首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Acute lung ischemia‐reperfusion injury (ALIRI) is featured as non‐specific alveolar damage, lung edema and hypoxemia, often occurring within 72 h after surgery. It is the leading cause for primary graft failure and mortality after lung surgery and transplantation. Here we aimed to find a more effective therapeutic approach to treat ALIRI. We evaluated the combinational effects of human umbilical cord mesenchymal stem cells (HUMSCs) and angiotensin‐converting enzyme 2 (ACE2) in the rat ALIRI model. HUMSCs were isolated for lentiviral‐ACE2 transfection. Fifty rats were randomly divided into five groups: sham surgery, physiological saline (PS), ACE2, HUMSCs and HUMSCs‐ACE2 group. Several physiological, biochemical and histological indicators were examined and compared among the five groups, such as blood oxygen saturation (Sat O2%) and right ventricular systolic blood pressure (RVSBP), pulmonary morphology observations, several kinds of cell markers and the abundance of glutathione reductase (GR), glutathione peroxidase (GPX) and NAD(P)H quinone oxidoreductase (NQO1). Compared with HUMSCs and ACE2 groups, HUMSCs‐ACE2 group showed lighter lung injuries, higher CD31 and vWF expression (endothelial cell surface markers), lower γ‐H2AX (DNA damage marker) and CD68 (inflammatory cell marker) and higher anti‐oxidants expression (GR, GPX and NQO1). The results indicated that HUMSCs harbouring ACE2 were more effective than either HUMSCs or ACE2 alone in alleviating the ALIRI damages. The synergistic effects of HUMSCs and ACE2 provide informative clues for mechanism study and therapeutic method development of ALIRI. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.

Background

Acute kidney injury (AKI) is a common clinical problem raising the urgent needs to develop new strategies for treatment. The present study investigated the therapeutic potential of human umbilical cord – mesenchymal stem cells (HUC-MSCs) transplantation against renal ischemia/reperfusion injury (IRI) in rats.

Methods

Twenty four male Wistar rats were assigned into two main groups, sham group (control group) and I/R group. I/R group was injected in the tail vein with either phosphate buffer saline (PBS) or HUC-MSCs.

Results

The HUC-MSCs improved kidney injury induced by I/R as demonstrated by enhancement of the kidney function via decreasing serum levels of creatinine, urea and uric acid. The therapeutic efficacy of HUC-MSCs were found to be mediated through anti-oxidant activity as indicated by significant reduction in total malondialdehyde (MDA) and significant increment in the levels of reduced glutathione (GSH), catalase (CAT) and glutathione-S-transferase (GST).

Conclusion

The present work suggests that HUC-MSCs may be an effective therapeutic agent against renal IRI. The recorded data showed improvement of renal functions and urine albumin in HUC-MSCs than IRI group with positive antioxidant efficacy of HUC-MSCs through scavenging free radicals and supporting the antioxidant enzymes.  相似文献   

3.
4.
5.
6.
Recent studies have demonstrated that mesenchymal stem cells could differentiate into germ cells under appropriate conditions. We sought to determine whether human umbilical cord Wharton's jelly‐derived mesenchymal stem cells (HUMSCs) could form germ cells in vitro. HUMSCs were induced to differentiate into germ cells in all‐trans retinoic acid, testosterone and testicular‐cell‐conditioned medium prepared from newborn male mouse testes. HUMSCs formed “tadpole‐like” cells after induction with different reagents and showed both mRNA and protein expression of germ‐cell‐specific markers Oct4 (POUF5), Ckit, CD49f (α6), Stella (DDPA3), and Vasa (DDX4). Our results may provide a new route for reproductive therapy involving HUMSCs and a novel in vitro model to investigate the molecular mechanisms that regulate the development of the mammalian germ lineage. J. Cell. Biochem. 109: 747–754, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

7.
目的评价脐带间充质干细胞(hUC-MSCs)对内毒素血症诱发的大鼠急性肝功能损伤的影响及其与凋亡机制的关系。 方法6周龄雄性SD大鼠18只,随机分为3组,分别是对照组(C组)、内毒素血症组(M组)和内毒素血症+hUC-MSCs治疗组(M+cells组),每组6只。大鼠腹腔注射5 mg/kg脂多糖(LPS)诱导内毒素血症模型,并经尾静脉注射含20×106个hUC- MSCs。4 h时检测血清谷草转氨酶(AST)和谷丙转氨酶(ALT),ELISA方法检测肿瘤坏死因子(TNF-α)、白细胞介素6(IL-6),HE常规染色鉴定肝脏组织病理,Western Blot法检测肝脏组织抗凋亡蛋白Bcl-2、促凋亡蛋白Bax、凋亡信号调节激酶1(ASK1)、应激活化蛋白激酶即JUN氨基末端激酶(JNK)蛋白的表达。多组间比较采用单因素方差分析,相关分析选用pearson。 结果(1)C组AST、ALT、TNF-α和IL-6浓度分别为(74.66±6.39)U/ L、(40.07±6.07)U/ L、(37.74±3.08)ng/L和(0.42±0.07)ng/L;与M组比较(310.75±9.13)U/L、(107.04±10.04)U/ L、(160.32±4.88)ng/L和(0.90±0.09)ng/L,差异具有统计学意义(P均 < 0.05),M组AST、ALT、TNF-α、IL-6浓度分别为(310.75±9.13)U/L、(107.04±10.04)U/ L、(160.32±4.88)ng/ L和(0.90±0.09)ng/L,与M+cells组比较(204.49±15.36)U/L、(71.24± 7.34)U/ L、(117.61±9.37)ng/ L和(0.60±0.10)ng/L,差异具有统计学意义(P均 < 0.05)。(2)C组大鼠肝细胞形态正常,可见肝小叶结构清晰,肝汇管区无炎性细胞浸润,M组大鼠肝小叶散在点状坏死肝细胞伴炎性浸润,肝细胞间隙散布增生的Kuffer细胞,M+cells组大鼠肝小叶炎性细胞浸润及肝细胞间隙Kuffer细胞浸润改善。(3)与C组比较,M组大鼠肝脏组织JUN、ASK1和Bax蛋白表达均增高(P均 < 0.05),Bcl-2蛋白表达降低(P < 0.05);与M组比较,M+cells组大鼠肝脏组织JUN、ASK1和Bax蛋白表达降低(P均 < 0.05),Bcl-2蛋白增加(P < 0.05)。(4)单因素相关分析显示大鼠血清ALT、AST与TNF-a指数呈正相关(r值分别为0.9580、0.9865,P均< 0.05),大鼠血清ALT、AST与IL-6指数呈正相关(r值分别为0.9892、0.9630,P均 < 0.05),大鼠血清ALT、AST分别与BAX、ASK1、JNK指数均呈正相关(r值分别为0.9993、0.9851、0.7901、0.9864、0.9557、0.7128,P均 < 0.05),大鼠血清ALT、AST分别与BCL-2指数均呈负相关(r值分别为-0.8824、-0.9338,P均 < 0.05),大鼠血清TNF-α分别与BAX、ASK1、JNK指数均呈正相关(r值分别为0.9466、0.8958、0.6025,P均< 0.05),大鼠血清TNF-α与BCL-2指数呈负相关(r = -0.6025,P均 < 0.05),大鼠血清IL-6分别与BAX、ASK1、JNK指数均呈正相关(r值分别为0.9941、0.9997、0.8679,P均< 0.05),大鼠血清IL-6与BCL-2指数呈负相关(r = -0.8078,P均 < 0.05)。 结论hUC-MSCs具有减轻内毒素血症大鼠急性肝功能损伤的作用,其机制与抑制肝脏细胞凋亡相关。  相似文献   

8.
9.
10.
Bone marrow‐derived mesenchymal stem cells (BMSCs) could modulate inflammation in experimental lung injury. On the other hand, adrenergic receptor agonists could increase DNA synthesis of stem cells. Therefore, we investigated the therapeutic role of adrenaline‐stimulated BMSCs on lipopolysaccharide (LPS)‐induced lung injury. BMSCs were cultured with adrenergic receptor agonists or antagonists. Suspensions of lung cells or sliced lung tissue from animals with or without LPS‐induced injury were co‐cultured with BMSCs. LPS‐stimulated alveolar macrophages were co‐cultured with BMSCs (with adrenaline stimulation or not) in Transwell for 6 hrs. A preliminary animal experiment was conducted to validate the findings in ex vivo study. We found that adrenaline at 10 μM enhanced proliferation of BMSCs through both α‐ and β‐adrenergic receptors. Adrenaline promoted the migration of BMSCs towards LPS‐injured lung cells or lung tissue. Adrenaline‐stimulated BMSCs decreased the inflammation of LPS‐stimulated macrophages, probably through the expression and secretion of several paracrine factors. Adrenaline reduced the extent of injury in LPS‐injured rats. Our data indicate that adrenaline‐stimulated BMSCs might contribute to the prevention from acute lung injury through the activation of adrenergic receptors, promotion of proliferation and migration towards injured lung, and modulation of inflammation.  相似文献   

11.
目的探讨人脐带间充质干细胞(hUCMSCs)对初发1型非肥胖型糖尿病(NOD)小鼠肝脏损伤的保护作用。 方法雌性NOD小鼠共33只,饲养9周后,将成模的21只小鼠随机分为糖尿病组和干细胞组,每组10只,其中干细胞(MSCs)组发病后第3天尾静脉注射hUCMSCs 1?次;另取10只未发病小鼠为正常对照组。各组小鼠每周检测随机血糖(GLU)水平,8周后处死小鼠,取肝脏,HE染色后观察肝脏结构改变,ELISA法检测糖基化终末产物(AGEs)水平,Real-time PCR法检测糖基化终末产物受体(RAGE)、NF-κB P65、白细胞介素6(IL-6)、肿瘤坏死因子α(TNF-α) mRNA的表达水平。采用单因素方差分析和SNK-q检验进行统计学分析。 结果MSCs治疗8周后,MSCs组小鼠随机血糖(8.46±1.37)mmol/L比T1DM组(32.82±0.59)?mmol/L降低,差异具有统计学意义(P < 0.05)。同时T1DM组肝脏细胞形态异常,炎症细胞浸润,而MSCs组的较T1DM组明显改善。MSCs组小鼠肝脏组织的AGEs浓度(0.72±0.10)μg/ml低于T1DM组(1.35±0.22)μg/ml;同时MSCs组的NF-κB P65、IL-6、TNF-α、RAGE mRNA水平(分别为10.08±1.94、9.31±1.67、11.92±1.82、3.87±0.27),均低于T1DM组(分别为15.46±3.09、18.04±1.69、22.12±3.23、5.12±0.26),差异具有统计学意义(P < 0.05)。 结论hUCMSCs可以降低糖尿病小鼠血糖水平,改善肝脏微观病理状态,降低AGEs浓度及某些炎性因子的水平以减轻肝脏损伤。  相似文献   

12.
13.
This study was designed to investigate the effect of platelet‐derived growth factor (PDGF) on the proliferation of human umbilical cord mesenchymal stem cells (UC‐MSCs) and further explore the mechanism of PDGF in promoting the proliferation of UC‐MSCs. The human UC‐MSCs were treated with different concentrations of PDGF, and the effects were evaluated by counting the cell number, the cell viability, the expression of PDGF receptors analyzed by RT‐PCR, and the detection of the gene expression of cell proliferation, cell cycle and pluripotency, and Brdu assay by immunofluorescent staining and Quantitative real‐time (QRT‐PCR). The results showed that PDGF could promote the proliferation of UC‐MSCs in vitro in a dose‐dependent way, and 10 to 50 ng/ml PDGF had a significant proliferation effect on UC‐MSCs; the most obvious concentration was 50 ng/ml. Significant inhibition on the proliferation of UC‐MSCs was observed when the concentration of PDGF was higher than 100 ng/ml, and all cells died when the concentration reached 200 ng/ml PDGF. The PDGF‐treated cells had stronger proliferation and antiapoptotic capacity than the control group by Brdu staining. The expression of the proliferation‐related genes C‐MYC, PCNA and TERT and cell cycle–related genes cyclin A, cyclin 1 and CDK2 were up‐regulated in PDGF medium compared with control. However, pluripotent gene OCT4 was not significantly different between cells cultured in PDGF and cells analyzed by immunofluorescence and QRT‐PCR. The PDGF could promote the proliferation of human UC‐MSCs in vitro. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
Human umbilical cord mesenchymal stem cell‐derived exosomes (hucMSC‐exosomes) have been implicated as a novel therapeutic approach for tissue injury repair and regeneration, but the effects of hucMSC‐exosomes on coxsackievirus B3 (CVB3)‐induced myocarditis remain unknown. The object of the present study is to investigate whether hucMSC‐exosomes have therapeutic effects on CVB3‐induced myocarditis (VMC). HucMSC‐exosomes were identified using nanoparticle tracking analysis (NTA), transmission electron microscopy (TEM) and Western blot. The purified hucMSC‐exosomes tagged with PKH26 were tail intravenously injected into VMC model mice in vivo and used to administrate CVB3‐infected human cardiomyocytes (HCMs) in vitro, respectively. The effects of hucMSC‐exosomes on myocardial pathology injury, proinflammatory cytokines and cardiac function were evaluated through haematoxylin and eosin (H&E) staining, quantitative polymerase chain reaction (qPCR) and Doppler echocardiography. The anti‐apoptosis role and potential mechanism of hucMSC‐exosomes were explored using TUNEL staining, flow cytometry, immunohistochemistry, Ad‐mRFP‐GFP‐LC3 transduction and Western blot. In vivo results showed that hucMSC‐exosomes (50 μg iv) significantly alleviated myocardium injury, shrank the production of proinflammatory cytokines and improved cardiac function. Moreover, in vitro data showed that hucMSC‐exosomes (50 μg/mL) inhibited the apoptosis of CVB3‐infected HCM through increasing pAMPK/AMPK ratio and up‐regulating autophagy proteins LC3II/I, BECLIN‐1 and anti‐apoptosis protein BCL‐2 as well as decreasing pmTOR/mTOR ratio, promoting the degradation of autophagy flux protein P62 and down‐regulating apoptosis protein BAX. In conclusion, hucMSC‐exosomes could alleviate CVB3‐induced myocarditis via activating AMPK/mTOR‐mediated autophagy flux pathway to attenuate cardiomyocyte apoptosis, which will be benefit for MSC‐exosome therapy of myocarditis in the future.  相似文献   

15.
Human umbilical cord mesenchymal stem cells (hUC‐MSCs) transplantation has been shown to promote regeneration and neuroprotection in central nervous system (CNS) injuries and neurodegenerative diseases. To develop this approach into a clinical setting it is important to be able to follow the fates of transplanted cells by noninvasive imaging. Neural precursor cells and hematopoietic stem cells can be efficiently labeled by superparamagnetic iron oxide (SPIO) nanoparticle. The purpose of our study was to prospectively evaluate the influence of SPIO on hUC‐MSCs and the feasibility of tracking for hUC‐MSCs by noninvasive imaging. In vitro studies demonstrated that magnetic resonance imaging (MRI) can efficiently detect low numbers of SPIO‐labeled hUC‐MSCs and that the intensity of the signal was proportional to the number of labeled cells. After transplantation into focal areas in adult rat spinal cord transplanted SPIO‐labeled hUC‐MSCs produced a hypointense signal using T2‐weighted MRI in rats that persisted for up to 2 weeks. This study demonstrated the feasibility of noninvasive imaging of transplanted hUC‐MSCs. J. Cell. Biochem. 108: 529–535, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

16.
MiRNAs contribute greatly to epithelial to mesenchymal transition (EMT) of peritoneal mesothelial cells (PMCs), which is a crucial step in peritoneal fibrosis (PF). In this study, we tried to profile whether miRNA expression differences exist after human umbilical cord mesenchymal stem cells (hUCMSCs) treatment in PF rats and investigate the possible role of miR‐153‐3p involved in anti‐EMT process. We randomly assigned 34 rats into three groups: control group (Group Control), MGO‐induced PF rats (Group MGO) and hUCMSCs‐treated rats (Group MGO + hUCMSCs). MiRNA microarrays and real‐time PCR analyses were conducted in three groups. α‐SMA, Snail1 and E‐cadherin expression were detected by Western blot. Luciferase reporter assays were used to detect the effects of miR‐153‐3p overexpression on Snai1 in rat peritoneal mesothelial cells (RPMCs). We identified differentially expressed miRNAs related to EMT, in which miR‐153‐3p demonstrated the greatest increase in Group MGO + hUCMSCs. Transient cotransfection of miR‐153‐3p mimics with luciferase expression plasmids resulted in a significant repression of Snai1 3′‐untranslated region luciferase activity in RPMCs. These studies suggest that miR‐153‐3p is a critical molecule in anti‐EMT effects of hUCMSCs in MGO‐induced PF rats. MiR‐153‐3p might exert its beneficial effect through directly targeting Snai1.  相似文献   

17.
The aim of this study was to explore the curative effect of differentiated human umbilical cord–derived mesenchymal stem cells (hUC‐MSCs) transplantation on rat of advanced Parkinson disease (PD) model. Human umbilical cord–derived mesenchymal stem cells were cultured and induced differentiation in vitro. The PD rats were established and allocated randomly into 2 groups: differentiated hUC‐MSCs groups and physiological saline groups (the control group). Rotation test and immunofluorescence double staining were done. The result showed that hUC‐MSCs could differentiate into mature dopamine neurons. Frequency of rotation was significantly less in differentiated hUC‐MSCs groups than in normal saline group. After we transplanted these cells into the unilateral lesioned substantia nigra induced by striatal injection of 6‐hydroxydopamine and performed in the medial forebrain bundle and ventral tegmental area, nigral tyrosine hydroxylase–positive cells were observed and survival of at least 2 months. In addition, transplantation of hUC‐MSCs could make an obviously therapeutic effect on PD rats.  相似文献   

18.
19.
hUCB‐MSC (human umbilical cord blood‐derived mesenchymal stem cells) offer an attractive alternative to bone marrow‐derived MSC for cell‐based therapy by being less invasive a source of biological material. We have evaluated the effect of hUCB‐MSC on the proliferation of K562 (an erythromyeloblastoid cell line) and the cytokine secretion pattern of hUCB‐MSC. Co‐culturing of hUCB‐MSC and K562 resulted in inhibition of proliferation of K562 in a dose‐dependent manner. However, the anti‐proliferative effect was reduced in transwells, suggesting the importance of direct cell‐to‐cell contact. hUCB‐MSC inhibited proliferation of K562, arresting them in the G0/G1 phase. NO (nitric oxide) was not involved in the hUCB‐MSC‐mediated tumour suppression. The presence of IL‐6 (interleukin 6) and IL‐8 were obvious in the hUCB‐MSC conditioned media, but no significant increase was found in 29 other cytokines. Th1 cytokines, IFNα (interferon α), Th2 cytokine IL‐4 and Th17 cytokine, IL‐17 were not secreted by hUCB‐MSC. There was an increase in the number of hUCB‐MSC expressing the latent membrane‐bound form of TGFβ1 co‐cultured with K562. The anti‐proliferative effect of hUCB‐MSC was due to arrest of the growth of K562 in the G0/G1 phase. The mechanisms underlying increased IL‐6 and IL‐8 secretion and LAP (latency‐associated peptide; TGFβ1) by hUCB‐MSC remains unknown.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号