia‐Itatins. The in vitro biological activities were tested to evaluate the cytotoxic, antifungal, and antioxidant potential of essential oils from leaves and fruits.  相似文献   

17.
Characterization by GC‐FID and GC/MS analyses of the Stachys officinalis (L.) Trevis . essential oil obtained by hydrodistillation of the aerial parts allowed the identification of 190 components that represented 97.9% of the total oil content. The main constituents identified were germacrene D (19.9%), β‐caryophyllene (14.1%), and α‐humulene (7.5%). Terpenoids were by far predominant (89.4%), with sesquiterpene hydrocarbons (69.1%) and oxygenated sesquiterpenes (14.8%) being the most abundant compounds detected in the oil. Based on the present and previously published results, multivariate statistical comparison of the chemical composition of the essential oils was performed within the species. Principal component analysis (PCA) and agglomerative hierarchical clustering (AHC) of the data on the volatile profiles of S. officinalis taxa revealed no pronounced differences among the samples originated from the Balkan Peninsula. Additionally, the oil was screened for in vitro antibacterial and antifungal activity using the broth microdilution assay. The oil's best antimicrobial activities were obtained against the mold Aspergillus niger (minimal inhibitory (MIC) and minimal fungicidal (MFC) concentrations of 2.5 and 5.0 mg/ml, resp.) and the yeast Candida albicans (MIC and MFC of 5.0 mg/ml).  相似文献   

18.
The essential oils isolated from leaves, wood, and cones of the Tunisian endemic cypress Cupressus sempervirens L. var. numidica Trab. collected from three natural populations were characterized by GC‐FID and GC/MS analyses. In the wood, leaf, and cone oils, 38, 35, and 26 constituents, representing 94.4, 97.8, and 98.5% of the total oil composition, respectively, were identified. Monoterpenes constituted the major fraction of the oils from all organs and for all populations. The oils were found to be of an α‐pinene (64.2%)/δ‐car‐3‐ene (11.1%) chemotype with considerable contents of α‐humulene (3.4%) in the leaf oil, cedrol (2.8%) in the wood oil, and sabinene (3.2%) in the cone oil, respectively. α‐Pinene, δ‐car‐3‐ene, limonene, carvacrol methyl ether, α‐humulene, and α‐amorphene were the main components that differentiated the oils of the three organs in the cypress of Makthar.  相似文献   

19.
The chemical composition of 48 essential‐oil samples isolated from the leaves of Xylopia aethiopica harvested in six Ivoirian forests was investigated by GC‐FID and 13C‐NMR analyses. In total, 23 components accounting for 82.5–96.1% of the oil composition were identified. The composition was dominated by the monoterpene hydrocarbons β‐pinene (up to 61.1%) and α‐pinene (up to 18.6%) and the sesquiterpene hydrocarbon germacrene D (up to 28.7%). Hierarchical cluster and principal component analyses allowed the distinction of two groups on the basis of the β‐pinene and germacrene D contents. The chemical composition of the oils of Group I (38 oil samples) was clearly dominated by β‐pinene, while those of Group II (10 samples) were characterized by the association of β‐pinene and germacrene D. The leaves collected in the four inland forests produced β‐pinene‐rich oils (Group I), while the oil samples belonging to Group II were isolated from leaves harvested in forests located near the littoral.  相似文献   

20.
The present study reports the chemical composition of the headspace volatiles (HS) and essential oils obtained from fresh Chaerophyllum aromaticum root and aerial parts in full vegetative phase, as well as biological activities of their essential oils and MeOH extracts. In HS samples, the most dominant components were monoterpene hydrocarbons. On the other hand, the essential oils consisted mainly of sesquiterpenoids, representing 73.4% of the root and 63.4% of the aerial parts essential oil. The results of antibacterial assay showed that the aerial parts essential oil and MeOH extract have no antibacterial activity, while the root essential oil and extract showed some activity. Both of the tested essential oils exhibited anticholinesterase activity (47.65% and 50.88%, respectively); MeOH extract of the root showed only 8.40% inhibition, while aerial part extract acted as an activator of cholinesterase. Regarding the antioxidant activity, extracts were found to be more effective than the essential oils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号