首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 0 毫秒
1.
Insulin‐like growth factor‐I (IGF‐I) is a key component of the complex system that regulates differentiation, development, growth and reproduction of fishes. The IGF‐I gene is mainly expressed in the liver that represents the principal source of endocrine IGF‐I but also in numerous other organs where the hormone most probably acts in an autocrine–paracrine manner. The primary stimulus for synthesis and release of IGF‐I is growth hormone (GH) from the anterior pituitary. Thus, in analogy to mammals, it is usual to speak of a fish ‘GH–IGF‐I axis'. The GH–IGF‐I system is affected by changes in the environment and probably represents a target of endocrine disrupting compounds (EDC) that impair many physiological processes in fishes. Thus, the review deals with the influences of changes in different environmental factors, such as food availability, temperature, photoperiod, season, salinity and EDCs, on GH gene expression in pituitary, IGF‐I gene expression in liver and extrahepatic sites and the physiological effects resulting from the evoked alterations in endocrine and local IGF‐I. Environmental influences certainly interact with each other but for convenience of the reader they will be dealt with in separate sections. Current trends in GH–IGF‐I research are analysed and future focuses are suggested at the end of the sections.  相似文献   

2.
3.
In this study, we have developed a method of mechanical force detection for ligands bound to receptors on a cell surface, both of which are involved in a signal transduction pathway. This pathway is an autocrine pathway, involving the production of insulin‐like growth factor‐II (IGF‐II) and activation of the IGF‐I receptor, involved in myoblast differentiation induced by MyoD in C3H10T1/2 mouse mesenchymal stem cells. Differentiation of C3H10T1/2 was induced with the DNA demethylation agent 5‐azacytidine (5‐aza). The etched AFM tip used in the force detection had a flat surface of which about 10 µm2 was in contact with a cell surface. The forces required to rupture the interactions of IGF‐IIs on a cell and anti mouse IGF‐II polyclonal antibody immobilized on an etched AFM tip were measured within 5 days of induction of differentiation. The mean unbinding force for a single paired antibody–ligand on a cell was about 81 pN, which was measured at a force loading rate of about 440 nN/s. The percentage of unbinding forces over 100 pN increased to 32% after 2 days from the addition of 5‐aza to the medium. This method could be used in non‐invasive and successive evaluation of a living cell's behavior. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
Low insulin‐like growth factor‐1 (IGF‐1) signaling is associated with improved longevity, but is paradoxically linked with several age‐related diseases in humans. Insulin‐like growth factor‐1 has proven to be particularly beneficial to the brain, where it confers protection against features of neuronal and cognitive decline. While aging is characterized by central insulin resistance in the face of hyperinsulinemia, the somatotropic axis markedly declines in older humans. Thus, we hypothesized that increasing IGF‐1 in the brain may prove to be a novel therapeutic alternative to overcome central insulin resistance and restore whole‐body insulin action in aging. Utilizing hyperinsulinemic‐euglycemic clamps, we show that old insulin‐resistant rats with age‐related declines in IGF‐1 level demonstrate markedly improved whole‐body insulin action, when treated with central IGF‐1, as compared to central vehicle or insulin (< 0.05). Furthermore, central IGF‐1, but not insulin, suppressed hepatic glucose production and increased glucose disposal rates in aging rats (< 0.05). Taken together, IGF‐1 action in the brain and periphery provides a ‘balance’ between its beneficial and detrimental actions. Therefore, we propose that strategies aimed at ‘tipping the balance’ of IGF‐1 action centrally are the optimal approach to achieve healthy aging and longevity in humans.  相似文献   

5.
6.
The use of dermal substitutes to treat skin defects such as ulcers has shown promising results, suggesting a potential role for skin substitutes for treating acute and chronic wounds. One of the main drawbacks with the use of dermal substitutes is the length of time from engraftment to graft take, plus the risk of contamination and failure due to this prolonged integration. Therefore, the use of adjuvant energy‐based therapeutic modalities to augment and accelerate the rate of biointegration by dermal substitute engraftments is a desirable outcome. The photobiomodulation (PBM) therapy modulates the repair process, by stimulating cellular proliferation and angiogenesis. Here, we evaluated the effect of PBM on a collagen‐glycosaminoglycan flowable wound matrix (FWM) in an ex vivo human skin wound model. PBM resulted in accelerated rate of re‐epithelialization and organization of matrix as seen by structural arrangement of collagen fibers, and a subsequent increased expression of alpha‐smooth muscle actin (α‐SMA) and vascular endothelial growth factor A (VEGF‐A) leading to an overall improved healing process. The use of PBM promoted a beneficial effect on the rate of integration and healing of FWM. We therefore propose that the adjuvant use of PBM may have utility in enhancing engraftment and tissue repair and be of value in clinical practice.   相似文献   

7.
8.
9.
LDL cholesterol (LDL‐C) is cleared from plasma via cellular uptake and internalization processes that are largely mediated by the low‐density lipoprotein cholesterol receptor (LDL‐R). LDL‐R is targeted for lysosomal degradation by association with proprotein convertase subtilisin‐kexin type 9 (PCSK9). Gain of function mutations in PCSK9 can result in excessive loss of receptors and dyslipidemia. On the other hand, receptor‐sparing phenomena, including loss‐of‐function mutations or inhibition of PCSK9, can lead to enhanced clearance of plasma lipids. We hypothesize that desolvation and resolvation processes, in many cases, constitute rate‐determining steps for protein–ligand association and dissociation, respectively. To test this hypothesis, we analyzed and compared the predicted desolvation properties of wild‐type versus gain‐of‐function mutant Asp374Tyr PCSK9 using WaterMap, a new in silico method for predicting the preferred locations and thermodynamic properties of water solvating proteins (“hydration sites”). We compared these results with binding kinetics data for PCSK9, full‐length LDL‐R ectodomain, and isolated EGF‐A repeat. We propose that the fast kon and entropically driven thermodynamics observed for PCSK9‐EGF‐A binding stem from the functional replacement of water occupying stable PCSK9 hydration sites (i.e., exchange of PCSK9 H‐bonds from water to polar EGF‐A groups). We further propose that the relatively fast koff observed for EGF‐A unbinding stems from the limited displacement of solvent occupying unstable hydration sites. Conversely, the slower koff observed for EGF‐A and LDL‐R unbinding from Asp374Tyr PCSK9 stems from the destabilizing effects of this mutation on PCSK9 hydration sites, with a concomitant increase in the persistence of the bound complex. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

10.
Human immunodeficiency virus‐1 (HIV) is a public health issue and a major complication of the disease is NeuroAIDS. In vivo, microglia/macrophages are the main cells infected. However, a low but significant number of HIV‐infected astrocytes has also been detected, but their role in the pathogenesis of NeuroAIDS is not well understood. Our previous data indicate that gap junction channels amplify toxicity from few HIV‐infected into uninfected astrocytes. Now, we demonstrated that HIV infection of astrocytes results in the opening of connexin43 hemichannels (HCs). HIV‐induced opening of connexin43 HCs resulted in dysregulated secretion of dickkopf‐1 protein (DKK1, a soluble wnt pathway inhibitor). Treatment of mixed cultures of neurons and astrocytes with DKK1, in the absence of HIV infection, resulted in the collapse of neuronal processes. HIV infection of mixed cultures of human neurons and astrocytes also resulted in the collapse of neuronal processes through a DKK1‐dependent mechanism. In addition, dysregulated DKK1 expression in astrocytes was observed in human brain tissue sections of individuals with HIV encephalitis as compared to tissue sections from uninfected individuals. Thus, we demonstrated that HIV infection of astrocytes induces dysregulation of DKK1 by a HC‐dependent mechanism that contributes to the brain pathogenesis observed in HIV‐infected individuals.

  相似文献   


11.
Approximately 50% of patients having metastatic melanoma develop brain metastases during the course of their illness. Evidence exists that melanoma cells have increased aptitude for the repair of sublethal DNA damage caused by ionizing radiation therapy. To address the radio‐resistance of melanoma, many groups adopted radiotherapy schedules that deliver larger daily fractions of radiation, but due to the risk of neurotoxicity, these large fractions cannot be delivered to the whole brain for patients with brain metastases. Here, we used orthotopic implanted GRM1 expressing human melanoma cell xenografts in mice, to demonstrate that animals receiving concurrent glutamate signaling blockade (riluzole) and radiation led to a decrease in intracranial tumor growth compared to either modality alone. These preclinical results suggest riluzole may cause radio‐sensitization that offers enhanced efficacy for a subset of human melanoma patients undergoing radiotherapy for brain metastasis.  相似文献   

12.
13.
14.
The Nef protein of the human immunodeficiency virus type 1 (HIV‐1) plays a crucial role in AIDS pathogenesis by modifying host cell signaling pathways. We investigated the effects of Nef on the NADPH oxidase complex, a key enzyme involved in the generation of reactive oxygen species during the respiratory burst in human monocyte/macrophages. We have recently shown that the inducible expression of HIV‐1 Nef in human macrophages cell line modulates in bi‐phasic mode the superoxide anion release by NADPH oxidase, inducing a fast increase of the superoxide production, followed by a delayed strong inhibition mediated by Nef‐induced soluble factor(s). Our study is focused on the molecular mechanisms involved in Nef‐mediated activation of NADPH oxidase and superoxide anion release. Using U937 cells stably transfected with different Nef alleles, we found that both Nef membrane localization and intact SH3‐binding domain are needed to induce superoxide release. The lack of effect during treatment with a specific MAPK pathway inhibitor, PD98059, demonstrated that Nef‐induced superoxide release is independent of Erk1/2 phosphorylation. Furthermore, Nef induced the phosphorylation and then the translocation of the cytosolic subunit of NADPH oxidase complex p47phox to the plasma membrane. Adding the inhibitor PP2 prevented this process, evidencing the involvement of the Src family kinases on Nef‐mediated NADPH oxidase activation. In addition, LY294002, a specific inhibitor of phosphoinositide 3‐kinase (PI3K) inhibited both the Nef‐induced p47phox phosphorylation and the superoxide anion release. These data indicate that Nef regulates the NADPH oxidase activity through the activation of the Src kinases and PI3K. J. Cell. Biochem. 106: 812–822, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号