首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, proteinogenic amino acids residues of dimeric dermorphin pentapeptides were replaced by the corresponding β3homo‐amino acids. The potency and selectivity of hybrid α/β dimeric dermorphin pentapeptides were evaluated by competetive receptor binding assay in the rat brain using [3H]DAMGO (a μ ligand) and [3H]DELT (a δ ligand). Tha analog containing β3homo‐Tyr in place of Tyr (Tyr‐d ‐Ala‐Phe‐Gly‐β3homo‐Tyr‐NH‐)2 showed good μ receptor affinity and selectivity (IC50 = 0.302, IC50 ratio μ/δ = 68) and enzymatic stability in human plasma. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

2.
A facile method was developed for the preparation of water soluble β‐Cyclodextrin (β‐CD)‐modified CdSe quantum dots (QDs) (β‐CD‐QDs) by directly replacing the oleic acid ligands on the QDs surface with β‐CD in an alkaline aqueous solution. The as‐prepared QDs show good stability in aqueous solution for several months. Oxoanions, including phosphoric acid ion, sulphite acid ion and carbonic acid ion, affect the fluorescence of β‐CD‐QDs. Among them, H2PO4 exhibited the largest quenching effect. For the polyprotic acids (HO)3AO, the effect of acidic anions on the fluorescence of β‐CD‐QDs was in the order: monoanion (HO)2AO2 > dianion (HO)AO32– >> trianion AO43–. After photoactivation for several days in the presence of anions at alkaline pH, the β‐CD‐QDs exhibited strong fluorescence emission. The effect of various heavy and transition metal ions on the fluorescence properties of the β‐CD‐QDs was investigated further. It was found that Ag+, Hg2+ and Co2+ have significant quenching effect on the fluorescence of the β‐CD‐QDs. The Stern–Volmer quenching constants increased in the order: Hg2+ < Co2+ <Ag+. The adsorption model of metal ions on β‐CD‐QDs was explored. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
The cancerostatic 5‐fluorouridine (5‐FUrd; 1 ) was sequentially sugar‐protected by introduction of a 2′,3′‐O‐heptylidene ketal group (→ 2 ), followed by 5′‐O‐monomethoxytritylation (→ 3 ). This fully protected derivative was submitted to Mitsunobu reactions with either phytol ((Z and E)‐isomer) or nerol ((Z)‐isomer) to yield the nucleoterpenes 4a and 4b . Both were 5′‐O‐deprotected with 2% Cl2CHCOOH in CH2Cl2 to yield compounds 5a and 5b , respectively. These were converted to the 5′‐O‐cyanoethyl phosphoramidites 6a and 6b , respectively. Moreover, the 2′,3′‐O‐(1‐nonyldecylidene) derivative, 7a , of 5‐fluorouridine was resynthesized and labelled at C(5′) with an Eterneon‐480 fluorophor® (→ 7b ). The resulting nucleolipid was studied with respect to its incorporation in an artificial bilayer, as well as to its aggregate formation. Additionally, two oligonucleotides carrying terminal phytol‐alkylated 5‐fluorouridine tags were prepared, one of which was studied concerning its incorporation in an artificial lipid bilayer.  相似文献   

4.
Glycogen synthase kinase‐3 (GSK‐3) plays an important regulatory role in various signaling pathways; such as PI3 K/AKT, which is closely related to the occurrence and development of tumors. At present, the most reported active GSK‐3 inhibitors have the same structure: lactam ring or amide structure. To find out the GSK‐3β small molecule inhibitor with novel, safe, efficient and more uncomplicated synthesis method, we analyzed in‐depth reported crystal‐binding patterns of GSK‐3β small molecule inhibitor with GSK‐3β protein, and designed and synthesized 17 non‐reported 3,5‐diamino‐N‐substituted benzamide compounds. Their structures were confirmed by 1H‐NMR, 13C‐NMR, and HR‐MS. The preliminary screening of tumor cytotoxicity of compounds in vitro was detected by MTT, and their structure–activity relationships were illustrated. The results have shown that 3,5‐diamino‐N‐[3‐(trifluoromethyl)phenyl]benzamide ( 4d ) exhibited significant tumor cytotoxicity against human colon cancer cells (HCT‐116) with IC50 of 8.3 μm and showed commendable selectivity to GSK‐3β. In addition, Compound 4d induced apoptosis to some extent and possessed modest PK properties.  相似文献   

5.
Thirteen new 3‐acetyl‐2,5‐disubstituted‐1,3,4‐oxadiazoline derivatives were synthesized from corresponding hydrazide‐hydrazones of isonicotinic acid in the reaction with acetic anhydride. The obtained compounds were identified with the use of spectral methods (IR, 1H‐NMR, 13C‐NMR, MS). In vitro antimicrobial activity screening of synthesized compounds against a panel of bacteria and fungi revealed interesting antibacterial and antifungal activity of tested 1,3,4‐oxadiazoline derivatives, which is comparable to that of commonly used antimicrobial agents.  相似文献   

6.
Forty‐three 2‐[(benzotriazol‐1/2‐yl)methyl]benzimidazoles, bearing either linear (dialkylamino)alkyl‐ or bulkier (quinolizidin‐1‐yl)alkyl moieties at position 1, were evaluated in cell‐based assays for cytotoxicity and antiviral activity against viruses representative of two of the three genera of the Flaviviridae family, i.e. Flaviviruses (Yellow Fever Virus (YFV)) and Pestiviruses (Bovine Viral Diarrhoea Virus (BVDV)), as Hepaciviruses can hardly be used in routine cell‐based assays. Compounds were also tested against representatives of other virus families. Among ssRNA+ viruses were a retrovirus (Human Immunodeficiency Virus type 1 (HIV‐1)), two picornaviruses (Coxsackie Virus type B2 (CVB2), and Poliovirus type‐1, Sabin strain (Sb‐1)); among ssRNA? viruses were a Paramyxoviridae (Respiratory Syncytial Virus (RSV)) and a Rhabdoviridae (Vesicular Stomatitis Virus (VSV)) representative. Among double‐stranded RNA (dsRNA) viruses was a Reoviridae representative (Reo‐1). Two representatives of DNA virus families were also included: Herpes Simplex type 1, (HSV‐1; Herpesviridae) and Vaccinia Virus (VV; Poxviridae). Most compounds exhibited potent activity against RSV, with EC50 values as low as 20 nM . Moreover, some compounds, in particular when bearing a (quinolizidin‐1‐yl)alkyl residue, were also moderately active against BVDV, YFV, and CVB2.  相似文献   

7.
7α‐Hydroxyfrullanolide ( 1 ), a known sesquiterpenoid, was isolated from Sphaeranthus indicus using an antibacterial‐activity‐directed fractionation method. This compound had exhibited a significant antibacterial activity against Gram‐positive bacteria. Chemical and microbial reactions were performed to prepare eight different analogues of compound 1 in order to evaluate these newly synthesized compounds for antibacterial activity. These compounds were 1β,7α‐dihydroxyfrullanolide ( 2 ), 7α‐hydroxy‐1‐oxofrullanolide ( 3 ), 4,5‐dihydro‐7α‐hydroxyfrullanolide ( 4 ), 11,13‐dihydro‐7α‐hydroxyfrullanolide ( 5 ), 13‐acetyl‐7α‐hydroxyfrullanolide ( 6 ), 2α,7α‐dihydroxysphaerantholide ( 7 ), 4α,5α‐epoxy‐7α‐hydroxyfrullanolide ( 8 ), and 4β,5β‐epoxy‐7α‐hydroxyfrullanolide ( 9 ). Microbial reactions on 1 using whole‐cell cultures of Cunninghamella echinulata and Curvularia lunata yielded compounds 2 – 4 . Incubation of compound 1 with the liquid cultures of Apsergillus niger and Rhizopus circinans yielded metabolites 5 – 7 , while 8 and 9 were prepared by carrying out an epoxidation reaction on 1 using meta‐chloroperbenzoic acid (mCPBA). Structures of compounds 2 – 9 were elucidated with the aid of extensive NMR spectral studies. Compounds 2 – 4 were found to be new metabolites. Compounds 1 – 9 were evaluated for antibacterial activity and found to exhibit a wide range of bioactivities. Antibacterial‐activity data of 1 – 9 suggested that the bioactivity of 1 is largely due to the presence of C(4)?C(5), C(11)?C(13), and a γ‐lactone moiety.  相似文献   

8.
11β‐Hydroxysteroid dehydrogenase type 1 (11β‐HSD1) is an enzyme that affects the body's cortisol levels. The inhibition of its activity can be used in the treatment of Cushing's syndrome, metabolic syndrome and type 2 diabetes. In this study, we synthesized new derivatives of 2‐(methylamino)thiazol‐4(5H)‐one and tested their activity towards inhibition of 11β‐HSD1 and its isoform – 11β‐HSD2. The results were compared with the previously tested allyl derivatives. We found out that methyl derivatives are weaker inhibitors of 11β‐HSD1 in comparison to their allyl analogs. Due to significant differences in the activity of the compounds, molecular modeling was performed, which was aimed at comparing the interactions between 11β‐HSD1 and ligands differing by substituent at the amine group (allyl vs. methyl). Modeling showed that the absence of the allyl group can lead to the rotation of whole ligand molecule which affects its interaction with the enzyme.  相似文献   

9.
Gamma‐aminobutyric acid type A receptors (GABAARs) are the most important inhibitory chloride ion channels in the central nervous system and are major targets for a wide variety of drugs. The subunit compositions of GABAARs determine their function and pharmacological profile. GABAARs are heteropentamers of subunits, and (α1)2(β3)2(γ2L)1 is a common subtype. Biochemical and biophysical studies of GABAARs require larger quantities of receptors of defined subunit composition than are currently available. We previously reported high‐level production of active human α1β3 GABAAR using tetracycline‐inducible stable HEK293 cells. Here we extend the strategy to receptors containing three different subunits. We constructed a stable tetracycline‐inducible HEK293‐TetR cell line expressing human (N)–FLAG–α1β3γ2L–(C)–(GGS)3GK–1D4 GABAAR. These cells achieved expression levels of 70–90 pmol [3H]muscimol binding sites/15‐cm plate at a specific activity of 15–30 pmol/mg of membrane protein. Incorporation of the γ2 subunit was confirmed by the ratio of [3H]flunitrazepam to [3H]muscimol binding sites and sensitivity of GABA‐induced currents to benzodiazepines and zinc. The α1β3γ2L GABAARs were solubilized in dodecyl‐d ‐maltoside, purified by anti‐FLAG affinity chromatography and reconstituted in CHAPS/asolectin at an overall yield of ~30%. Typical purifications yielded 1.0–1.5 nmoles of [3H]muscimol binding sites/60 plates. Receptors with similar properties could be purified by 1D4 affinity chromatography with lower overall yield. The composition of the purified, reconstituted receptors was confirmed by ligand binding, Western blot, and proteomics. Allosteric interactions between etomidate and [3H]muscimol binding were maintained in the purified state.  相似文献   

10.
5α‐Androst‐16‐en‐3α‐ol (α‐androstenol) is an important contributor to human axilla sweat odor. It is assumed that α‐andostenol is excreted from the apocrine glands via a H2O‐soluble conjugate, and this precursor was formally characterized in this study for the first time in human sweat. The possible H2O‐soluble precursors, sulfate and glucuronide derivatives, were synthesized as analytical standards, i.e., α‐androstenol, β‐androstenol sulfates, 5α‐androsta‐5,16‐dien‐3β‐ol (β‐androstadienol) sulfate, α‐androstenol β‐glucuronide, α‐androstenol α‐glucuronide, β‐androstadienol β‐glucuronide, and α‐androstenol β‐glucuronide furanose. The occurrence of α‐androstenol β‐glucuronide was established by ultra performance liquid chromatography (UPLC)/MS (heated electrospray ionization (HESI)) in negative‐ion mode in pooled human sweat, containing eccrine and apocrine secretions and collected from 25 female and 24 male underarms. Its concentration was of 79 ng/ml in female secretions and 241 ng/ml in male secretions. The release of α‐androstenol was observed after incubation of the sterile human sweat or α‐androstenol β‐glucuronide with a commercial glucuronidase enzyme, the urine‐isolated bacteria Streptococcus agalactiae, and the skin bacteria Staphylococcus warneri DSM 20316, Staphylococcus haemolyticus DSM 20263, and Propionibacterium acnes ATCC 6919, reported to have β‐glucuronidase activities. We demonstrated that if α‐ and β‐androstenols and androstadienol sulfates were present in human sweat, their concentrations would be too low to be considered as potential precursors of malodors; therefore, the H2O‐soluble precursor of α‐androstenol in apocrine secretion should be a β‐glucuronide.  相似文献   

11.
Many years ago, β2/β3‐peptides, consisting of alternatively arranged β2‐ and β3h‐amino‐acid residues, have been found to undergo folding to a unique type of helix, the 10/12‐helix, and to exhibit non‐polar, lipophilic properties (Helv. Chim. Acta 1997 , 80, 2033). We have now synthesized such ‘mixed’ hexa‐, nona‐, dodeca‐, and octadecapeptides, consisting of Val‐Ala‐Leu triads, with N‐terminal fluorescein (FAM) labels, i.e., 1 – 4 , and studied their interactions with POPC (=1‐palmitoyl‐2‐oleoyl‐sn‐glycero‐3‐phosphocholine) giant unilamellar vesicles (GUVs) and with human white blood cancer cells U937. The methods used were microfluidic technology, fluorescence correlation spectroscopy (FCS), a flow‐cytometry assay, a membrane‐toxicity assay with the dehydrogenase G6PDH as enzymatic reporter, and visual microscopy observations. All β3/β2‐peptide derivatives penetrate the GUVs and/or the cells. As shown with the isomeric β3/β2‐, β3‐, and β2‐nonamers, 2, 5 , and 6 , respectively, the derivatives 5 and 6 consisting exclusively of β3‐ or β2‐amino‐acid residues, respectively, interact neither with the vesicles nor with the cells. Depending on the method of investigation and on the pretreatment of the cells, the β3/β2‐nonamer and/or the β3/β2‐dodecamer derivative, 2 and/or 3 , respectively, cause a surprising disintegration or lysis of the GUVs and cells, comparable with the action of tensides, viral fusion peptides, and host‐defense antimicrobial peptides. Possible sources of the chain‐length‐dependent destructive potential of the β3/β2‐nona‐ and β3/β2‐dodecapeptide derivatives, and a possible relationship with the phosphate‐to‐phosphate and hydrocarbon thicknesses of GUVs, and eukaryotic cells are discussed. Further investigations with other types of GUVs and of eukaryotic or prokaryotic cells will be necessary to elucidate the mechanism(s) of interaction of ‘mixed’ β3/β2‐peptides with membranes and to evaluate possible biomedical applications.  相似文献   

12.
The protective effects of insulin‐like growth factor I on the somatostatin (SRIF) system in the temporal cortex after β‐amyloid (Aβ) injury may be mediated through its N‐terminal tripeptide glycine‐proline‐glutamate (GPE). GPE is cleaved to cyclo[Pro‐Gly] (cPG), a metabolite suggested to mediate in neuroprotective actions. We evaluated the effects of GPE and cPG in the temporal cortex of Aβ25–35‐treated rats on SRIF and SRIF receptor protein and mRNA levels, adenylyl cyclase activity, cell death, Aβ25–35 accumulation, cytosolic calcium levels ([Ca2+]c) and the intracellular signaling mechanisms involved. GPE and cPG did not change Aβ25–35 levels, but GPE partially restored SRIF and SRIF receptor 2 protein content and mRNA levels and protected against cell death after Aβ25–35 insult, which was coincident with Akt activation and glycogen synthase kinase 3β inhibition. In addition, GPE displaced glutamate from NMDA receptors and blocked the glutamate induced rise in cytosolic calcium in isolated rat neurons and moderately increased Ca2+ influx per se. Our findings suggest that GPE, but not its metabolite, mimics insulin‐like growth factor I effects on the SRIF system through a mechanism independent of Aβ clearance that involves modulation of calcium and glycogen synthase kinase 3β signaling.  相似文献   

13.
Glycogen synthase kinase‐3 beta (GSK‐3β) dysfunction may play an essential role in the pathogenesis of psychiatric, metabolic, neurodegenerative diseases, in which oxidative stress exists concurrently. Some studies have shown that GSK‐3β activity is up‐regulated under oxidative stress. This study evaluated how oxidative stress regulates GSK‐3β activity in human embryonic kidney 293 (HEK293)/Tau cells treated with hydrogen peroxide (H2O2). Here, we show that H2O2 induced an obvious increase of GSK‐3β activity. Surprisingly, H2O2 dramatically increased phosphorylation of GSK‐3β at Ser9, an inactive form of GSK‐3β,while there were no changes of phosphorylation of GSK‐3β at Tyr216. Moreover, H2O2 led to a transient [Ca2+]i elevation, and simultaneously increased the truncation of GSK‐3β into two fragments of 40 kDa and 30 kDa, whereas inhibition of calpain decreased the truncation and recovered the activity of GSK‐3β. Furthermore, tau was hyperphosphorylated at Ser396, Ser404, and Thr231, three most common GSK‐3β targeted sites after 100 μM H2O2 administration in HEK293/Tau cells, whereas inhibition of calpain blocked the tau phosphorylation. In addition, we found that there were no obvious changes of Cyclin‐dependent kinase 5 (CDK5) expression (responsible for tau phosphorylation) and of p35 cleavage, the regulatory subunit of CDK5 in H2O2‐treated HEK293/Tau cells. In conclusion, Ca2+‐dependent calpain activation leads to GSK‐3β truncation, which counteracts the inhibitory effect of Ser9 phosphorylation, up‐regulates GSK‐3β activity, and phosphorylates tau in H2O2‐treated HEK293/Tau cells.  相似文献   

14.
Amyloid‐β peptide (Aβ) generation initiated by β‐site amyloid precursor protein cleaving enzyme 1 BACE1 is a critical cause of Alzheimer's disease. In the course of our ongoing investigation of natural anti‐dementia resources, the ethyl acetate (EtOAc) fraction exerted strong BACE1‐specific inhibition with the half maximal inhibitory concentration (IC50) value of 9.2 × 10?5 μg/mL. Furthermore, Aβ(25–35)‐induced cell death was predominantly prevented by the EtOAc fraction of Allomyrina dichotoma larvae through diminishing of cellular oxidative stress and attenuating apoptosis by inhibiting caspase‐3 activity. Taken together, the present study demonstrated that A. dichotoma larvae possess novel neuroprotective properties not only via the selective and specific inhibition of BACE1 activity but also through the alleviation of Aβ(25–35)‐induced toxicity, which may raise the possibility of therapeutic application of A. dichotoma larvae for preventing and/or treating dementia.  相似文献   

15.
Via a Mannich reaction involving a dibenzyliminium species and the titanium enolates of Evans' chiral acylated oxazolidinones the β2‐amino acids (R)‐ and (S)‐Fmoc‐β2homovaline and (R)‐Fmoc‐β2homoleucine are synthesized. These building blocks were used, in combination with commercially available α‐ and β3‐amino acids, for the synthesis of the cyclo‐(αβ3αβ2α)2 peptide 2 and the cyclo‐(αβ2αβ3α)2 peptides 3 – 5 . The peptides 2 – 5 were screened for their ability to inhibit a small panel of Gram‐negative and Gram‐positive bacterial strains.  相似文献   

16.
17.
Optical materials composed of Ba9–3(m+n)/2ErmYbnY2Si6O24 (m = 0.005–0.2, n = 0–0.3) were prepared using a solid‐state reaction. The X‐ray diffraction patterns of the obtained phosphors were examined to index the peak positions. The photoluminescence (PL) excitation and emission spectra of the Er3+‐activated phosphors and the critical emission quenching as a function of Er3+ content in the Ba9–3m/2ErmY2Si6O24 structure were monitored. The spectral conversion properties of Er3+ and Er3+–Yb3+ ions doped in Ba9Y2Si6O24 phosphors were elucidated under diode‐laser irradiation at 980 nm. Up‐conversion emission spectra and the dependence of the emission intensity on pump power for the Ba8.55Er0.1Yb0.2Y2Si6O24 phosphor were investigated. The desired up‐conversion of the emitted light, which passed through the green, yellow, orange and red regions of the spectrum, was achieved through the use of appropriate Er3+ and/or Yb3+ concentrations in the host structure and 980 nm excitation light. The up‐conversion mechanism in the phosphors is described by an energy‐level schematic. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
19.
20.
Two julichrome monomers, julichromes Q11 ( 1 ) and Q12 ( 2 ), along with five known julichromes (Q10, Q3 ? 5, Q3 ? 3, Q6 ? 6, Q6, 3 – 7 ) and four known anthraquinones (chrysophanol, 4‐acetylchrysophanol, islandicin, huanglongmycin A, 8 – 11 ), were isolated from the marine gastropod mollusk Batillaria zonalis‐associated Streptomyces sampsonii SCSIO 054. This is the first report of julichromes isolated from a marine source. Extensive dissection of 1D and 2D NMR datasets combined with X‐ray crystallography enabled rigorous elucidation of the previously reported configurations of julichrome Q3 ? 5 ( 4 ) and related julichrome Q3 ? 3 ( 5 ); both of the configuration at C(9) needs to be revised. In addition, julichrome Q12 ( 2 ) was found to display antibacterial activity against Micrococcus luteus and Bacillus subtilis with MICs of 2.0 and 8.0 μg mL?1; four compounds ( 1 , 3 , 6 , 7 ) also showed inhibitory activities against an array of methicillin‐resistant Staphylococcus aureus, S. aureus and S. simulans AKA1 with MIC values ranging from 8 to 64 μg mL?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号