共查询到20条相似文献,搜索用时 15 毫秒
1.
We have shown that cultured mouse neural crest (NC) cells exhibit transient increases in intracellular calcium. Up to 50% of the cultured NC-derived cells exhibited calcium transients during the period of neuronal differentiation. As neurogenic activity declined, so did the percentage of active NC-derived cells and their calcium spiking frequency. The decrease in calcium transient activity correlated with a decreased sensitivity to thimerosal, which sensitizes inositol 1,4,5-triphosphate receptors. Thimerosal increased the frequency of oscillations in active NC-derived cells and induced them in a subpopulation of quiescent cells. As neurogenesis ended, NC-derived cells became nonresponsive to thimerosal. Using the expression of time-dependent neuronal traits, we determined that neurons exhibited spontaneous calcium transients as early as a neuronal phenotype could be detected and continued through the acquisition of caffeine sensitivity, soon after which calcium transient activity stopped. A subpopulation of nonneuronal NC-derived cells exhibited calcium transient activity within the same time frame as neurogenesis in culture. Exposing NC-derived cells to 20 mM Mg(2+) blocked calcium transient activity and reduced neuronal number without affecting the survival of differentiated neurons. Using lineage-tracing analysis, we found that 50% of active NC-derived cells gave rise to clones containing neurons, while inactive cells did not. We hypothesize that calcium transient activity establishes a neuronal competence for undifferentiated NC cells. 相似文献
2.
Signals derived from the underlying mesoderm are dispensable for zebrafish neural crest induction 总被引:1,自引:0,他引:1
Signals from the non-neural ectoderm, the neural ectoderm, and the underlying mesoderm have all been implicated in the induction of neural crest. Bone morphogenetic protein (BMP) signaling in particular has an important role in this process; however, it is unclear whether this activity of BMP is due to its effects on patterning the underlying mesoderm, to its ability to establish a competent neural plate boundary zone, or to the direct specification of neural crest at intermediate levels of activity within a BMP gradient. We show neural crest induction occurs in zebrafish in the absence of involuted mesoderm, indicating that this tissue and signals derived from it are dispensable for the formation of neural crest. Dorsal-involuted mesoderm is a major source of secreted BMP antagonists, and the activity of BMP signaling is thought to depend on the presence of the opposing activity of these antagonists. We find that the three BMP antagonists known to be expressed during gastrulation in zebrafish, noggin1, follistatin, and chordin, are dispensable for neural crest induction. These results suggest that mechanisms for restricting the spatio-temporal pattern of BMP expression may compensate for the loss of secreted BMP antagonist activity in establishing dorso-ventral patterning, neural induction, and the neural crest. 相似文献
3.
Tissue interactions affecting the migration and differentiation of neural crest cells in the chick embryo. 总被引:2,自引:0,他引:2
A series of microsurgical operations was performed in chick embryos to study the factors that control the polarity, position and differentiation of the sympathetic and dorsal root ganglion cells developing from the neural crest. The neural tube, with or without the notochord, was rotated by 180 degrees dorsoventrally to cause the neural crest cells to emerge ventrally. In some embryos, the notochord was ablated, and in others a second notochord was implanted. Sympathetic differentiation was assessed by catecholamine fluorescence after aldehyde fixation. Neural crest cells emerging from an inverted neural tube migrate in a ventral-to-dorsal direction through the sclerotome, where they become segmented by being restricted to the rostral half of each sclerotome. Both motor axons and neural crest cells avoid the notochord and the extracellular matrix that surrounds it, but motor axons appear also to be attracted to the notochord until they reach its immediate vicinity. The dorsal root ganglia always form adjacent to the neural tube and their dorsoventral orientation follows the direction of migration of the neural crest cells. Differentiation of catecholaminergic cells only occurs near the aorta/mesonephros and in addition requires the proximity of either the ventral neural tube (floor plate/ventral root region) or the notochord. Prior migration of presumptive catecholaminergic cells through the sclerotome, however, is neither required nor sufficient for their adrenergic differentiation. 相似文献
4.
In order to study mammalian neural crest differentiation in vitro, a series of clonal neural crest (NC) cell lines have been generated by infection of migrating mouse neural crest cells with two recombinant retroviruses containing either the c-myc or N-myc proto-oncogenes. Many cell lines were generated which could be subdivided into three groups based on their appearance in culture. Eleven of these cell lines representative of each of the morphological groups were characterized for the expression of six antigenic markers expressed by neural cells. In addition, mRNA was prepared from these cell lines and analyzed for the expression of a number of neural specific genes. These analyses show that the cell lines are representative of the following cell types: (1) neural crest-like cell lines that do not differentiate in 10% serum; (2) progenitor cell lines, some of which can partially differentiate in culture; and (3) mature neuronal cell lines or bipotential cell lines. Southern blot analysis of DNA from these lines indicated that they have multiple integration sites for the provirus and suggest that phenotypically different cell types have arisen from a single cell. None of the cell lines showed any proliferative or morphological response to nerve growth factor (NGF), whereas over two-thirds of the lines showed both marked proliferative and morphological responses to fibroblast growth factor (FGF). These data indicate that we have generated a range of cell lines representative of a spectrum of mouse neural crest derivatives. 相似文献
5.
Mandibular osteoblasts originate from the neural crest and deposit bone intramembranously, mesoderm derived tibial osteoblasts by endochondral mechanisms. Bone synthesized by both cell types is identical in structure, yet functional differences between the two cell types may exist. Thus, both matched juvenile and adult mandibular and tibial osteoblasts were studied regarding their proliferative capacity, their osteogenic potential and the expression of osteogenic and origin related marker genes. Juvenile tibial cells proliferated at the highest rate while juvenile mandibular cells exhibited higher ALP activity depositing more mineralized matrix. Expression of Hoxa4 in tibial cells verified their mesodermal origin, whereas very low levels in mandibular cells confirmed their ectodermal descent. Distinct differences in the expression pattern of bone development related genes (collagen type I, osteonectin, osteocalcin, Runx2, MSX1/2, TGF-β1, BAMBI, TWIST1, β-catenin) were found between the different cell types. The distinct dissimilarities in proliferation, alkaline phosphatase activity, the expression of characteristic genes, and mineralization may aid to explain the differences in bone healing time observed in mandibular bone when compared to long bones of the extremities. 相似文献
6.
Induction and differentiation of the neural crest 总被引:1,自引:0,他引:1
The neural crest is a population of cells that forms at the junction between the epidermis and neural plate in vertebrate embryos. Recent progress has elucidated the identity and timing of molecular events responsible for the earliest steps in neural crest development, particularly those involving the induction and its migration. Concomitantly, advances have been made in the identification, purification and generation of neural crest stem cells at various developmental stages that deepens our understanding of the plasticity and restriction of neural crest differentiation. 相似文献
7.
In the avian embryo, cranial neural crest (NC) cells migrate extensively throughout the head region and give rise to most of the cranial skeleton (Le Lievre, C. S. (1978). J. Embryol. Exp. Morphol.47, 17–37). To investigate the skeletogenic differentiation of these cells, NC explants from the mesencephalic level of st. 9+ embryos were grown in standard organ culture on Millipore filter substrates either in isolation or in combination with those tissues with which the cells normally associate during their in vivo migration and at their final tissue sites. The results demonstrate that interaction between premigratory NC and cranial ectoderm leads to chondrogenic differentiation of NC cells. Combination of premigratory NC with presumptive site tissues led to a pattern of NC cell differentiation normally expressed after in vivo migration: Combinations of NC with retinal pigmented epithelia gave cartilage, whereas NC with maxillary ectoderm formed cartilage and membrane bone. Both resulting skeletal tissues possessed their characteristic collagen types (II in cartilage and I in bone) as shown by indirect immunofluorescence using antibodies raised against specific types of collagen. It is concluded that avian cephalic NC cells require tissue interactions if chondrogenic and osteogenic differentiation is to ensue, but that migration per se is not an absolute prerequisite for these types of differentiation. The degree of specificity underlying such interactions is discussed. 相似文献
8.
In this review, we outline the gene-regulatory interactions driving neural crest development and compare these to a hypothetical network operating in the embryonic ectoderm of the cephalochordate amphioxus. While the early stages of ectodermal patterning appear conserved between amphioxus and vertebrates, later activation of neural crest-specific factors at the neural plate border appears to be a vertebrate novelty. This difference may reflect co-option of genetic pathways which conferred novel properties upon the evolving vertebrate neural plate border, potentiating the evolution of definitive neural crest. 相似文献
9.
Isolation and directed differentiation of neural crest stem cells derived from human embryonic stem cells 总被引:2,自引:0,他引:2
Lee G Kim H Elkabetz Y Al Shamy G Panagiotakos G Barberi T Tabar V Studer L 《Nature biotechnology》2007,25(12):1468-1475
Vertebrate neural crest development depends on pluripotent, migratory precursor cells. Although avian and murine neural crest stem (NCS) cells have been identified, the isolation of human NCS cells has remained elusive. Here we report the derivation of NCS cells from human embryonic stem cells at the neural rosette stage. We show that NCS cells plated at clonal density give rise to multiple neural crest lineages. The human NCS cells can be propagated in vitro and directed toward peripheral nervous system lineages (peripheral neurons, Schwann cells) and mesenchymal lineages (smooth muscle, adipogenic, osteogenic and chondrogenic cells). Transplantation of human NCS cells into the developing chick embryo and adult mouse hosts demonstrates survival, migration and differentiation compatible with neural crest identity. The availability of unlimited numbers of human NCS cells offers new opportunities for studies of neural crest development and for efforts to model and treat neural crest-related disorders. 相似文献
10.
11.
G D Maxwell 《Developmental biology》1976,49(1):66-79
Chick trunk neural tubes containing neural crest cells were cultured in vitro. Cell outgrowth from these neural tube explants consists primarily of a small stellate cell population. After 3 days in culture the small stellate cell population undergoes a remarkable change in morphology that is characterized by a more refractile appearance in the phase contrast microscope. Subsequent to this change in morphology, pigment granules become visible in the cytoplasm after 4 days in culture. After 6 days in culture, virtually all of the small stellate cells are pigmented. The cell cycle parameters of the small stellate cell population are: S = 4.4 ± 1.2 hr (SD). G2 = 1.5 ± 1.0 hr (SD). M = 1.7 ± 0.6 hr (SD). and Gl = 3.8 ± 1.0 hr (SD). Continuous label experiments demonstrate that (G1+G2+M) increases from 7 hr in Day 4 cells, as yet unpigmented, to 12 hr in Day 5 cells that have become pigmented. This change is consistent with an increase in G1 and/or G2 that is closely correlated with the appearance of pigment granules. It is of interest that this cell cycle change is correlated with a rather late event in the developmental program of these neural crest cells rather than with the earlier morphological change observed after 3 days in culture. 相似文献
12.
Formation of the thickened apical ectodermal ridge of developing vertebrate limbs appears to be a complex process. Direct connections to molecular controls of cell migratory machinery have been shown for first time in neural crest migration. New unsuspected roles are emerging for ephrin ligand/Eph receptor signalling in vascular morphogenesis. 相似文献
13.
Fate of the mammalian cranial neural crest during tooth and mandibular morphogenesis 总被引:25,自引:0,他引:25
Chai Y Jiang X Ito Y Bringas P Han J Rowitch DH Soriano P McMahon AP Sucov HM 《Development (Cambridge, England)》2000,127(8):1671-1679
Neural crest cells are multipotential stem cells that contribute extensively to vertebrate development and give rise to various cell and tissue types. Determination of the fate of mammalian neural crest has been inhibited by the lack of appropriate markers. Here, we make use of a two-component genetic system for indelibly marking the progeny of the cranial neural crest during tooth and mandible development. In the first mouse line, Cre recombinase is expressed under the control of the Wnt1 promoter as a transgene. Significantly, Wnt1 transgene expression is limited to the migrating neural crest cells that are derived from the dorsal CNS. The second mouse line, the ROSA26 conditional reporter (R26R), serves as a substrate for the Cre-mediated recombination. Using this two-component genetic system, we have systematically followed the migration and differentiation of the cranial neural crest (CNC) cells from E9.5 to 6 weeks after birth. Our results demonstrate, for the first time, that CNC cells contribute to the formation of condensed dental mesenchyme, dental papilla, odontoblasts, dentine matrix, pulp, cementum, periodontal ligaments, chondrocytes in Meckel's cartilage, mandible, the articulating disc of temporomandibular joint and branchial arch nerve ganglia. More importantly, there is a dynamic distribution of CNC- and non-CNC-derived cells during tooth and mandibular morphogenesis. These results are a first step towards a comprehensive understanding of neural crest cell migration and differentiation during mammalian craniofacial development. Furthermore, this transgenic model also provides a new tool for cell lineage analysis and genetic manipulation of neural-crest-derived components in normal and abnormal embryogenesis. 相似文献
14.
Background
Development of the vertebrate head depends on the multipotency and migratory behavior of neural crest derivatives. This cell population is considered a vertebrate innovation and, accordingly, chordate ancestors lacked neural crest counterparts. The identification of neural crest specification genes expressed in the neural plate of basal chordates, in addition to the discovery of pigmented migratory cells in ascidians, has challenged this hypothesis. These new findings revive the debate on what is new and what is ancient in the genetic program that controls neural crest formation. 相似文献15.
Common precursors for neural and mesectodermal derivatives in the cephalic neural crest. 总被引:8,自引:0,他引:8
The cephalic neural crest (NC) of vertebrate embryos yields a variety of cell types belonging to the neuronal, glial, melanocytic and mesectodermal lineages. Using clonal cultures of quail migrating cephalic NC cells, we demonstrated that neurons and glial cells of the peripheral nervous system can originate from the same progenitors as cartilage, one of the mesectodermal derivatives of the NC. Moreover, we obtained evidence that the migrating cephalic NC contains a few highly multipotent precursors that are common to neurons, glia, cartilage and pigment cells and which we interprete as representative of a stem cell population. In contrast, other NC cells, although provided with identical culture conditions, give rise to clones composed of only one or some of these cell types. These cells thus appear restricted in their developmental potentialities compared to multipotent cells. It is therefore proposed that, in vivo, the active proliferation of pluripotent NC cells during the migration process generates distinct subpopulations of cells that become progressively committed to different developmental fates. 相似文献
16.
S Campbell 《Development (Cambridge, England)》1989,106(4):717-726
Avian melanoblast differentiation was studied by explantation of the neural tube and periorbital mesenchyme. Outgrowths from the mesenchymal explants consisted of a mixed population of melanocytes, melanoblasts and fibroblasts, whilst typical neural crest populations migrated from the neural tube explants. Cells that differentiated within explants of mesenchyme, produced elongate black eumelanosomes of normal ultrastructure which were identical to those found in the ocular connective tissues. However, melanoblasts that differentiated within outgrowths of mesenchyme or neural tube produced round brown melanosomes of highly abnormal ultrastructure. Some of these melanosomes contained a few disorganised melanosomal filaments whilst others had granular melanin with complete absence of filaments. This abnormality of phenotype was invariant over a range of culture conditions that modified cell behaviour, the timing of differentiation and the abundance of the pigmented cells. These experiments suggest that local factors in the mesenchyme are essential for the induction of melanogenesis in the presumptive connective tissue melanocyte. 相似文献
17.
18.
Formation and distribution of neural crest mesenchyme to the first pharyngeal arch region of the mouse embryo 总被引:3,自引:0,他引:3
D H Nichols 《The American journal of anatomy》1986,176(2):221-231
Murine neural crest mesenchyme begins its escape from columnar epithelium near the tips of the midbrain-rostral hindbrain neural folds at 4+ to 5 somites of age. At that time the tip of each fold is located dorsolateral to the pharynx. Once crest formation is complete at this earliest site, it leaves behind both crest mesenchyme and overlying squamous epithelium. Crest formation then progresses medially, into the lateral margin of the neural plate. At the same time, this lateral margin elevates as the tip of the neural fold. By the time crest formation ceases at approximately 10 somites, the result of these simultaneous activities is to passively distribute the earliest mesenchyme, formed from the lateralmost epithelium, dorsolateral to the pharynx and the later, more medially derived mesenchyme lateral to the neural tube. Once formed, the crest mesenchyme dorsolateral to the pharynx is displaced ventromedially in a narrow, transient subectodermal space functionally similar to that observed in the chick embryo. Displacement might result from cell motility or the formation of matrix-filled spaces between cells of the mesenchyme. Displaced cells are closely associated with the overlying columnar epithelium. This association precedes their subsequent induction and may reflect preliminary patterning. The crest mesenchyme passively distributed lateral to the neural tube is subsequently displaced medially. Here the formation of enlarged (matrix-filled?) spaces is clearly involved in the initial displacement. Displaced cells proliferate to form the anlage of the trigeminal ganglion. The other major contributor to this ganglion is the trigeminal placode. The placodal epithelium is located dorsolateral to the pharynx of the 12-somite embryo. If the epithelia of the head maintain their relative positions, this placode is derived from the squamous epithelium formed together with the earliest crest mesenchyme. If not, an alternative source is the columnar epithelium located ventromedial to the tip of the 4+- to 5-somite neural fold. 相似文献
19.
《Matrix biology》2014
Impaired heparan sulfate (HS) synthesis in vertebrate development causes complex malformations due to the functional disruption of multiple HS-binding growth factors and morphogens. Here, we report developmental heart defects in mice bearing a targeted disruption of the HS-generating enzyme GlcNAc N-deacetylase/GlcN N-sulfotransferase 1 (NDST1), including ventricular septal defects (VSD), persistent truncus arteriosus (PTA), double outlet right ventricle (DORV), and retroesophageal right subclavian artery (RERSC). These defects closely resemble cardiac anomalies observed in mice made deficient in the cardiogenic regulator fibroblast growth factor 8 (FGF8). Consistent with this, we show that HS-dependent FGF8/FGF-receptor2C assembly and FGF8-dependent ERK-phosphorylation are strongly reduced in NDST1−/− embryonic cells and tissues. Moreover, WNT1-Cre/LoxP-mediated conditional targeting of NDST function in neural crest cells (NCCs) revealed that their impaired HS-dependent development contributes strongly to the observed cardiac defects. These findings raise the possibility that defects in HS biosynthesis may contribute to congenital heart defects in humans that represent the most common type of birth defect. 相似文献
20.
It has been shown in several organisms that multiple cis-regulatory modules (CRMs) of a gene locus can be active concurrently to support similar spatiotemporal expression. To understand the functional importance of such seemingly redundant CRMs, we examined two CRMs from the Drosophila snail gene locus, which are both active in the ventral region of pre-gastrulation embryos. By performing a deletion series in a ~25 kb DNA rescue construct using BAC recombineering and site-directed transgenesis, we demonstrate that the two CRMs are not redundant. The distal CRM is absolutely required for viability, whereas the proximal CRM is required only under extreme conditions such as high temperature. Consistent with their distinct requirements, the CRMs support distinct expression patterns: the proximal CRM exhibits an expanded expression domain relative to endogenous snail, whereas the distal CRM exhibits almost complete overlap with snail except at the anterior-most pole. We further show that the distal CRM normally limits the increased expression domain of the proximal CRM and that the proximal CRM serves as a `damper' for the expression levels driven by the distal CRM. Thus, the two CRMs interact in cis in a non-additive fashion and these interactions may be important for fine-tuning the domains and levels of gene expression. 相似文献