首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
基质金属蛋白酶-2(Matrix Metalloproteinase-2,MMP-2)是基质金属蛋白酶家族的重要成员,能降解明胶蛋白和Ⅳ型、V型胶原,在细胞外基质的降解过程中起着关键作用,能够促进肿瘤细胞发生侵袭和转移。p185HER-2/neu蛋白是一种相对分子质量185×103的跨膜糖蛋白,由HER-2/neu基因编码,属于酪氨酸激酶受体家族,p185HER-2/neu蛋白在人类多种癌症中存在扩增及过量表达,并与肿瘤的侵袭性表型及生存期短密切相关。就基质金属蛋白酶-2和p185HER-2/neu蛋白的生物学特性,与卵巢癌侵袭转移和预后的关系及MMP-2和p185HER-2/neu蛋白的研究情况等予以综述。  相似文献   

2.
HER-2/neu癌基因在许多肿瘤,如乳腺癌、卵巢癌、非小细胞肺癌等肿瘤中高表达,在肿瘤的发生与发展中起重要作用,与肿瘤的转化、转移、复发、预后差、患者生存期缩短有关。HER-2/neu在乳腺癌过度表达率约为20%~30%,编码蛋白P185HER2属生长因子受体家族,抗P185HER2单克隆抗体(Herceptin)作为靶向药物已临床应用治疗HER2/neu高表达乳腺癌。  相似文献   

3.
Gene amplification or HER-2/neu protein overexpression signals a poor outcome for bladder cancer patients. We investigated the anti-proliferative effect of IFN-gamma in HER-2/neu-transfected human bladder cancer cells (TCC-N5 and TCC-N10). The cells continued growing after IFN-gamma stimulation but did not activate the Janus kinase (Jak)/Stat pathway. We found Jak/Stat protein phosphatase in TCC-N5 and TCC-N10 cells with upregulated Src homology 2-containing protein tyrosine phosphatase-2 (SHP-2). After the cells had been treated with AG825, a HER-2/neu-specific inhibitor, SHP-2 expression declined, and Jak2/Stat1 reactivated. Similar results were reported in a mouse bladder cancer cell line, MBT2, with constitutive HER-2/neu overexpression. Further, AG825 pretreatment restored the anti-proliferation activity of IFN-gamma in TCC-N5 and TCC-N10 cells. Therefore, the suppression of IFN-gamma signaling in HER-2/neu-overexpressing bladder cancer cells might be due to SHP-2 upregulation. The regulation of SHP-2 by HER-2/neu provides a new target for blocking the HER-2/neu oncogenic pathway.  相似文献   

4.
Using parental FVB mice and their neu transgenic counterparts, FVBN202, we showed for the first time that dangerous hyperplasia of mammary epithelial cells coincided with breaking immunological tolerance to the neu "self" tumor antigen, though such immune responses failed to prevent formation of spontaneous neu-overexpressing mammary carcinoma (MMC) or reject transplanted MMC in FVBN202 mice. On the other hand, neu-specific immune responses appeared to be effective against MMC in parental FVB mice because of the fact that rat neu protein was seen as "nonself" antigen in these animals and the protein was dangerously overexpressed in MMC. Interestingly, low/intermediate expression of the neu "nonself" protein in tumors induced immune responses but such immune responses failed to reject the tumor in FVB mice. Our results showed that self-nonself (SNS) entity of a tumor antigen or danger signal alone, while may equally induce an antigen-specific immune response, will not warrant the efficacy of immune responses against tumors. On the other hand, entity of antigen in the context of dangerous conditions, i.e. abnormal/dangerous overexpression of the neu nonself protein, will warrant effective anti-tumor immune responses in FVB mice. This unified "danger-SNS" model suggests focusing on identification of naturally processed cryptic or mutated epitopes, which are considered semi-nonself by the host immune system, along with novel dangerous adjuvant in vaccine design.  相似文献   

5.
Although natural killer (NK) cells have been described as non-MHC-restricted, new evidence suggests that NK activity can be either up- or down-regulated after interaction with the peptide–MHC-class-I complex expressed on target cells. However, the epitope(s) recognized by NK cells have remained ill-defined. We investigated NK cell recognition of synthetic peptides representing a portion of a self-protein encoded by the HER-2/neu (HER-2) proto-oncogene and presented by HLA-A2. HER-2 nonapeptides C85, E89, and E75 were found partially to protect T2 targets from lysis by freshly isolated and interleukin-2(IL-2)-activated NK cells (either HLA-A2+ or A2). This inhibition was not solely due to changes in the level of HLA-A2 expression or conformation of serological HLA-A2 epitopes. Using single-amino-acid variants at position 1 (P1) of two HER-2 peptides, we observed that protection of targets was dependent on the sequence and the side-chain. These results suggest similarities in the mechanism of target recognition by NK and T cells. This information may be important for understanding the mechanisms of tumor escape from immunosurveillance and could help explain the aggressiveness of HER-2-overexpressing tumor cells. Received: 16 March 1999 / Accepted: 3 June 1999  相似文献   

6.
Listeria monocytogenes-based vaccines for HER-2/neu are capable of breaking tolerance in FVB/N rat HER-2/neu transgenic mice. The growth of implanted NT-2 tumors, derived from a spontaneously occurring tumor in the FVB/N HER-2/neu transgenic mouse, was significantly slower in these mice following vaccination with a series of L. monocytogenes-based vaccines for HER-2/neu. Mechanisms of T cell tolerance that exist in these transgenic mice include the absence of functional high avidity anti-HER-2/neu CD8+ T cells and the presence of CD4+CD25+ regulatory T cells. The in vivo depletion of these regulatory T cells resulted in the slowing in growth of tumors even without the treatment of mice with an anti-HER-2/neu vaccine. The average avidities of responsive CD8+ T cells to six of the nine epitopes in HER-2/neu we examined, four of which were identified in this study, are shown here to be of a lower average avidity in the transgenic mice versus wild type FVB/N mice. In contrast, the average avidity of CD8+ T cells to three epitopes that showed the lowest avidity in the wild-type mice did not differ between wild type and transgenic mice. This study demonstrates the ability of L. monocytogenes-based vaccines to impact upon tolerance to HER-2/neu in FVB/N HER-2/neu transgenic mice and further defines some of the aspects of tolerance in these mice.  相似文献   

7.
G. Y. Kim  Y. L. Oh 《Cytopathology》2004,15(6):315-320
The current use of humanized monoclonal antibody trastuzumab for the treatment of patients with metastatic breast cancer has made evaluation of HER-2/neu status an important clinical issue. Chromogenic in situ hybridization (CISH), in which the DNA probe is detected with an immunohistochemistry (IHC)-like peroxidase reaction, has been recently developed for the assessment of HER-2/neu status in formalin-fixed breast cancer specimens. We have applied the technique of dual-colour CISH using HER-2/neu and chromosome 17 centromere probes in 27 cytological smears, and these cytological samples were obtained from scrapings of fresh breast tumours. We also investigated HER-2/neu amplification and protein overexpression in the corresponding surgical tissues by CISH and IHC using the monoclonal antibody CB11. Of the 27 cytological cases, HER-2/neu gene amplification was observed in nine cases that were positive cases (2+ and 3+) for IHC. Among the 13 IHC positive cases (2+ and 3+), four of them showed no gene amplification. Identical results for the CISH technique were obtained in the matched surgical samples. The scrape samples from fresh breast tumour offer a monolayer cell population that is especially suitable for CISH. This study has shown that the cytological smear might be a good alternative for the CISH test.  相似文献   

8.
A majority of breast cancers are hormone-responsive, and require estrogen for growth, and respond to hormonal therapy that blocks estrogen receptor action. Breast tumors with low levels of or completely lacking estrogen receptor fail to respond to antiestrogen therapy yet require estrogen for tumor initiation. To address the importance of local estrogen in oncogene-mediated breast tumorigenesis, we have crossed MMTV-aromatase with MMTV-HER2/neu and examined the incidence of breast cancer in double transgenic mice in comparison with parental strains. Double transgenic mice show normal mammary development and express both transgenes at similar levels to that of parental strains. Tumor incidence in double transgenic mice (<5%) decreased compared to HER2/neu mice (>65%). In addition to a significant decrease in tumorigenesis, these mice expressed ER as well as high levels of ERβ along with decreased levels of cyclin D1 and phosphorylated pRb among other changes. Furthermore, experiments using THC (ER-agonist and ERβ-antagonist) clearly demonstrate the critical role of ERβ in HER2/neu-mediated tumorigenesis. These studies provide the first genetic evidence that estrogen receptor, mainly ERβ than ER and its dependent changes play an important role in regulating mammary tumorigenesis. These findings provide further evidence for development and testing of novel therapeutic approaches based on selective regulation of estrogen receptors (ER and β)-dependent actions for the treatment and prevention of breast cancers.  相似文献   

9.
The HER-2/neu transmembrane tyrosine kinase receptor is both a prognostic marker and a therapeutic target for breast cancer. Accurate determination of HER-2/neu status is a prerequisite for selecting breast tumors for HER-2/neu immunotherapy or for taxan based chemotherapy. Unfortunately, there is no consensus concerning how this determination should be reached. We compared assessment of HER-2/neu status using Multiplex ligation-dependent probe amplification (MLPA) and immunohistochemistry (IHC). The patient group comprised 60 Indonesian breast cancers patients. IHC was performed on paraffin sections using the CB11 antibody from Novocastra. Results were scored according to the Hercept test. For MLPA, DNA was extracted from frozen samples, PCR amplified with a probe set containing three hemi-primer sets for the HER-2 locus and another nine control probes spread over chromosome 17 and other chromosomes, and analyzed on a gene scanner. A ratio above two for at least two HER-2 locus probes compared to the control probes was regarded as amplification. IHC for HER-2/neu was negative in 36 cases, and 24 cases (40%) showed expression. Seven, eight and nine of the latter cases were 1+, 2+ and 3+ positive, respectively. Forty-seven cases showed no amplification by MLPA, and 13 cases (22%) were amplified. Comparison of IHC and MPLA showed that none of the 36 IHC-negative or seven IHC 1+ cases was amplified. Five of the eight (63%) 2+ cases were amplified, and eight of nine (89%) of the IHC 3+ tumors showed gene amplification by MLPA assay. For HER-2/neu, there is a good correlation between gene amplification detected by MLPA and overexpression by IHC in invasive breast cancer. It appears that MLPA can detect the HER-2 amplified cases in the IHC 2+ class. Because MLPA is quick and inexpensive, it is an attractive method for detecting HER-2/neu amplification in daily laboratory practice.  相似文献   

10.
11.
We investigated the ubiquitination and degradation of a tumor antigen, the HER-2/neu (HER-2) protooncogene product which is overexpressed in epithelial cancers. HER-2 degradation was investigated in the ovarian tumor line, SKOV3.A2, that constitutively overexpressed long-life HER-2. We used as agonist geldanamycin (GA), which initiated downmodulation of HER-2 from the cell surface. HER-2 was polyubiquitinated and degraded faster in the presence than in the absence of GA. GA did not decrease HLA-A2 expression. Presentation of the immunodominant cytotoxic T lymphocyte (CTL) epitope, E75 (369–377) from SKOV.A2 was inhibited by proteasome inhibitors, such as LLnL but was enhanced by cysteine protease inhibitors such as E64, indicating that both the proteasome and cysteine proteases are involved in epitope formation but have different effects. Enhanced tumor recognition was not an immediate or early effect of GA treatment, but was evident after 20 h of GA treatment. In contrast, 20 h GA treatment did not increase tumor sensitivity to LAK cell lysis. Twenty hour GA-treated SKOV3.A2 cells expressed an unstable HER-2 protein synthesized in the presence of GA, of faster electrophoretic mobility than control HER-2. This suggested that the newly synthesized HER-2 in the presence of GA was the main source of epitopes recognized by CTL. Twenty hour GA-treated SKOV3.A2 cells were better inducers of CTL activity directed to a number of HER-2 CTL epitopes, in peripheral blood mononuclear cells compared with control untreated SKOV3.A2 cells. Thus, induction of HER-2 protein instability enhanced the sensitivity of tumor for CTL lysis. Increased HER-2 CTL epitopes presentation may have implications for overcoming the poor immuno-genicity of human tumors, and design of epitope precursors for cancer vaccination.  相似文献   

12.
HER-2/neu胞外配体结合区2在大肠杆菌中可溶性表达及纯化   总被引:4,自引:0,他引:4  
用PCR技术扩增HER 2 neu胞外配体结合区 2 (RLD2 )cDNA ,并将扩增的基因片段克隆于硫氧还蛋白 (TrxA)原核表达载体中 ,获得TrxA RLD2融合蛋白的可溶性表达 .通过插入偶联翻译序列 ,实现TrxA与RLD2蛋白在大肠杆菌中的共表达 .表达产物经免疫印记检测可被抗HER 2 neu特异性抗体识别 .经离子交换层析和钴亲和层析纯化 ,RLD2蛋白的纯度达 90 % .用质谱法分析RLD2蛋白的分子量 ,与预期值相符 .结果表明 ,利用TrxA表达体系在大肠杆菌中获得了HER 2 neuRLD2蛋白高效可溶性表达  相似文献   

13.
Virosomes as new carrier system for cancer vaccines   总被引:1,自引:0,他引:1  
HER-2/neu, a tumor-associated antigen (TAAg), plays a critical role in oncogenesis of various tumor types, and its selective overexpression by malignant tumor cells makes it an ideal target for immunotherapy. A prerequisite for clinical vaccines is the construction of safe and highly immunogenic reagents able to generate efficient immune responses against TAAg. Previous protein vaccines, consisting of the extracellular domain of HER-2/neu (pNeuECD), were shown to elicit an immune response that did not provide protection from transplantable tumors expressing HER-2/neu. Here we showed that virosomes, which consist of reconstituted viral envelopes without viral genetic material, can act as a carrier and an adjuvant for a truncated protein pNeuECD . Mice vaccinated with pNeuECD either encapsulated in virosomes or bound to the virosomal membrane (Vir-pNeuECD), generated rNeu-specific humoral and cytotoxic immune responses. In addition, Vir-pNeuECD induced significant tumor rejection and additionally did not lead to delayed tumor formation when compared with free pNeuECD in complete Freunds adjuvant. There was no difference between the virosomal constructs. Taken together these results suggest that virosomes, as clinically approved safe vaccines, can be used to elicit both humoral and cell-mediated responses against TAAg and induce tumor rejection. Our model is providing important preclinical data to design human vaccination trials for patients with tumors overexpressing HER-2/neu, either as a primary vaccination or as a boost in combination with other vaccines in a context of an adjuvant treatment plan.Ruth Schwaninger and Ernst Waelti contributed equally to this article  相似文献   

14.
Zheng L  Ren JQ  Li H  Kong ZL  Zhu HG 《Cell research》2004,14(6):497-506
Overexpression and activation of HER-2/neu (also known as c-erbB-2), a proto-oncogene, was found in about 30% of human breast cancers, promoting cancer growth and making cancer cells resistant to chemo- and radio-therapy.Wild-type p53 is crucial in regulating cell growth and apoptosis and is found to be mutated or deleted in 60-70% of human cancers. And some cancers with a wild-type p53 do not have normal p53 function, suggesting that it is implicated in a complex process regulated by many factors. In the present study, we showed that the overexpression of HER-2/neu could decrease the amount of wild-type p53 protein via activating PI3K pathway, as well as inducing MDM2 nuclear translocation in MCF7 human breast cancer cells. Blockage of PI3K pathway with its specific inhibitor LY294002 caused G1-S phase arrest, decreased cell growth rate and increased chemo- and radio-therapeutic sensitivity in MCF7 cells expressing wild-type p53. However, it did not increase the sensitivity to adriamycin in MDA-MB-453 breast cancer cells containing mutant p53. Our study indicates that blocking PI3K pathway activation mediated by HER-2/neu overexpression may be useful in the treatment of breast tumors with HER-2/neu overexpression and wild-type p53.  相似文献   

15.
Hong KJ  Hsu MC  Hou MF  Hung WC 《FEBS letters》2011,(4):591-595
Our previous study demonstrates that HER-2/Neu oncogene inhibits a matrix metalloproteinase inhibitor and tumor metastasis suppressor RECK to promote metastasis. Conversely, the effect of RECK on the oncogenic function of HER-2/Neu is unknown. Ectopic expression of RECK in 293T cells and HER-2/Neu-overexpressing breast cancer cells shows that RECK and HER-2/Neu are co-localized and these two proteins can be co-immunoprecipitated. RECK inhibits HER-2/Neu receptor dimerization and autophosphorylation, which causes reduction of ERK and AKT kinase activity and down-regulation of HER-2/Neu target genes. RECK expression is reduced in 58.8% of breast cancer tissues and is associated with lymph node invasion supporting its anti-metastatic role. Collectively, we provide the first evidence that RECK can negatively regulate oncogenic activity of HER-2/Neu by inhibiting receptor dimerization.

Structured summary

HER-2/Neuphysically interacts with HER-2/Neu by blue native page (View interaction)HER-2/Neuphysically interacts with RECK by coimmunoprecipitation (View interaction)HER-2/Neu and RECKcolocalize by fluorescence microscopy (View Interaction 1, 2)HER-2/Neuphysically interacts with RECK by anti bait coimmunoprecipitation (View interaction)  相似文献   

16.
Immunotherapeutic approaches to cancer should focus on novel undertakings that modulate immune responses by synergistic enhancement of anti-tumor immunological parameters. Cancer vaccines should preferably be composed of multiple defined tumor antigen specific B- and T-cell epitopes. The main focus of this article is to briefly review the present status of Her-2/neu vaccine strategies and to describe the innovative strategies developed in my laboratory for a vaccine against HER-2/neu (ErbB-2) with emphasis on the humoral arm of the immune response. Elucidating the underlining mechanisms of anti-tumor effects elicited by peptide vaccines against a self-protein is a requirement for developing an immunotherapeutic strategy that might be effective in human cancer vaccines. Our approach entails the identification of biologically relevant epitopes, establishing relevant in vitro assays for monitoring vaccine efficacy, devising strategies to engineer conformationally dependent sequences, developing highly immunogenic vaccines for an outbred population and delivering the immunogen/vaccine in a safe and efficacious vehicle, utilizing transgenic animal models for assessing tumor development, and developing challenge models using transplantable tumors to study efficacy of vaccine constructs. We have developed a multi-HER-2/neu B-cell epitope approach and shown in preclinical studies that immunization with a combination of two B-cell epitope was more effective in preventing mammary tumors than a single epitope. We have translated that work to the clinic (OSU 0105) in an FDA approved, NCI sponsored “Phase 1 Active Immunotherapy trial with Chimeric and Multi-epitope based peptide vaccine targeting HER-2 oncoprotein and nor-MDP adjuvant in patients with metastatic and/or recurrent solid tumors” at the James Cancer Hospital at the Ohio State University. The correlation between overexpression of HER-2/neu and up-regulation of VEGF has been demonstrated in breast cancer patients. Thus, blocking angiogenesis is an attractive strategy to inhibit tumor growth, invasion, and metastasis. The hypothesis that combination of anti-angiogenic therapy and tumor immunotherapy of cancer may be synergistic is an important future goal. In this review, I will discuss insights into our preclinical studies that might aid in the design of the next generation of cancer vaccines and become an integrated component of prophylactic/preventive and therapeutic approach.  相似文献   

17.
In order to broaden the possibility for anti-HER-2/neu (HER-2) immune targeting, it is important to identify HLA-A24 restricted peptide epitopes derived from HER-2, since HLA-A24 is one of the most common alleles in Japanese and Asian people. In the present study, we have screened HER-2-derived, HLA-A24 binding peptides for cytotoxic T lymphocyte (CTL) epitopes. A panel of HER-2-derived peptides with HLA-A24 binding motifs and the corresponding analogs designed to enhance HLA-A24 binding affinity were selected. Identification of HER-2-reactive and HLA-A24 restricted CTL epitopes were performed by a reverse immunology approach. To induce HER-2-reactive and HLA-A24 restricted CTLs, PBMCs from healthy donors were repeatedly stimulated with monocytes-derived, mature DCs pulsed with HER-2 peptide. Subsequent peptide-induced T cells were tested for the specificity by enzyme linked immunospot, cytotoxicity and tetramer assays. CTL clones were then obtained from the CTL lines by limiting dilution. Of the peptides containing HLA-A24 binding motifs, 16 peptides (nine mers) including wild type peptides (IC50<1,000 nM) and substituted analog peptides (IC50<50 nM) were selected for the present study. Our studies show that an analog peptide, HER-2(905AA), derived from HER-2(905) could efficiently induce HER-2-reactive and HLA-A24 restricted CTLs. The reactivity of the HER-2(905AA)-induced CTL (CTL905AA) was confirmed by different CTL assays. The CTL905AA clones also were able to lyse HER-2(+), HLA-A24(+) tumor cells and cytotoxicity could be significantly reduced in cold target inhibition assays using cold targets pulsed with the HER-2(905) wild type peptide as well as the inducing HER-2(905AA) analog peptide. A newly identified HER-2(905) peptide epitope is naturally processed and presented as a CTL epitope on HER-2 overexpressing tumor cells, and an MHC anchor-substituted analog, HER-2(905AA), can efficiently induce HER-2-specific, HLA-A24 restricted CTLs.  相似文献   

18.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has been shown to induce apoptosis in numerous transformed cell lines but not in most normal cells. Although this selectivity offers a potential therapeutic application in cancer, not all cancers are sensitive to TRAIL-mediated apoptosis. In this study, we observed that amiloride, a current clinically used diuretic drug, which had little or no cytotoxicity, sensitized TRAIL-resistant human prostate adenocarcinoma LNCaP and human ovarian adenocarcinoma SK-OV-3 cells. The TRAIL-mediated activation of caspase, and PARP cleavage, were promoted in the presence of amiloride. Western blot analysis showed that combined treatment with TRAIL and amiloride did not change the levels of TRAIL receptors (DR4, DR5, and DcR2) and anti-apoptotic proteins (FLIP, IAP, and Bcl-2). However, amiloride dephosphorylated HER-2/neu tyrosine kinase as well as Akt, an anti-apoptotic protein. Interestingly, amiloride also dephosphorylated PI3K and PDK-1 kinases along with PP1alpha phosphatase. In vitro kinase assay revealed that amiloride inhibited phosphorylation of kinase as well as phosphatase by competing with ATP. Taken together, the present studies suggest that amiloride enhances TRAIL-induced cytotoxicity by inhibiting phosphorylation of the HER-2/neu-PI3K-Akt pathway-associated kinases and phosphatase.  相似文献   

19.
To study DNA vaccination directed against human HER-2 in the HHD mouse Tg strain, we created a novel HER-2-expressing syngeneic tumor transplantation model. We found that a DNA vaccine encoding the full length HER-2 DNA protected HHD mice from HER-2+ tumor challenge by a CTL independent mechanism. A more efficient approach to induce HLA-A2 restricted CTLs, through immunization with a multi-epitope DNA vaccine expressing the HLA-A2 restricted HER-2 369–377, 435–443 and 689–697 epitopes, resulted in high numbers of peptide specific T cells but failed to induce tumor protection. Subsequently we discovered that HER-2 transfected tumor cells down-regulated MHC class I antigen expression and exhibited a series of defects in the antigen processing pathway which impaired the capacity to produce and display MHC class I peptide-ligands to specific CTLs. Our data demonstrate that HER-2 transfection is associated with defects in the MHC class I presentation pathway, which may be the underlying mechanism behind the inability of CTLs to recognize tumors in this HLA-A2 transgenic model. As defective MHC class I presentation may be a common characteristic of HER-2 expressing tumors, vaccines targeting HER-2 should aim at inducing an integrated immune response where also CD4+ T cells and antibodies are important components. S. Vertuani and C. Triulzi contributed equally to this work.  相似文献   

20.
Antrodia salmonea is well known in Taiwan as a traditional Chinese medicinal fungus and has demonstrated antioxidant, anti-inflammatory, and anticancer effects. However, the anticancer activity of A. salmonea against human ovarian cancer is still elusive. Therefore, we investigated the antiovarian tumor activity of a fermented culture broth of A. salmonea and exhibits its underlying molecular mechanism. A. salmonea shows a significant effect on cell viability in human ovarian carcinoma (SKOV-3 or A2780) cell lines with an 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Increased terminal deoxynucleotidyl transferase dUTP nick-end labeling-positive cells and annexin V–propidium iodide stained cells indicate that A. salmonea induces late apoptosis in SKOV-3 cells. Notably, treatment with A. salmonea induced the following events: Apoptosis; caspase-3, -8, -9 and poly(ADP-ribose) polymerase activation; first apoptosis signal (Fas) and Fas ligand activation; Bid cleavage; and Bax2–B-cell lymphoma 2 dysregulation. The results show that A. salmonea-induced apoptosis was mediated by both mitochondrial and death receptor pathways. An increase in intracellular reactive oxygen species (ROS) was also observed in A. salmonea-treated cells, whereas the antioxidant N-acetylcysteine (NAC) prevented A. salmonea-induced cell death and DNA fragmentation, indicating that A. salmonea-induced apoptosis was mediated by ROS generation. Interestingly, A. salmonea-induced apoptosis is associated with the suppression of human epidermal growth factor receptor-2 (HER-2/neu) and phosphoinositide 3-kinase (PI3K)–protein kinase B (AKT) expression in HER-2/neu overexpressing SKOV-3 cells. NAC significantly prevented A. salmonea-induced HER-2/neu depletion and PI3K/AKT inactivation, indicating that A. salmonea-triggered apoptosis is mediated by ROS-inhibited HER-2/neu signaling cascades. To our knowledge, this is the first report describing the anticancer activity of this potentially beneficial mushroom against human ovarian carcinoma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号