首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report the kinetic characterization of an ecto-nucleosidetriphosphate diphosphohydrolase 1 from rat osseous plate membranes in streptozotocin-induced diabetic rats, which arises during ectopic mineralization twenty days after a subcutaneous implantation of demineralized bone matrix, Insulin deficiency decreased the ecto-nucleoside triphosphate diphosphohydrolase activity from 1293.1 +/- 39.8 (control rats) to 556.0 +/- 8.2 nmol Pi/(min mg). Two families of ATP hydrolyzing sites showed cooperative effects with specific activities of 256.2 +/- 7.7 nmol Pi/(min mg) and 299.8 +/- 8.9 nmol Pi/(min mg), and studies on the stimulation of the enzyme by magnesium and calcium ions showed that the decrease in enzyme activity results from changes in the affinity of the enzyme for these ions. To our knowledge this is the first study associating the effects of type I diabetes with an ecto-nucleoside triphosphate diphosphohydrolase activity from rat osseous plate membranes.  相似文献   

2.
Ecto-nucleotidases are enzymes of hydrolase class. They split extracellular nucleoside tri- and diphosphate. In this review a short history of these enzymes investigation, classification, structure, and functional significance of ecto-nucleoside triphosphate diphosphohydrolases (E-NTPDase) has been presented. These enzymes are glycoproteins anchored in membranes. They do not form phosphorylated enzyme's form during catalytic circle, and (by analogy with membrane-bound ATPases) form homooligomeric ensembles. Activity of these enzymes depends on bivalent ions, in particular Ca2+ and Mg2+. E-NTPDases function in the composition of ecto-nucleotidase cascade that contains other nucleotide-hydrolyzing enzymes. They regulate P2-receptors by hydrolyzing its ligand specifically ATP. Both modern information and results of our investigation about influence of different endo- and exogenous factors on activity of these enzymes has been presented.  相似文献   

3.
1. Alkaline phosphatase from rat osseous plate catalyzed the transfer of phosphate from p-nitrophenylphosphate to glycerol, ethanolamines, Tris, glucose and 1-amino-1-methyl-2-propanol, in a wide range of pH. Serine did not stimulate phosphotransferase activity of the enzyme. 2. The best phosphotransferase acceptors were diethanolamine and glycerol while glucose was the poorest phosphotransferase acceptor used. 3. Diethanolamine and glycerol affected both VM and KM of p-nitrophenylphosphate hydrolysis with activation constants (KA) of 0.25 and 0.85 M, respectively. 4. A kinetic model was proposed for the phosphotransferase reaction observed with alkaline phosphatase from rat osseous plates.  相似文献   

4.
This study aimed to characterize the activity of ectonucleoside triphosphate diphosphohydrolase (E‐NTPDase; EC 3.6.1.5) in peritoneal cavity cells from BALB/c mice. E‐NTPDase was activated in the presence of both calcium (1.5mM) and magnesium (1.5mM) ions. However, the activity was higher in the presence of Ca2+. A pH of 8.5 and temperature of 37°C were the optimum conditions for catalysis. The apparent Km values were 0.51mM and 0.66mM for the hydrolysis of adenosine triphosphate (ATP) and adenosine diphosphate (ADP), respectively. The Vmax values were 136.4 and 120.8 nmol Pi/min/mg of protein for ATPase and ADPase activity, respectively. Nucleotide hydrolysis was inhibited in the presence of sodium azide (20mM, ATP: P < .05; ADP: P < .001), sodium fluoride (20mM; ATP and ADP: P < .001), and suramin (0.3mM; ATP: P < .01; ADP: P < .05), which is a known profile for NTPDase inhibition. Although all of the diphosphate and triphosphate nucleotides that were tested were hydrolyzed, enzyme activity was increased when adenine nucleotides were used as substrates. Finally, we stress that knowledge of the E‐NTPDase catalytic biochemical properties in mouse peritoneal cavity cells is indispensable for properly determining its activity, as well as to fully understand the immune response profile in both healthy and sick cells.  相似文献   

5.
S-2-(3 aminopropylamino) ethylphosphorothioic acid (WR-2721) shown to surpass radical scavenging thiols in their radioprotective efficacy in cancer-type diseases has been tested for its protective potential in the reperfused heart. We investigated the radical scavenger properties of the compound in a radical generating systemin vitro as well as in isolated rat hearts subjected to 30 min ischaemia and 30 min reperfusion with the electron-paramagnetic resonance spin trap technique. The action on high-energy phosphates is observed by means of phosphorus-31 nuclear magnetic resonance (NMR) spectroscopy while its influence on left ventricular systolic segmental length change (SSLC) during 60 min reperfusion following 60 min regional ischaemia was assessed with a fibreoptic system in anaesthetized open-chest rats. WR-2721 (0.1 mM) reduced the vascular concentration of radical adduct in isolated hearts by up to 78% (275±84% of pre-ischaemic baseline values vs 1260±413%, p<0.05) between 5 and 12.5 min reperfusion. This was accompanied by a reduction of the left ventricular end diastolic pressure to pre-ischaemic values at 30 min of reperfusion (9±6 mmHg vs 42±8 mmHg in the absence of WR-2721, p<0.02). An accelerated recovery of creatine phosphate levels (78±5% of pre-ischaemia values vs 41±5% within 60 min reperfusion; p<0.05) was observed under similar conditions with NMR-spectroscopy, although the post-ischaemic tissue content of adenosine triphosphate was not affected. The administration of WR-2721 (0.5 mmol/kg body weight) ledin situ to an accelerated restoration of contractile activity in the post-ligated left ventricular area reflected by the post-ischaemic recovery of SSLC (64±10% of pre-ischaemic values compared with 27±6% in control animals 60 min following reperfusion; p<0.02). The present data confirm an effective reduction in the exposure of the reperfused heart to endogenously released free radicals by WR-2721, a partial preservation of high-energy phosphates and an improvement in post-ischaemic contractility and encourage further investigation of such favourable action in injured myocardium.  相似文献   

6.
Nucleoside triphosphate diphosphohydrolase 3 (NTPDase3) is a cell surface, membrane-bound enzyme that hydrolyzes extracellular nucleotides, thereby modulating purinergic signaling. An alternatively spliced variant of NTPDase3 was obtained and analyzed. This alternatively spliced variant, termed "NTPDase3beta", is produced through the use of an alternative terminal exon (exon 11) in place of the terminal exon (exon 12) in the full-length NTPDase3, now termed "NTPDase3alpha". This results in an expressed protein lacking the C-terminal cytoplasmic sequence, the C-terminal transmembrane helix, and apyrase conserved region 5. The cDNA encoding this truncated splice variant was detected in a human lung library by PCR. Like the full-length NTPDase3alpha, the alternatively spliced NTPDase3beta was expressed in COS cells after transfection, but only the full-length NTPDase3alpha is enzymatically active and properly trafficked to the plasma membrane. However, when the truncated NTPDase3beta was co-transfected with full-length NTPDase3alpha, there was a significant reduction in the amount of NTPDase3alpha that was properly processed and trafficked to the plasma membrane as active enzyme, indicating that the truncated form interferes with normal biosynthetic processing of the full-length enzyme. This suggests a role for the NTPDase3beta variant in the regulation of NTPDase3 nucleotidase activity, and therefore the control of purinergic signaling, in those cells and tissues expressing both NTPDase3alpha and NTPDase3beta.  相似文献   

7.
Nucleoside triphosphate diphosphohydrolase--NTPDase1 (apyrase, EC 3.6.1.5) was modeled based on sequence homology. The single polypeptide chain of apyrase is folded into two domains. The putative catalytic site with the apyrase conserved regions (ACR 1-5) is located between these two domains. Modeling confirmed that apyrase belongs to the actin superfamily of proteins. The amino acids interacting with the nucleoside triphosphate substrate and probably involved in the catalyzed hydrolysis were identified. The proposed two-step catalytic mechanism of hydrolysis involves Thr127 and Thr55 as potential nucleophilic factors responsible for the cleavage of the Pgamma and Pbeta anhydride bonds, respectively. Their action seems to be assisted by Glu170 and Glu78 residues, respectively. The presence of two nucleophiles in the active site of apyrase explains the differences in the hydrolytic activity between apyrases and other enzymes belonging to the NTPDase family.  相似文献   

8.
In the present report we describe an apyrase (ATP diphosphohydrolase, EC 3.6.1.5) in rat blood platelets. The enzyme hydrolyses almost identically quite different nucleoside di- and triphosphates. The calcium dependence and pH requirement were the same for the hydrolysis of ATP and ADP and the apparent Km values were similar for both Ca2+-ATP and Ca2+-ADP as substrates. Ca2+-ATP and Ca2+-ADP hydrolysis could not be attributed to the combined action of different enzymes because adenylate kinase, inorganic pyrophosphatase and nonspecific phosphatases were not detected under our assay conditions. The Ca2+-ATPase and Ca2+-ADPase activity was insensitive to ATPase, adenylate kinase and alkaline phosphatase classical inhibitors, thus excluding these enzymes as contaminants. The results demonstrate that rat blood platelets contain an ATP diphosphohydrolase involved in the hydrolysis of ATP and ADP which are vasoactive and platelet active adenine nucleotides.  相似文献   

9.
Here we described an nucleoside triphosphate diphosphohydrolase (NTPDase) activity in living trophozoites of Trichomonas gallinae. The enzyme hydrolyzes a variety of purine and pyrimidine nucleoside di- and triphosphates in an optimum pH range of 6.0-8.0. This enzyme activity was activated by high concentrations of divalent cations, such as calcium and magnesium. Contaminant activities were ruled out because the enzyme was not inhibited by classical inhibitors of ATPases (ouabain, 5.0 mM sodium azide, oligomycin) and alkaline phosphatases (levamisole). A significant inhibition of ATP hydrolysis (38%) was observed in the presence of 20 mM sodium azide. Sodium orthovanadate inhibited ATP and ADP hydrolysis (24% and 78%), respectively. The apparent K(M) (Michaelis constant) values were 667.62+/-13 microM for ATP and 125+/-5.3 microM for ADP. V(max) (maximum velocity) values were 0.44+/-0.007 nmol Pi min(-1) per 10(6) trichomonads and 0.91+/-0.12 nmol Pi min(-1) per 10(6) trichomonads for ATP and ADP, respectively. Moreover, we showed a marked decrease in ATP, ADP and AMP hydrolysis when the parasites were grown in the presence of penicillin and streptomycin. The existence of an NTPDase activity in T. gallinae may be involved in pathogenicity, protecting the parasite from the cytolytic effects of the extracellular nucleotides.  相似文献   

10.
1. Metal ions other than zinc and magnesium were effective in modulating the activity of rat osseous plate alkaline phosphatase. 2. Increasing pH had remarkable effects on the modulation of rat osseous plate alkaline phosphatase. 3. The modulation of enzyme activity by zinc, manganese and cobalt ions was slightly affected by pH variations. 4. Zinc ions were stimulatory for the enzyme at very low concentrations (50 nM). Above 50 nM zinc ions inhibited the enzyme by displacing magnesium ions. 5. Calcium ions were inhibitors of alkaline phosphatase (Kd = 10 microM) whereas manganese (Kd = 1.3 microM) and cobalt (Kd = 0.2 microM) ions were stimulatory in the pH range 8.0-10.0.  相似文献   

11.
In the present report we describe an ATP diphosphohydrolase (apyrase EC 3.6.1.5) in rat cardiac sarcolemma. It is Ca2+ dependent and is insensitive to ouabain, orthovanadate, N-ethylmaleimide (NEM), lanthanum, and oligomycin that are classical ATPase inhibitors. Sodium azide that is a mitochondrial inhibitor at low concentrations, did not affect the enzyme activity at 5.0 mM or below. In contrast, at high concentrations (> 10 mM) sodium azide inhibited the enzyme. Levamisole, a specific inhibitor of alkaline phosphatase and P1, P5-di(adenosine 5-)pentaphosphate (Ap5A), a specific inhibitor of adenylate kinase did not inhibit the enzyme. Mercury chloride showed a parallel inhibition of the hydrolysis of both substrates of apyrase. Similar inhibition profiles are powerful evidence for a common catalytic site for the hydrolysis of both substrates. The enzyme has an optimum pH range of 7.5–8.0 and catalyzes the hydrolysis of triphospho- and diphosphonucleosides other than ATP or ADP. The apparent Km (Michaelis constant) and Vmax (maximal velocity) are 62.1 ± 5.2 M and 1255.7 ± 178 mol inorganic phosphate liberated/min/mg with ATP and 59.4 ± 4.3 M and 269.2 ± 39 mol inorganic phosphate liberated/min/mg with ADP. Enzyme markers indicated that this apyrase is associated with the plasma membrane. A deposition of lead phosphate granules on the outer surface of the sarcolemmal vesicles was observed by electron microscopy in the presence of either ATP or ADP as substrate. It is suggested that the ATP diphosphohydrolase could regulate the concentration of extracellular adenosine, and thus is important in the control of vascular tone and coronary flow.  相似文献   

12.
Alkaline phosphatase activity in extracts of testes of sexually immature (13 days old) and sexually mature rats has been characterized by its heat sensitivity, the extent of inhibition by homoarginine and phenylalanine, and by polyacrylamide gel electrophoresis. The testicular enzyme appears to be a liver-bone-kidney-type alkaline phosphatase. There are no significant differences in the properties of the enzyme from animals of these two ages. Spermatocytes and early spermatids contain very little alkaline phosphatase activity; the specific activity of a nonflagellate germinal cell suspension is only 1/20th that of the whole testis. Since the constant level of activity in immature and mature animals is not consistent with the enzyme activity being present only in late spermatids, we conclude that the majority of the testicular enzyme is present in nongerminal cells. The presence of alkaline phosphatase in plasma membrane purified from testes of adult rats was demonstrated.  相似文献   

13.

Background  

Based on its distribution in the brain, ecto-nucleoside triphosphate diphosphohydrolase 3 (NTPDase3) may play a role in the hypothalamic regulation of homeostatic systems, including feeding, sleep-wake behavior and reproduction. To further characterize the morphological attributes of NTPDase3-immunoreactive (IR) hypothalamic structures in the rat brain, here we investigated: 1.) The cellular and subcellular localization of NTPDase3; 2.) The effects of 17β-estradiol on the expression level of hypothalamic NTPDase3; and 3.) The effects of NTPDase inhibition in hypothalamic synaptosomal preparations.  相似文献   

14.
The binding and phospholipase A2 activity of an 11,000-dalton beta-bungarotoxin, isolated from Bungarus multicincutus venom, have been characterized using rat brain subcellular fractions as substrates. 125I-labeled beta-bungarotoxin binds rapidly (k = 0.14 min-1 and 0.11 min-1), saturably (Vmax = 130.1 +/- 5.0 fmoles/mg and 128.2 +/- 7.1) fmoles/mg), and with high affinity (apparent Kd = 0.8 +/- 0.1 nM and 0.7 +/- 0.1 nM) to rat brain mitochondria and synaptosomal membranes, respectively, but not to myelin. The binding to synaptosomal membranes is inhibited by divalent cations and by pretreatment with trypsin. The binding results suggest that the toxin binds to specific protein receptor sites on presynpatic membranes. The 11,000-dalton toxin rapidly hydrolyzes synaptosomal membrane phospholipids to lysophosphatides and manifests relative substrate specificity in the order phosphatidyl ethanolamine greater than phosphatidyl choline greater than phosphatidyl serine. These results indicate that the 11,000-dalton beta-bungarotoxin is a phospholipase A2 and can use presynaptic membrane phospholipids as substrates. The binding, phospholipase activity and other biological properties of the 11,000-dalton toxin are contrasted with those of the beta-bungarotoxin found in highest concentration in the venom (the 22,000-dalton beta-bungarotoxin), and the two toxins are shown to have qualitatively similar properties. Finally the results are shown to support the hypothesis that beta-bungarotoxins act in a two-step fashion to inhibit transmitter release: first, by binding to a protein receptor site on the presynatic membrane associated with Ca2+ entry, and second, by perturbing through enzymatic hydrolyses the phospholipid matrix of the membrane and thereby causing an increase in passive Ca2+ permeability.  相似文献   

15.
N-linked glycosylation is important for the function, cellular localization, and oligomerization of membrane-bound ecto-nucleoside triphosphate diphosphohydrolases (eNTPDases). NTPDase3 is a prototypical cell membrane-associated eNTPDase, which is equally related and enzymatically intermediate to the other two cell surface membrane NTPDases (NTPDase1 and 2). The protein sequence of NTPDase3 contains seven putative N-glycosylation sites located in the ecto-domain. Only one of these putative glycosylation sites, asparagine 81 in NTPDase3, which is located near apyrase conserved region 1 (ACR1), is invariant in all the cell surface membrane eNTPDases. Using site-directed mutagenesis, mutants were constructed to eliminate this highly conserved N-glycosylation site in NTPDase3. The results indicate that glycosylation at this position is essential for full enzymatic activity, with mutant ATPase activity decreased more than ADPase activity. Enzymatic deglycosylation of this site is shown to be responsible for the inactivation of the wild-type enzyme by treatment with peptide N-glycosidase-F. In addition, glycosylation of this conserved site is necessary for the stabilization/stimulation of nucleotidase activity upon treatment with the lectin concanavalin A. However, lack of glycosylation at this site did not result in large changes in tertiary or quaternary structure, as measured by Cibacron blue binding, chemical cross-linking, and native gel electrophoretic analysis. Since this N-glycosylation site is invariant in cell membrane eNTPDases, it is postulated that glycosylation of this residue near ACR1 is crucial for full enzymatic activity of the cell membrane NTPDases.  相似文献   

16.
Ivanenkov VV  Meller J  Kirley TL 《Biochemistry》2005,44(25):8998-9012
Cell-surface nucleotidases (NTPDases) contain 10 invariant cysteine residues in their extracellular regions. To investigate disulfide structure in human NTPDase3, we made single and double mutants of these 10 cysteines, and analyzed their enzymatic activity, glycosylation pattern, trafficking to the cell membrane, and sensitivity to reduction. The mutants constituted five distinct phenotypes, thus, strongly suggesting disulfide bonds between C92-C116 (first bond), C261-C308 (second bond), C289-C334 (third bond), C347-C353 (fourth bond), and C399-C422 (fifth bond). Due to conservation of the 10 cysteines, the identified five disulfide bonds are likely to exist in all cell-surface NTPDases. The third and fifth bonds are also present in the soluble NTPDases and are critical for processing, trafficking, and enzymatic activity. The fourth bond has minimal effect on processing and function, while the first and second bonds are of intermediate importance. Most of the N-linked glycosylation sites in the wild-type enzyme are processed to complex oligosaccharides, but at least one site is high-mannose or hybrid in structure. Interestingly, disruption of the first disulfide bond resulted in some enzyme that lost sensitivity to endoglycosidase H, suggesting that the first disulfide bond in the wild-type enzyme shields some high-mannose glycans from terminal glycosylation. Comparative modeling by threading and homology modeling of the NTPDase3 sequence revealed a high degree of structural fold similarity with a bacterial exopolyphosphatase (PDB ). The resultant theoretical 3-D model of the extracellular portion of NTPDase3, based on homology with this exopolyphosphatase, is consistent with the assignment of the disulfide bonds occurring in regions of good fold similarity between NTPDase3 and the exopolyphosphatase. The 3-D model obtained for NTPDase3 also suggests the structural basis for the importance of several apyrase conserved regions for the nucleotidase activities of the NTPDases.  相似文献   

17.
Using GOMORI'S technique, the present authors investigated the dynamics of the alkaline phosphatase activity in the process of liver regeneration after partial hepatectomy. In all 80 rats of the Wistar strain were subjected to experiment, 60 to 75% of the liver parenchyma being removed from each of them. In the course of regeneration a gradual increase in the enzyme activity was observed within the first 48 hours following the operation. This was succeeded by a slow decline of the activity, and after the 25th day after the operation the reaction intensity resembled that recorded for the control animals. It was also ascertained that the fatty degeneration of the liver noted in the initial period of regeneration does not inhibit the activity of alkaline phosphatase.  相似文献   

18.
Collagenase treatment, commonly used to prepare alkaline phosphatase-rich matrix vesicles from epiphyseal cartilage growth plates, seems to affect the integrity of this membrane-bound enzyme. Alkaline phosphatase-rich rat osseous plates were incubated with 1000 U/mL collagenase for 3 h, at 37°C and after purification on Sepharose 4B, kinetic studies were performed using nitrophenylphosphate and pyrophosphate as substrates.The optimum apparent pH for the hydrolysis of p-nitrophenylphosphate and pyrophosphate increased from 9.4 to 10.25 and from 8.0 to 9.0, respectively, as a consequence of collagenase treatment. In the absence of Mg2+ ions, the enzyme hydrolyzed PNPP with KM = 322.5 ± 15.3 M and V = 965.2 ± 45.8 U/mg, while in the presence of 2 mM Mg2+ ions, V increased 66%. Cobalt (K0.5 = 5.3 ± 0.3 M) and manganese (K0.5 = 0.72 ± 0.03 M) ions stimulated the PNPPase activity of the collagenase-treated enzyme, but with a lower apparent affinity when compared with that of not-treated enzyme. In the absence of Mg2+ ions pyrophosphate was hydrolyzed according to Michaelis-Menten kinetics (KM = 105.1 ± 6.3 M and V = 64.9 ± 3.9 U/mg), but site-site interactions (nH = 1.2) were observed in the presence of 2 mM Mg2+ ions (V = 110.8 ± 5.5 U/mg; K0.5 = 42.7 ± 2.0 M).To our knowledge this is the first report showing significant alterations on phosphohydrolytic activity and metal binding properties of bone alkaline phosphatase due to associated neutral proteases in collagenase preparations often used for the isolation of matrix vesicles.  相似文献   

19.
Ecto-nucleoside triphosphate diphosphohydrolase 3 (eNTPDase-3, also known as HB6 and CD39L3) is a membrane-associated ecto-apyrase. Only a few functionally significant residues have been elucidated for this enzyme, as well as for the whole family of eNTPDase enzymes. Four highly conserved regions (apyrase conserved regions, ACRs) have been identified in all the members of eNTPDase family, suggesting their importance for biological activity. In an effort to identify those amino acids important for the catalytic activity of the eNTPDase family, as well as those residues mediating substrate specificity, 11 point mutations of 7 amino acid residues in ACR1-4 of eNTPDase-3 were constructed by site-directed mutagenesis. Mutagenesis of asparagine 191 to alanine (N191A), glutamine 226 to alanine (Q226A), and arginine 67 to glycine (R67G) resulted in an increase in the rates of hydrolysis of nucleoside diphosphates relative to triphosphates. Mutagenesis of arginine 146 to proline (R146P) essentially converted the eNTPDase-3 ecto-apyrase to an ecto-ATPase (eNTPDase-2), mainly by decreasing the hydrolysis rates for nucleoside diphosphates. The Q226A mutant exhibited a change in the divalent cation requirement for nucleotidase activity relative to the wild-type and the other mutants. Mutation of glutamate 182 to aspartate (E182D) or glutamine (E182Q), and mutation of serine 224 to alanine (S224A) completely abolished enzymatic activity. We conclude that the residues corresponding to eNTPDase-3 glutamate 182 in ACR3 and serine 224 in ACR4 are essential for the enzymatic activity of eNTPDases in general, and that arginine 67, arginine 146, asparagine 191, and glutamine 226 are important for determining substrate specificity for human ecto-nucleoside triphosphate diphosphohydrolase 3.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号