首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of 5-substitutedbenzylideneamino-2-butylbenzofuran-3-yl-4-methoxyphenyl methanones is synthesized and evaluated for antileishmanial and antioxidant activities. Compounds 4f (IC50?=?52.0?±?0.09?µg/ml), 4h (IC50?=?56.0?±?0.71?µg/ml) and 4l (IC50?=?59.3?±?0.55?µg/ml) were shown significant antileishmanial when compared with standard sodium stibogluconate (IC50?=?490.0?±?1.5?µg/ml). Antioxidant study revealed that compounds 4i (IC50?=?2.44?±?0.47?µg/ml) and 4l (IC50?=?3.69?±?0.44?µg/ml) have shown potent comparable activity when compared with standard ascorbic acid (IC50?=?3.31?±?0.34?µg/ml). Molecular docking study was carried out which replicating results of biological activity in case of initial hits 4f and 4h suggesting that these compounds have a potential to become lead molecules in drug discovery process. In silico ADME study was performed for predicting pharmacokinetic profile of the synthesised antileishmanial agents and expressed good oral drug like behaviour.  相似文献   

2.
In our continuing search for biologically active natural product(s) of plant origin, Buddleja saligna, a South African medicinal plant, was screened in line with its traditional use for antidiabetic (yeast alpha glucosidase inhibitory) and antiplasmodial (against a chloroquine sensitive strain of Plasmodium falciparum (NF54)) activities. The hexane fraction showed the most promising activity with regards to its antidiabetic (IC50?=?260?±?0.112?µg/ml) and antiplasmodial (IC50?=?8.5?±?1.6?µg/ml) activities. Using activity guided fractionation three known terpenoids (betulonic acid, betulone and spinasterol) were isolated from this species for the first time. The compounds displayed varying levels of biological activities (antidiabetic: 27.31?µg/ml?≥?IC50?≥?5.6?µg/ml; antiplasmodial: 14?µg/ml?≥?IC50?≥?2?µg/ml) with very minimal toxicity.  相似文献   

3.
For centuries, plants have been used in traditional medicines and there has been recent interest in the chemopreventive properties of compounds derived from plants. In the present study, we investigated the antibutyrylcholinestrasic (anti-BuChE) and antioxidant (against some free radicals) activities of extracts from Rhus pentaphyllum. Aqueous extracts were prepared from powdered R. pentaphyllum roots, leaves and seeds and characterized for the presence of tannins, flavonoids and coumarins. Seeds aqueous extract contained the highest quantities of both flavonoids and tannins (21.12% and 17.45% respectively). In the same way, seeds extracts displayed remarkable inhibition against BuChE over 95%, at 100 μg/ml and with IC50 0.74 μg/ml. In addition, compared to leaves and roots extracts, seeds aqueous extract revealed relatively strong antiradical activity towards the ABTS .+ (IC50 = 0.25 μg/ml) and DPPH (IC50 = 2.71 μg/ml) free radicals and decreased significantly the reactive oxygen species such O2 .- (IC50 = 2.9 μg/ml) formation evaluated by the non-enzymatic generating O2 .- system (Nitroblue tetrazolium/riboflavine). These data suggest that the anti-BuChE activities mechanism of these extracts occurs through a free radical scavenging capacities. The present study indicates that extracts of Rhus pentaphyllum leaves, seeds and roots are a significant source of compounds, such as tannins, flavonoids and coumarins, with anti-BuChE and antioxidant activities, and thus may be useful for chemoprevention.  相似文献   

4.
Pyruvic acid and its derivatives occurring in most biological systems are known to exhibit several pharmacological properties, such as anti‐inflammatory, neuroprotective or anticancer, many of which are suggested to originate from their antioxidant and free radical scavenger activity. The therapeutic potential of these compounds is a matter of particular interest, due to their mechanisms of action, particularly their possible antioxidant behaviour. Here, we report the results of a study of the effect of pyruvic acid (PA), ethyl pyruvate (EP) and sodium pyruvate (SP) on reactions generating reactive oxygen species (ROS), such as superoxide anion radicals, hydroxyl radicals and singlet oxygen, and their total antioxidant capacity. Chemiluminescence (CL) and spectrophotometry techniques were employed. The pyruvate analogues studied were found to inhibit the CL signal arising from superoxide anion radicals in a dose‐dependent manner with IC50 = 0.0197 ± 0.002 mM for EP and IC50 = 69.2 ± 5.2 mM for PA. These compounds exhibited a dose‐dependent decrease in the CL signal of the luminol + H2O2 system over the range 0.5–10 mM with IC50 values of 1.71 ± 0.12 mM for PA, 3.85 ± 0.21 mM for EP and 22.91 ± 1.21 mM for SP. Furthermore, these compounds also inhibited hydroxyl radical‐dependent deoxyribose degradation in a dose‐dependent manner over the range 0.5–200 mM, with IC50 values of 33.2 ± 0.3 mM for SP, 116.1 ± 6.2 mM for EP and 168.2 ± 6.2 mM for PA. All the examined compounds also showed antioxidant capacity when estimated using the ferric–ferrozine assay. The results suggest that the antioxidant activities of pyruvate derivatives may reflect a direct effect on scavenging ROS and, in part, be responsible for their pharmacological actions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
Endophytic actinomycetes isolated from Datura stramonium L. was evaluated for its effects against in vitro α-glucosidase inhibition, antioxidant, and free radical scavenging activities. Based on microbial cultural characteristic and 16S rRNA sequencing, it was identified as Streptomyces sp. loyola UGC. The methanolic extract of endophytic actinomycetes (MeEA) shows remarkable inhibition of α-glucosidase (IC50 730.21 ± 1.33 μg/ml), scavenging activity on 2,2-diphenyl-picrylhydrazyl (DPPH) (IC50 435.31 ± 1.79 μg/ml), hydroxyl radical (IC50 350.21 ± 1.02 μg/ml), nitric oxide scavenging (IC50 800.12 ± 1.05 μg/ml), superoxide anion radical (IC50 220.31 ± 1.47 μg/ml), as well as a high and dose-dependent reducing power. The MeEA also showed a strong suppressive effect on rat liver lipid peroxidation. Antioxidants of β-carotene linoleate model system revels significantly lower than BHA. The total phenolic content of the extract was 176 mg of catechol equivalents/gram extract. Perusal of this study indicates MeEA can be used as natural resource of α-glucosidase inhibitor and antioxidants.  相似文献   

6.
Propolis is rich in diverse bioactive compounds. Propolis samples were collected from three localities of Cameroon and used in the study. Column chromatography separation of propolis MeOH:DCM (50:50) extracts yielded a new isoflavonol, 2-hydroxy-8-prenylbiochanin A (1) alongside 2′,3′-dihydroxypropyltetraeicosanoate (2) and triacontyl p-coumarate (3) isolated from propolis for first time together with seven compounds: β-amyrine (4), oleanolic acid (5), β-amyrine acetate (6), lupeol (7), betulinic acid (8), lupeol acetate (9) and lupenone (10). These compounds were tested for their inhibitory effect on oxidative burst where intracellular reactive oxygen species (ROS) were produced from zymosan stimulated human whole blood phagocytes and on production of nitric oxide (NO) from lipopolysaccharide (LPS) stimulated J774.2 mouse macrophages. The cytotoxicity of these compounds was evaluated on NIH-3 T3 normal mouse fibroblast cells, antiradical potential on 2,2-diphenyl-1-picrylhydrazylhydrazyl (DPPH·) as well as their anti-yeast potential on four selected candida species. Compound 1 showed higher NO inhibition (IC50 = 23.3 ± 0.3 µg/mL) than standard compound L-NMMA (IC50 = 24.2 ± 0.8 µg/mL). Higher ROS inhibition was shown by compounds 6 (IC50 = 4.3 ± 0.3 µg/mL) and 9 (IC50 = 1.1 ± 0.1 µg/mL) than Ibuprofen (IC50 = 11.2 ± 1.9 µg/mL). Furthermore, compound 1 displayed moderate level of cytotoxicity on NIH-3 T3 cells, with IC50 = 5.8 ± 0.3 µg/mL compared to the cyclohexamide IC50 = 0.13 ± 0.02 µg/mL. Compound 3 showed lower antifungal activity on Candida krusei and Candida glabrata, MIC of 125 μg/mL on each strain compared to 50 μg/mL for fuconazole. The extracts showed low antifungal activities ranging from 250 to 500 μg/mL on C. albicans, C. krusei and C. glabrata and the values of MIC on Candida parapsilosis were 500 μg/mL and above. DPPH* scavenging activity was exhibited by compounds 1 (IC50 = 15.653 ± 0.335 μg/mL) and 3 (IC50 = 89.077 ± 24.875 μg/mL) compared to Vitamin C (IC50 = 3.343 ± 0.271 μg/mL) while extracts showed moderate antiradical activities with IC50 values ranging from 309.31 ± 2.465 to 635.52 ± 11.05 µg/mL. These results indicate that compounds 1, 6 and 9 are potent anti-inflammatory drug candidates while 1 and 3 could be potent antioxidant drugs.  相似文献   

7.
In the present study, some thiazole derivatives were synthesized via the ring closure reaction of 1-[2-(2-oxobenzo[d]thiazol-3(2H)-yl)acetyl]thiosemicarbazide with various phenacyl bromides. The chemical structures of the compounds were elucidated by 1H NMR, 13C NMR and mass spectral data and elemental analyses. Each derivative was evaluated for its ability to inhibit acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) using a modification of Ellman’s spectrophotometric method. The compounds were also investigated for their cytotoxic properties using MTT assay. The most potent AChE inhibitor was found as compound 4e (IC50?=?25.5?±?2.12 µg/mL) followed by compounds 4i (IC50?=?38.50?±?2.12 µg/mL), 4c (IC50?=?58.42?±?3.14 µg/mL) and 4g (IC50?=?68?±?2.12 µg/mL) when compared with eserine (IC50?=?0.025?±?0.01 µg/mL). Effective compounds on AChE exhibited weak inhibition on BuChE (IC50 > 80 µg/mL). MTT assay indicated that the cytotoxic dose (IC50?=?71.67?±?7.63 µg/mL) of compound 4e was higher than its effective dose.  相似文献   

8.
Hydrogen peroxide (H2O2), a major reactive oxygen species (ROS) produced during oxidative stress, is toxic to the cells. Hence, H2O2 has been extensively used to study the effects of antioxidant and cytoprotective role of phytochemicals. In the present investigation H2O2 was used to induce oxidative stress via ROS production within PC12 and L132 cells. Cytoprotective propensity of Bacopa monniera extract (BME) was confirmed by cell viability assays, ROS estimation, lipid peroxidation, mitochondria membrane potential assay, comet assay followed by gene expression studies of antioxidant enzymes in PC12 and L132 cells treated with H2O2 for 24 h with or without BME pre-treatment. Our results elucidate that BME possesses radical scavenging activity by scavenging 2,2-diphenyl-1-picrylhydrazyl, 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid), superoxide radical, and nitric oxide radicals. The IC50 value of BME against these radicals was found to be 226.19, 15.17, 30.07, and 34.55 µg/ml, respectively). The IC50 of BME against ROS, lipid peroxidation and protein carbonylation was found to be 1296.53, 753.22, and 589.04 µg/ml in brain and 1137.08, 1079.65, and 11101.25 µg/ml in lung tissues, respectively. Further cytoprotective potency of the BME ameliorated the mitochondrial and plasma membrane damage induced by H2O2 as evidenced by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase leakage assays in both PC12 and L132 cells. H2O2 induced cellular, nuclear and mitochondrial membrane damage was restored by BME pre-treatment. H2O2 induced depleted antioxidant status was also replenished by BME pre-treatment. This was confirmed by spectrophotometric analysis, semi-quantitative RT-PCR and western blot studies. These results justify the traditional usage of BME based on its promising antioxidant and cytoprotective property.  相似文献   

9.
The present study reports the in vitro biological nature of the pigment produced by Staphylococcus gallinarum KX912244, isolated as the gut microflora bacterium of the insect Bombyx mori. The purified pigment was characterized as Staphyloxanthin based on bio-physical characterization techniques like Fourier transform infrared spectroscopy, high performance liquid chromatography, Proton nuclear magnetic resonance spectroscopy (1H NMR), Liquid chromatography-Mass spectroscopy and Gas chromatography-Mass spectroscopy. The Staphyloxanthin pigment presented considerable biological properties including in vitro antimicrobial activity against pathogens Staphylococcus aureus, Escherichia coli and Candida albicans; in vitro antioxidant activity by % DPPH free radical scavenging activity showing IC50 value of 54.22 µg/mL; DNA damage protection activity against reactive oxygen species and anticancer activity evaluated by cytotoxicity assay against 4 different cancer cell lines like the Dalton’s lymphoma ascites with IC50 value 6.20?±?0.02 µg/mL, Ehrlich ascites carcinoma having IC50 value 6.48?±?0.15 µg/mL, Adenocarcinomic human alveolar basal epithelial cells (A549 Lung carcinoma) bearing IC50 value 7.23?±?0.11 µg/mL and Mus mucus skin melanoma (B16F10) showing IC50 value 6.58?±?0.38 µg/mL and less cytotoxicity towards non-cancerous human fibroblast cell lines (NIH3T3) with IC50 value of 52.24 µg/mL. The present study results suggest that Staphyloxanthin acts as a potential therapeutic agent especially due to its anticancer property.  相似文献   

10.
Abstract

Calendula officinalis (marigold) has many pharmacological properties. It is used for the treatment of skin disorders, pain and also as a bactericide, antiseptic and anti-inflammatory. Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are known to participate in the pathogenesis of various human diseases and may be involved in the conditions which C. officinalis is used to treat. The aim of this study was to investigate the relationship between the beneficial properties of this plant and its antioxidant action. The butanolic fraction (BF) was studied because it is non-cytotoxic and is rich in a variety of bioactive metabolites including flavonoids and terpenoids. Superoxide radicals (O2?-) and hydroxyl radicals (HO?) are observed in decreasing concentrations in the presence of increasing concentrations of BF with IC50 values of 1.0 ± 0.09 mg/ml and 0.5 ± 0.02 mg/ml, respectively, suggesting a possible free radical scavenging effect. Lipid peroxidation in liver microsomes induced by Fe2+/ascorbate was 100% inhibited by 0.5 mg/ml of BF (IC50 = 0.15 mg/ml). Its total reactive antioxidant potential (TRAP) (in μM Trolox equivalents) was 368.14 ± 23.03 and its total antioxidant reactivity (TAR) was calculated to be 249.19 ± 14.5 μM. The results obtained suggest that the butanolic fraction of C. officinalis possesses a significant free radical scavenging and antioxidant activity and that the proposed therapeutic efficacy of this plant could be due, in part, to these properties.  相似文献   

11.
Ceropegia thwaitesii Hook (Asclepiadaceae), an endemic plant species, due to habitat destruction and over exploitation has a very restricted distribution in the Western Ghats of Tamil Nadu, India. The present wrok aimed to determine the chemical composition, the total phenolic (TPC), flavonoid (TFC) and tannin content (TEC), and to assess the antioxidant properties of various extracts of in vivo plants (IVP) and in vitro regenerated plants (IRP) of C. thwaitesii. Some phenolic compounds like gallic acid, cathechol, vanillin and salicylic acid were identified and quantified by HPLC. All the extracts possessed relevant radical scavenging activity on DPPH, Superoxide radical scavenging activity, and Nitric oxide radicals as well as total antioxidant ability. DPPH assay of in vitro methanol stems extracts and ethanol leaves extracts revealed the best antioxidant properties with important IC50 values of 0.248?±?0.45?µg/mL and 0.397?±?0.67?µg/mL, respectively, whereas in vivo chloroform stems extracts showed a lower antioxidant activity (IC50 of 10.99?±?0.24?µg/mL). The IRP methanol extracts of stem and leaves had good inhibitory activity against all tested microorganisms in a dose-dependent manner. These results suggested that in vitro raised plants of C. thwaitesii are an excellent source of antioxidant compounds to be exploited on an industrial level as food additive.  相似文献   

12.
A lectin from seeds of Dioclea lasiocarpa (DLL) was purified in a single step by affinity chromatography in a Sephadex G‐50 column. DLL haemagglutinated rabbit erythrocytes showing stability even after 1 h of exposure to a different pH values (optimal between pH 6.0 and 8.0) but was inhibited after incubation with d ‐mannose and d ‐glucose. The pure protein possessed a molecular weight of 25 kDa by sodium dodecyl sulfate polyacrylamide gel electrophoresis and 25,410Da by mass spectrometry. The results analyzed by the software SELCON 3 indicate that β‐sheet secondary structures are predominant in DLL (approximately 40.2% antiparallel β‐sheet, 4.6% parallel β‐sheet, 7.2% α‐helices, 17.3% turns, and 28.7% unordered structures). Mechanical activity of isolated aorta from rat measured by cumulative concentration curves of DLL, performed at the contraction plateau induced by phenylephrine in either endothelium‐intact or denuded aorta. DLL (IC50 = 34.12 ± 3.46 µg/ml) relaxed precontracted endothelized aortic rings by 34.61 ± 9.06%, 55.19 ± 11.9%, and 81.33 ± 14.35%, respectively, at 10 µg/ml (initial concentration), 30 µg/ml, and 100 µg/ml (maximum effect). All effects occurred via interaction with lectin domains and participation of nitric oxide. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
Scientific research based on medicinal plants has been highlighted as a complementary treatment to T2DM, stand out the Vochysiaceae family, which have been widely used in folk medicine by traditional South American communities to treat some diseases. Our study aimed to investigate the antioxidant and antiglycation activities of ethanol extracts of leaves (LF) and stem barks (SB) of Vochysiaceae species, evaluated their capacities to inhibit glycoside and lipid hydrolases related to T2DM and molecular identification by HPLC-ESI-MS/MS. Our main findings indicate that the ethanolic extract of four of eight analyzed plants such as LF and SB of Q. grandiflora, Q. parviflora, V. elliptica and Calisthene major exhibited, respectively, potential of α-amylase inhibition (IC50 of LF: 5.7 ± 0.6, 4.1 ± 0.5, 5.8 ± 0.5, 3.2 ± 0.6 and IC50 of SB: 3.3 ± 0.7, 6.2 ± 2.0, 121.0 ± 8.6 and 11.2 ± 2.8 μg/mL), capacities of antioxidant (ORAC of LF: 516.2 ± 0.1, 547.6 ± 4.9, 544.3 ± 6.1, 442.6 ± 2.4 and ORAC of SB: 593.6 ± 22.3, 497.7 ± 0.8, 578 ± 12.3, 593.6 ± 19.5 µmol trolox eq/g; FRAP of LF: 796.1 ± 0.9, 427.7 ± 22.0, 81.0 ± 1.9, 685 ± 37.9 and FRAP of SB: 947.4 ± 24.9, 738.6 ± 24.3, 98.8 ± 7.9, 970.8 ± 13.9 µmol trolox eq/g; DPPH IC50 of LF: 14.2 ± 1.8, 36.3 ± 6.9, 11.8 ± 1.9, 13.3 ± 1.2 and DPPH IC50 of SB: 16.0 ± 3.0, 15.5 ± 1.9, 126.1 ± 23. 6, 5.3 ± 0.3 μg/mL, respectively) and antiglycation (BSA/Frutose IC50 of LF: 43.1 ± 3.4, 52.1 ± 6.0, 175.5 ± 32, 8, 111.8 ± 14.7 and BSA/Frutose IC50 of SB:, 40.1 ± 11.9, 51.2 ± 16. 7, 46.6 ± 5.7, 53.5 ± 13.6 μg/mL) and presence of polyphenols, such as flavonoids and condensed tannins. The extracts presented low ability to inhibit α-glycosidase and lipase enzymes in the initial assays, with values below 40% of inhibition. In BSA/methylglyoxal, only Q. grandiflora SB, V. eliptica LF and V. tucanorum LF showed activity (IC50: 655.5 ± 208.5, 401.9 ± 135.2 and 617.1 ± 80.6 μg/mL, respectively) and only C. major LF and SB, in Arg/methylglyoxal (IC50: 485.1 ± 130.8 and 468.0 ± 150.5 μg/ml, respectively). This study presented new findings about the biological and pharmacological potential of some species of Vochysiaceae family, contributing to the understanding of the action and efficacy in use of these plants, in their management of postprandial hyperglycemia and in glycation and oxidative processes that contribute to managing diabetes mellitus.  相似文献   

14.
Abstract

The antioxidant potential of crude extracts and fractions from leaves of Ouratea parviflora, a Brazilian medicinal plant used for the treatment of inflammatory diseases, was investigated in vitro through the scavenging of radicals 2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH), hydroxyl radical (HO?), superoxide anion (O2??), and lipid peroxidation in rat liver homogenate. The crude extract (CEOP) and hydro-alcoholic fraction (OP4) showed strong inhibitory activity toward lipid peroxidation induced by tert-butyl peroxide (IC50 = 2.3 ± 0.2 and 1.9 ± 0.1 μg/ml, respectively). The same products exhibited a strong concentration-dependent inhibition of deoxyribose oxidation (14.9 ± 0.2 and 0.2 ± 0.1 μg/ml, respectively), and also showed a considerable antioxidant activity against O2??(87.3 ± 0.1 and 73.1 ± 0.4 μg/ml, respectively) and DPPH radicals (55.4 ± 0.3 and 38.3 ± 0.4 μg/ml, respectively). The protective effects of CEOP and OP4 were also studied in mouse liver. CCl4 significantly increased (by 90%) levels of lipid hydroperoxides, carbonyl protein content (64%), DNA damage index (133%), aspartate aminotransferase (261%), alanine aminotransferase (212%), catalase activity (23%), and also caused a decrease of 60% in GSH content. The results showed that CEOP and OP4 exerted cytoprotective effects against oxidative injury caused by CCl4 in rat liver, probably related to the antioxidant activity showed by the in vitro free radical scavenging property.  相似文献   

15.
This study was aimed to investigate the anticancer potential of Euphorbia milii (E. milii) using an exquisite combination of phytopharmacological and advanced computational techniques. The chloroform fraction (Em-C) of E. milii methanol extract showed the highest antioxidant activity (IC50: 6.41 ± 0.99 µg/ml) among all studied fractions. Likewise, Em-C also showed significant cytotoxicity (IC50: 11.2 ± 0.8 µg/ml) when compared with that of standard compound 5-fluorouracil (5-FU) (IC50: 4.22 ± 0.6 µg/ml) against hepatocarcinoma cell line (HepG2). However, in a human cervical cancer cell line (HeLa), Em-C demonstrated a non-significant difference in cytotoxicity (22.1 ± 0.8 µg/ml) when compared with that of 5-FU (IC50: 6.87 ± 0.5 µg/ml). Furthermore, Western blot and qRT-PCR analysis revealed that the suppression of HepG2 cells was the consequence of a tremendous decrease in CDK2 and E2F1 protein expression. The GC–MS analysis of Em-C revealed the unique presence of cyclobarbital (CBT) and benzodioxole derivative (BAN) as major constituents. Furthermore, molecular docking of compounds BAN, CBT, and MBT into the binding site of different molecular targets i.e. cyclin dependent kinase 2 (CDK2), thymidylate synthase (TS), caspase 3, BCL2 and topoisomerase II was carried out. Compounds BAN and CBT have demonstrated remarkable binding affinity towards CDK2 and thymidylate synthase, respectively. Molecular dynamic simulation studies have further confirmed the finding of docking analysis, suggesting that CDK2 and TS can act as an attractive molecular target for BAN and CBT, respectively. It can be concluded that these E. milii phytoconstituents (BAN and CBT) may likely be responsible for anti-invasive activity against HepG2 cells.  相似文献   

16.
Isoflavones genistein and daidzein are nonsteroidal phytoestrogens occurring mainly in soybean foods. These phytoestrogens possess estrogenic properties and show a variety of health benefits as anti‐inflammatory agents. However, the mechanism of their action has not been identified in detail. The aim of this study is to characterize the antioxidant powers of genistein, daidzein and daidzein metabolite–equol through their activities to scavenge superoxide anion radical (O?2?), hydroxyl radical (HO?), 2,2–diphenyl–1‐picrylhydrazyl radical (DPPH?) and hydrogen peroxide (H2O2) using chemiluminescence and spectrophotometry techniques. Potassium superoxide in dimethyl sulphoxide (DMSO) and 18‐crown‐6 ether were used as a source of O?2?. Hydroxyl radicals were produced using the Fenton reaction. In free radical assays, genistein had the IC50 values (an amount of antioxidant concentration required to decrease the initial radical concentration by 50%) 0.391 ± 0.012 mM for O?2?, 0.621 ± 0.028 mM for HO? and 1.89 ± 0.16 mM for DPPH?. The IC50 values for daidzein for these free radicals were 1.924 ± 0.011 mM, 0.702 ± 0.012 mM and 2.81 ± 0.03 mM, respectively. Equol was the most active the free radical scavenger with IC50 = 0.451 ± 0.018 mM for HO? and IC50 = 1.36 ± 0.11 mM for DPPH?. All tested compounds exerted a significant effect on the H2O2: IC50 = 18.1 ± 1.1 μM for genistein, IC50 = 2.1 ± 0.5 μM for daidzein, and IC50 = 1.06 ± 0.2 μM for equol. These findings show that genistein, daidzein and equol are effective free radical scavengers and possess high antioxidant power in vitro. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
In the present study, we aimed to identify the tyrosinase enzyme inhibitory potential of Vinca major L. extract and its secondary metabolites. The extract possessed remarkable tyrosinase enzyme inhibitory effect with IC50 value of 20.39 ± 0.44 µg/mL compared to the positive control, kojic acid (IC50 8.56 ± 0.17 µg/mL). Compounds 1 and 5 were the most potent isolates with IC50 values of 32.41 ± 0.99 and 31.34 ± 0.75 µM, they were more potent than kojic acid (IC50: 60.25 ± 0.54 µM). Compound 2 also exhibited remarkable tyrosinase inhibition with an IC50 value of 64.51 ± 1.29 µM. An enzyme kinetics analysis revealed that 1 was a mixed-type, 2 and 5 were noncompetitive inhibitors. Using molecular docking, we predicted binding affinity and interactions of the compounds, which were in good alignment with a pharmacophore hypothesis generated out of a number of known tyrosinase inhibitors. The modelling studies underlined crucial interactions with the copper ions and residues around them such as Asn260, His263, and Met280.  相似文献   

18.
Jatropha integerrima Jacq. flower extract was used for the synthesis of silver nanoparticles in the current study. Various spectroscopic analyses were used to characterize the synthesized nanoparticles (JIF-AgNPs). The antibacterial efficacy of JIF-AgNPs was studied by well diffusion and microdilution techniques. In addition, the impact of JIF-AgNPs on free radicals was evaluated. On the ultraviolet–visible spectrum, the nanoparticles exhibit the highest absorbance at 422 nm. Based on the Fourier transform infrared spectrum, phenols and amino acids were involved in capping the JIF-AgNPs. Crystalline sphere-shaped nanoparticles with an average size of 50.07 nm and zeta potential of ?19.0 mV were confirmed by X-ray diffraction, transmission electron microscopy, and dynamic light scattering analysis respectively. The JIF-AgNPs exhibit the highest and lowest growth inhibitory activity towards E. coli and B. subtilis. The minimal inhibitory concentration of JIF-AgNPs against E. coli, K. pneumoniae, S. aureus, and B. subtilis were 2.5, 5.0, 5.0, and 7.5 μg/mL, respectively. The JIF-AgNPs exhibited significant radical scavenging activities against DPPH (IC50-32.5 ± 0.06 µg/mL), hydroxyl (IC50-25 ± 0.09 µg/mL), Superoxide (IC50-42.5 ± 0.13 µg/mL), and ABTs (IC50-33.5 ± 0.15 µg/mL). Thus, synthesized nanoparticles were a good alternative to develop an antibacterial and antioxidant agent.  相似文献   

19.
A new series of quinazolinone derivatives containing triazole, thiadiazole, thiosemicarbazide functionalities was synthesized and then screened for their in vitro urease inhibition properties. Most of the compounds showed excellent activity with IC50 values ranging between 1.88 ± 0.17 and 6.42 ± 0.23 µg/mL, compared to that of thiourea (IC50 = 15.06 ± 0.68) and acetohydroxamic acid (IC50 = 21.03 ± 0.94), as reference inhibitors. Among the synthesized molecules, compounds 5c, 5e and 5a showed the best inhibitory effect against urease enzyme with IC50 values of 1.88 ± 0.17 µg/mL, 1.90 ± 0.10 and 1.96 ± 0.07 µg/mL, respectively. Moreover in order to give better understanding of the inhibitory activity of synthesized compounds, molecular docking studies were applied at the target sites of jack bean urease enzyme (JBU). Their binding poses and energy calculations were analyzed using induced fit docking (IFD) and prime-MMGBSA tool. Binding poses of studied compounds were determined using induced fit docking (IFD) algorithms.  相似文献   

20.
A new series of 2,3-disubstituted quinazolin-4(3H)-one compounds including oxadiazole and furan rings was synthesized. Their inhibitory activities on urease were assessed in vitro. All newly synthesized compounds exhibited potent urease inhibitory activity in the range of IC50 = 1.55 ± 0.07–2.65 ± 0.08 µg/mL, when compared with the standard urease inhibitors such as thiourea (IC50 = 15.08 ± 0.71 µg/mL) and acetohydroxamic acid (IC50 = 21.05 ± 0.96 µg/mL). 2,3-Disubstituted quinazolin-4(3H)-one derivatives containing furan ring (3a-e) were found to be the most active inhibitors when compared with the compounds 2a-e bearing oxadiazole ring. Compound 3a, bearing 4-chloro group on phenyl ring, was found as the most effective inhibitor of urease with the IC50 value of 1.55 ± 0.11 µg/mL. The molecular docking studies of the newly synthesized compounds were performed to identify the probable binding modes in the active site of the Jack bean urease (JBU) enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号