首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Mitosis and cytokinesis have been studied in the green algaZygnema C. A. Agardh using interference-contrast light and transmission electron microscopy. At prophase, the nucleolus disintegrates and numerous extranuclear microtubules near the nuclear periphery penetrate into the nucleoplasm. When aligned in the equatorial plane of the open metaphase spindle the chromosomes are coated with persistent nucleolar fragments. At anaphase, vacuoles intrude into the interzonal spindle region and seemingly contribute to the anaphase movement of the chromosomes. At telophase, the spindle is persistent and the reforming nuclei are separated by cytoplasmic strands containing microtubules, interspersed with vacuoles. Extensive bundles of microtubules, dictyosomes and parallel, slightly inflated ER-profiles extend from the poles of the telophase nucleus along the longitudinal side of the chloroplast. Conceivably, these microtubules guide the nucleus during its post-mitotic migration towards its central interphase position between the two halves of the dividing chloroplast. Throughout the mitotic cycle, ubiquitous dictyosomes, positioned near the chloroplast core, seem very active. Arrays of microtubules run towards these dictyosomes and may conduct the dictyosome-vesicles to the cleavage plane. At metaphase, septum growth becomes visible as an annular ingrowth of the plasmalemma. At late telophase or at entering interphase, an extensive clump of vesicles, associated with longitudinal bundles of microtubules, appears between the leading edges of the advanced furrow. Apparent fusion of these vesicles with the head of the centripetally-growing furrow results in its completion. The pattern of mitosis and cytokinesis inZygnema is compared with that of closely related green algae.  相似文献   

2.
Summary The ultrastructure of mitosis and cytokinesis of the uninucleateTribonema regulare has been investigated by employing transmission electron microscopy. Prophase is characterized by settlement of a pair of centrioles at the presumptive poles of the spindle, metaphase by equatorial bulging of the nucleus, anaphase by non-synchronous separation of the chromosomes, and telophase by a persistent, strongly elongated, interzonal spindle. Throughout mitosis, at each pole dictyosomes are associated with the polar gaps of the nuclear envelope that otherwise remains intact. Cytokinesis does not immediately follow mitosis; from the static images it can be concluded that it is necessary for the daughter nuclei to approach each other before cytokinesis is initiated by complete division of the protoplast via plasma membrane cleavage. Afterwards, a ring of cell wall material is deposited close near the lateral wall in the plane of protoplast separation followed by a simultaneous or centripetal development of a single integral partitioning septum. Once the septum is completed, the cylindrical portion of the H-shaped segment is manufactured. The phylogenetic position ofTribonema amongst those algae, which may have evolved from unicells into filaments, is discussed.  相似文献   

3.
Frans A. C. Kouwets 《Protoplasma》1996,191(3-4):191-204
Summary The ultrastructure of mitosis and cytokinesis is studied in the typical and a multicentriolar form of the multinucleate green algaBracteacoccus minor (Chodat) Petrovà. These processes are essentially identical in both forms, and are similar to those in other uni- and multinucleate chlorellalean algae. The mitotic spindle is closed and centric, and a fragmentary perinuclear envelope is present. In multinuclear cells mitosis is synchronous and may occur at the same time as cytokinesis. Cleavage is simultaneous and centrifugal, starting near the nucleus-associated centrioles and apparently mediated by phycoplast microtubules of the trochoplast type. Flagellated wall-less spores are usually formed. In the typical form ofB. minor, each interphase nucleus is associated with two mature centrioles (= one set) which function as centrosomal markers. At the onset of mitosis these centrioles duplicate and segregate and eventually establish the two poles of the spindle, where polar fenestrae develop in the nuclear envelope. In the multicentriolar form, however, each interphase nucleus generally is associated with two or three sets of centrioles. Consequently, during mitosis each half-spindle is associated with two or three sets. These centrioles are not necessarily all associated with the fenestrae at the spindle poles, but one or more sets are frequently associated with the nuclear membrane, more or less remote from the nuclear poles. However, the spindle in this multicentriolar form remains essentially bipolar. Cleavage generally results in zoospores with two, four or six flagella. The behaviour of the extra centrioles during the cell cycle and their possible relationship with centrosomes are discussed.  相似文献   

4.
The mitosis and cytokinesis of Draparnaldia glomerata as examined here by transmission electron microscopy are in many aspects similar to those described earlier for other chaetophoralean algae. The standard chaetophoralean model of the mechanism of mitosis/cytokinesis is described in detail. Characteristic in this pattern is the movement of sets of centrioles towards the nuclear poles followed by a proliferation of extranuclear microtubules at prophase, the (partial) fusion of centrioles with the spindle poles at metaphase and anaphase, the simultaneous separation of chromosomes apparently caused by both spindle elongation and shortening of the chromosomal microtubules at anaphase, the expulsion of the centrioles by daughter nuclei and finally the non–persistent spindle at telophase. Cytokinesis takes place by formation of a cell plate associated with phycoplast microtubules. The possible function of the phycoplast in cytokinesis in Draparnaldia is discussed.  相似文献   

5.
M Murone  V Simanis 《The EMBO journal》1996,15(23):6605-6616
Premature initiation of cytokinesis can lead to loss of chromosomes, and 'cutting' of the nucleus. Therefore, the proper spatial and temporal co-ordination of mitosis and cytokinesis is essential for maintaining the integrity of the genome. The fission yeast cdc16 gene is implicated both in the spindle assembly checkpoint and control of septum formation. To identify other proteins involved in these controls, we have isolated multicopy suppressors of the cdc16-116 mutation, and the characterization of one of these, dma1 (defective in mitotic arrest), is presented here. dma1 is not an essential gene, but in a dma1 null background (dma1-D1) the function of the spindle assembly checkpoint is compromised. If assembly of the spindle is prevented, dma1-D1 cells do not arrest, the activity of cdc2 kinase decays and cells form a division septum without completing a normal mitosis. dma1-D1 cells also show an increased rate of chromosome loss during exponential growth. Upon ectopic expression from an inducible promoter, dma1p delays progress through mitosis and inhibits septum formation, giving rise to elongated, multinucleate cells. We propose that dma1 is a component of the spindle assembly checkpoint, required to prevent septum formation and premature exit from mitosis if spindle function is impaired.  相似文献   

6.
The tiny jumping flagellate originally described as Pedinomonas mikron Throndsen was isolated into pure culture from Australian waters and its ultrastructure critically examined. Pedinomonas mikron differs in behavior and in features of the flagellar apparatus from P. minor, the type species from freshwater, and is referred to the new genus Resultor. The two genera are closely related and form the new class Pedinophyceae, which is characterized by features of the flagellar apparatus, mitosis, and cytokinesis. The flagella show the 11/5 orientation otherwise characteristic of Ulvophyceae and Pleurastrophyceae, but they are arranged end to end as in the Chlorophyceae. The flagellar root system is asymmetric and includes a rhizoplast that emerges from the base of one flagellum but subsequently associates with a microtubular root from the second basal body. Mitosis studied previously by Pickett-Heaps and Ott in Pedinomonas is closed, unlike in other green algae, and the spindle is persistent. No phycoplast or phragmoplast is formed during cytokinesis. The eyespot of the Pedinophyceae is located at the opposite end of the cell from the flagella and adjacent to the pyrenoid, as in the most primitive members of the Prasinophyceae. Members of the Pedinophyceae lack prasinoxanthin and Mg 2,4D, characteristic of certain other primitive green algae. The primitive green algae include the classes Prasinophyceae and Pedinophyceae. Micromonadophyceae Mattox et Stewart is considered a synonym of Prasinophyceae. Two new orders are established, Pedinomonadales, containing all known members of the Pedinophyceae, and Scourfieldiales, with the single family Scourfieldiaceae fam. nov. and the single genus Scourfieldia.  相似文献   

7.
Cell division in Chlamydomonas moewusii is described. The cells become immobile with flagellar abscission prior to mitosis. The basal bodies migrate toward the nucleus and become intimately associated with the nuclear membrane which is devoid, of ribosomes where adjacent to the basal bodies. The basal bodies replicate at preprophase. The nucleolus fragments at this stage. By prophase the basal body pairs have migrated, to the nuclear poles. Spindle fibers become prominent in the nucleus. The nuclear membrane does not fragment. The nucleus assumes a crescent-form by metaphase. Polar fenestrae are absent. Kinetochores appear at anaphase. An interzonal spindle elongates as the chromosomes move to the nuclear poles. Daughter nuclei become abscised by an ingrowth of nuclear membrane, leaving behind a separated, degenerating interzonal spindle. Ribosomes reappear on the outer nuclear membrane at late telophase. Nucleoli reform early in cytokinesis. The cleavage furrow, associated microtubules, and endoplasmic reticulum comprise the phycoplast. Cytokinesis proceeds rapidly after the completion of telophase. The basal body-nucleus relationship becomes reorganized into the typical interphase condition late in cytokinesis. Specific and predictable organelle rearrangements during mitosis have been described. Cell division in C. moewusii is compared with other algae, especially C. reinhardi.  相似文献   

8.
The fine structure of stages in mitosis in a colorless euglenoid, Anisonema sp., reveals that chromosomes remain condensed throughout the life cycle and are attached to the nuclear envelope at interphase. The onset of mitosis is marked by the anterior migration of the nucleus towards the base of the reservoir and by elongation of the nucleolus. The nuclear envelope persists throughout mitosis. Microtubules are generated in the peripheral nucleoplasm adjacent to the envelope and attach to the chromosomes while they are still associated with the envelope. The region of microtubular contact develops into a distinct layered kinetochore as the developing spindle with attached chromosomes separates from the nuclear envelope and moves into the nucleoplasm. The mature spindle consists of a number of subspindles each containing about 8–10 microtubules and a few associated chromosomes. Both chromosomal and non-chromosomal microtubules are present in each subspindle and extend towards the envelope terminating at or near the nuclear pores. Chromosomal segregation is concomitant with nuclear elongation. By late division, an interzonal spindle develops in the dumbbell-shaped nucleus and nucleolar separation occurs. Continued invagination of the nuclear envelope in the region of the interzonal spindle eventually separates the daughter nuclei. A remnant of the interzonal spindle persists in the cytoplasm until cytokinesis.  相似文献   

9.
In mitosis, centrosomes nucleate microtubules that capture the sister kinetochores of each chromosome to facilitate chromosome congression. In contrast, during meiosis chromosome congression on the acentrosomal spindle is driven primarily by movement of chromosomes along laterally associated microtubule bundles. Previous studies have indicated that septin2 is required for chromosome congression and cytokinesis in mitosis, we therefore asked whether perturbation of septin2 would impair chromosome congression and cytokinesis in meiosis. We have investigated its expression, localization and function during mouse oocyte meiotic maturation. Septin2 was modified by SUMO-1 and its levels remained constant from GVBD to metaphase II stages. Septin2 was localized along the entire spindle at metaphase and at the midbody in cytokinesis. Disruption of septins function with an inhibitor and siRNA caused failure of the metaphase I /anaphase I transition and chromosome misalignment but inhibition of septins after the metaphase I stage did not affect cytokinesis. BubR1, a core component of the spindle checkpoint, was labeled on misaligned chromosomes and on chromosomes aligned at the metaphase plate in inhibitor-treated oocytes that were arrested in prometaphase I/metaphase I, suggesting activation of the spindle assembly checkpoint. Taken together, our results demonstrate that septin2 plays an important role in chromosome congression and meiotic cell cycle progression but not cytokinesis in mouse oocytes.  相似文献   

10.
Mitosis in vegetative cells of the siphonocladalean algaBoergesenia forbesii (Harvey) Feldmann was investigated mainly by electron microscopy. The mitotic spindle was centric and closed. The interphase nucleus contained a spherical nucleolus. The nucleolus was slightly dispersed at prophase, but nucleolar materials remained during nearly all stages of mitosis. Kinetochores were evident on chromosomes. The polar regions of nuclear envelope had no fenestrae during mitosis. Anaphase separation of the chromosomes was asynchronous. Elongation of interzonal spindle at telophase separated the two daughter nuclei widely. The ultrastructural features of mitosis inB. forbesii revealed by the present investigation are compared with those of other siphonous and siphonocladous algae in the Ulvophyceae.  相似文献   

11.
Summary Reproductive cells (androgonidia) ofVolvox carteri f.weismannia divide to form packets of 64 or 128 sperm cells. The androgonidium morphology, stages of mitosis, and cytokinesis were examined by electron microscopy. The biflagellate androgonidium loses its flagella before mitosis but the flagellar bases at the anterior end of the cell are retained. Two additional basal bodies are formed and the nucleus migrates from its central position to the area of the basal bodies before mitosis begins. A five-layered kinetochore is present on the chromosomes and remnant nucleolar material persists during mitosis. A furrow at the chloroplast end of the cell and the formation of phycoplast microtubules and vesicles signal the beginning of cytokinesis at early telophase. The cells maintain cytoplasmic connections until after the packet of sperm cells completes its development.  相似文献   

12.
Cell division in the marine red algae Polysiphonia harveyi Bailey and P. denudata (Dillwyn) Kutzing was studied with the electron microscope. Cells comprising the compact spermatangial branches of male plants were used exclusively because of their small size, large numbers and the ease with which the division planes can be predetermined. Some features characterizing mitosis in Polysiphonia confirm earlier electron microscope observations in Membranoptera, the only other florideophycean algae in which mitosis has been studied in detail. Common to both genera are a closed, fenestrated spindle, perinuclear endoplasmic reticulum, a typical metaphase plate arrangement of chromosomes, conspicuous, layered kinetochores, chromosomal and non-chromosomal microtubules, and nucleus associated organelles (NAOs) known as polar rings (PRs) located singly in large ribosome-free zones of exclusion at division poles in late prophase. However, other features, unreported in Membranoptera, were observed consistently in Polysiphonia. These include the presence of PR pairs in interphase-early prophase cells, the attachment of PRs to the nuclear envelope during all mitotic stages, the migration of a single PR to establish the division axis, a prominent, nuclear envelope protrusion (NEP) at both division poles at late prophase, the prometaphase splitting of PRs into proximal and distal portions, and the reformation of post-mitotic nuclei by the separation of an elongated interzonal nuclear midpiece at telophase. During cytokinesis, cleavage furrows impinge upon a central vacuolar region located between the two nuclei and eventually pit connections are formed in a manner basically similar to that reported for other red algae. Diagrammatic sequences of proposed PR behavior during mitosis are presented which can account for events known to occur during cell division in Polysiphonia. Mitosis is compared with that reported in several other lower plants and it is suggested that features of cell division are useful criteria to aid in the assessment of phylogenetic relationships of red algae.  相似文献   

13.
Cell division is fundamental to all organisms and the green alga used here exhibits both key animal and plant functions. Specifically, we analyzed the molecular and cellular dynamics of early embryonic divisions of the multicellular green alga Volvox carteri (Chlamydomonadales). Relevant proteins related to mitosis and cytokinesis were identified in silico, the corresponding genes were cloned, fused to yfp, and stably expressed in Volvox, and the tagged proteins were studied by live-cell imaging. We reveal rearrangements of the microtubule cytoskeleton during centrosome separation, spindle formation, establishment of the phycoplast, and generation of previously unknown structures. The centrosomes participate in initiation of spindle formation and determination of spindle orientation. Although the nuclear envelope does not break down during early mitosis, intermixing of cytoplasm and nucleoplasm results in loss of nuclear identity. Finally, we present a model for mitosis in Volvox. Our study reveals enormous dynamics, clarifies spatio-temporal relationships of subcellular structures, and provides insight into the evolution of cell division.

Analysis of cell divisions of the microalga Volvox reveals enormous dynamics of cytoskeletal and membranous structures with coordination of intranuclear spindle formation by cytosolic centrosomes.

IN A NUTSHELLBackground: Mitosis, a type of cell division, is fundamental to all eukaryotic life and must be carried out very accurately. Even though the process of mitosis itself is highly conserved among eukaryotes, there are significant differences between animals, fungi, plants, and algae. From an evolutionary point of view, the green alga Volvox carteri used here possesses both key animal and plant functions and it exhibits important features of the last common eukaryotic ancestor that have been lost in other lineages. Prior to our work, a comprehensive in vivo analysis of the entire process of cell division in green algae was lacking.Question: How exactly does cell division work in green algae? How do the cytosolic centrosomes deal with the persistent nuclear envelope in this process? What is the relationship between different microtubular structures?Findings: Our study reveals enormous dynamics during mitosis, clarifies spatio-temporal relationships of subcellular structures, and provides insights into evolution of cell division. Although the nuclear envelope does not break down during early mitosis of Volvox, it becomes permeable and the nucleus temporarily loses its identity. Two microtubule-organizing centers, the centrosomes, located immediately outside the nuclear envelope participate in initiation of the mitotic spindle formation inside the nuclear envelope. This process also defines the orientation of the mitotic spindle. In cytokinesis, an algae-specific microtubule structure, the phycoplast, replaces the spindle. The microtubules of the phycoplast may play a direct role in promoting the cell membrane invagination of the cleavage furrow.Next steps: How are the massive rearrangements of subcellular structures regulated? What happens at the nuclear pores when the nuclear envelope becomes permeable at the onset of mitosis? What determines in later embryogenesis which cells then divide asymmetrically rather than symmetrically?  相似文献   

14.
Chromosome segregation, mitotic exit, and cytokinesis are executed in this order during mitosis. Although a scheme coordinating sister chromatid separation and initiation of mitotic exit has been proposed, the mechanism that temporally links the onset of cytokinesis to mitotic exit is not known. Exit from mitosis is regulated by the mitotic exit network (MEN), which includes a GTPase (Tem1) and various kinases (Cdc15, Cdc5, Dbf2, and Dbf20). Here, we show that Dbf2 and Dbf20 functions are necessary for the execution of cytokinesis. Relocalization of these proteins from spindle pole bodies to mother daughter neck seems to be necessary for this role because cdc15-2 mutant cells, though capable of exiting mitosis at semipermissive temperature, are unable to localize Dbf2 (and Dbf20) to the "neck" and fail to undergo cytokinesis. These cells can assemble and constrict the actomyosin ring normally but are incapable of forming a septum, suggesting that MEN components are critical for the initiation of septum formation. Interestingly, the spindle pole body to neck translocation of Dbf2 and Dbf20 is triggered by the inactivation of mitotic kinase. The requirement of kinase inactivation for translocation of MEN components to the division site thus provides a mechanism that renders mitotic exit a prerequisite for cytokinesis.  相似文献   

15.
D N Wheatley 《Cytobios》1990,63(253):109-130
During M-phase, most organelles in HeLa S-3 cells are relocated in the 'cortex' or outer-zone of cytoplasm. Elements of the rough endoplasmic reticulum (rER) and polysome assemblies persist to varying degrees from cell to cell in this zone. Dilatation of rER cisternae becomes prominent in a small percentage of metaphases, and its occurrence and significance is discussed. Remnants of the Golgi apparatus are almost invariably peripheralized. Its cisternal elements are lost in early mitosis, and reappear in late telophase. The inner zone of the protoplasm around the chromosomes loses its associated intermediate filaments and excludes organelles until cytokinesis commences. A rapid repopulation occurs by mid-telophase. The same pattern of zoning is found in cells entering mitosis in the presence of colcemid, but is followed by some repopulation of the inner zone by a small minority of organelles after approximately 2 h of arrest. Centrioles are particularly prone to becoming enmeshed within the 'ball' of entangled c-metaphase chromosomes. An unusually high degree of pairing of cytoplasmic membranes, probably rER elements, also occurs in colcemid-arrested metaphases, which may further contribute to their reduced level of protein synthesis. These have been referred to as 'confronting cisternae' (Ghadially, 1988). The zoning of the cytoplasm may result from nuclear envelope breakdown during mitosis, and is not specifically related to or associated with microtubule redeployment during spindle formation in M-phase. Differences in the extent of zoning in other cell lines are discussed in comparison with HeLa S-3 cells.  相似文献   

16.
Honda M  Hashimoto H 《Protoplasma》2007,231(3-4):127-135
Summary. Division and partitioning of microbodies (peroxisomes) of the green alga Klebsormidium flaccidum, whose cells contain a single microbody, were investigated by electron microscopy. In interphase, the rod-shaped microbody is present between the nucleus and the single chloroplast, oriented perpendicular to the pole-to-pole direction of the future spindle. A centriole pair associates with one distal end of the microbody. In prophase, the microbody changes not only in shape, from a rodlike to a branched form, but also in orientation, from perpendicular to parallel to the future pole-to-pole direction. Duplicated centriole pairs are localized in close proximity to both distal ends of the microbody. In metaphase, the elongated microbody flanks the open spindle, with both distal ends close to the centriole pair at either spindle pole. The microbody further elongates in telophase and divides after septum formation (cytokinesis) has started. The association between the centrioles and both distal ends of the microbody is maintained throughout mitosis, resulting in the distal ends of the elongated microbody being fixed at the cellular poles. This configuration of the microbody may be favorable for faithful transmission of the organelle during cell division. After cytokinesis is completed, the microbody reverts to the perpendicular orientation by changing its shape. Microtubules radiating from the centrosomes flank the side of the microbody throughout mitosis. The close association of centrosomes and microtubules with the microbody is discussed in respect to the partitioning of the microbody in this alga. Correspondence: H. Hashimoto, Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan. Present address: M. Honda, Department of Computational Biology, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, Japan.  相似文献   

17.
Summary Asexual reproduction inKirchneriella lunaris involves autospore formation. After an initial mitosis, the curved cell cleaves to a variable extent, and then the nuclei divide again; finally the cytoplasm is partitioned into four around each nucleus. Rudimentary centrioles appear prior to the first mitosis; centriole complexes then become associated with a developing sheath of extranuclear microtubules at prophase; fenestrae appear at the poles through which both microtubules and centrioles migrate, preceding intranuclear spindle formation. The nucleus meanwhile is enveloped by a perinuclear layer of endoplasmic reticulum which is also interposed between the golgi body and nuclear envelope. Chromosome separation is accompanied by considerable spindle elongation. Finally the reforming nuclear envelope excludes both centriole complex and interzonal spindle apparatus from daughter nuclei. Cleavage is preceded by i) nuclear movement to the cell center, ii) movement of centriole complexes around daughter nuclei until they are opposite one another, and iii) the concurrent formation of a system of transverse microtubules extending across the cell. Other microtubules encircle the cell predicting the cleavage plane. A septum then appears amongst these cytokinetic microtubules, possibly derived from the plasmalemma; it extends across the cell too, through the cleaving peripheral chloroplast. Secondary mitoses follow (as above) during which this septum may be partially resorbed. Finally this septum is reformed, if necessary, and two other septa appear (as above) to quadripartition the cell. Mitotic and cytokinetic structures in this algae are briefly compared with some others.  相似文献   

18.
A. Schulz 《Protoplasma》1988,142(2-3):176-187
Summary The spatial and temporal organization of the microtubular cytoskeleton at the transitional stage of mitosis and cytokinesis has been studied in the chaetophoralean green algaAphanochaete magna using indirect immunofluorescence light microscopy and transmission electron microscopic analysis of serial sections including computer-aided three-dimensional reconstruction. At late mitosis, elaborate asterlike microtubule systems including bundles interconnecting both centriolar regions are present. These systems disappear a the onset of interzonal spindle disintegration. The incipient phycoplast consists of a star-shaped microtubule assemblage projecting from the intact interzonal spindle. It develops strongly at the time of spindle disintegration, later on it becomes compressed by daughter nuclei movement. Cell plate formation is associated with a two-dimensional phycoplast. Phycoplast microtubules remain for a while associated with the completed cross wall but finally they depolymerize. The general occurrence of astral microtubule systems (includingA. magna) is evaluated. The subsequent developmental stages of the phycoplast, formation, maturation and depolymerization, are discussed.Abbreviations IF immunofluorescence - IZS interzonal spindle - MT microtubule - MTOC microtubule organizing center - TEM transmission electron microscopy  相似文献   

19.
The processes of mitosis and cytokinesis in the multinucleate green alga Acrosiphonia have been examined in the light and electron microscopes. The course of events in division includes thickening of the chloroplast and migration of numerous nuclei and other cytoplasmic incusions to form a band in which mitosis occurs, while other nuclei in the same cell but not in the band do not divide. Centrioles and microtubules are associated with migrated and dividing nuclei but not with nonmigrated, nondividing nuclei. Cytokinesis is accomplished in the region of the band, by means of an annular furrow which is preceded by a hoop of microtubules. No other microtubules are associated with the furrow. Characteristics of nuclear and cell division in Acrosiphonia are compared with those of other multinucleate cells and with those of other green algae.  相似文献   

20.
An ultrastructure study of mitosis and cytokinesis in the sessile sporangium of Trentepohlia aurea (L.) Mart, was made to clarify the phylogenetic position of the alga. Mitosis was closed and centric at late anphase with cytokinesis involving the production of cleavage membranes by dictyasames between the numerous, well-separated daughter nuclei. Neither phycoplast nor phragmoplast microtubules were observed during cytokinesis. The lack of phycoplast microtubules and the presence of multilayered structures in flagellated cells suggest Trentepohlia is phylogenetically related to those green algae thought to have given rise to the land plants. The primitive type of mitosis and the lack of microbodies suggest that the ancestors of Trentepohlia may have branched off from this line relatively early.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号