首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The germination characteristics of a population of the winter annual Phacelia dubia (L.) Trel. var. dubia from the middle Tennessee cedar glades were investigated in an attempt to define the factor(s) regulating germination in nature. Factors considered were changes in physiological response of the seeds (after-ripening), temperature, age, light and darkness, and soil moisture. At seed dispersal (late May to early June), approximately 50 % of the seeds were non-dormant but, would germinate only at low temperatures (10–15 C). As the seeds aged from June to September, there was an increase in rate and total percent of germination at 10, 15, and 20 C, and the maximum temperature for germination increased to 25 C. Little or no germination occurred at the June, July, and August temperatures in 0- to 2-month-old seeds, even in seeds on soil that was kept continuously moist during this 3-month period. At the September, October, and November temperatures 3- to 5-month-old seeds germinated to high percentages. In all experiments seeds germinated better at a 14-hr photoperiod than in constant darkness. Inability of 0- to 2-month-old seeds to germinate at high summer temperatures allows P. dubia dubia to pass the dry summer in the seed stage, while increase in optimum and maximum temperatures for germination during the summer permits seeds to germinate in late summer and early fall when conditions are favorable for seedling survival and eventual maturation.  相似文献   

2.
Summary Ambrosia artemisiifolia L., Chenopodium album L., and Amaranthus retroflexus L. are three summer annual weeds that occur in disturbed habitats. In nature, the peak germination season for A. artemisiifolia and C. album is in early to mid-spring, while in A. retroflexus the peak germination season is late spring to early summer. Furthermore, seeds of A. artemisiifolia germinate only in spring, while seeds of C. album and A. retroflexus germinate throughout the summer. In an attempt to explain the differential germination behavior of these three species in nature, changes in their germination responses to temperature during burial in a non-heated greenhouse from October 1974 to October 1975 were monitored. A high percentage of the seeds of all three species after-ripened during winter. Seeds of A. artemisiifolia and C. album germinated at temperatures characteristic of those in the field in early and mid-spring, but seeds of A. retroflexus required the higher temperatures of late spring and early summer for germination. Seeds of all three species germinated to higher percentages in light than in darkness. Non-dormant seeds of A. artemisiifolia that did not germinate in spring entered secondary dormancy. On the other hand, seeds of C. album and A. retroflexus that did not germinate when temperatures first became favorable for germination, did not enter secondary dormancy and, thus, retained the ability to germinate at summer field temperatures during summer. Thus, temporal differences in the germination behavior of these three species are caused by the differential reaction of the seeds to temperature during the annual temperature cycle.  相似文献   

3.
At maturity in November, a high percentage of Aster pilosus Willd. seeds germinated in light at high temperatures (30/15, 35/20 and 40/25 C). Stratification during winter lowered the temperature requirement for germination, and high percentages of germination were obtained in light at 15/6 and 20/10 C., as well as at 30/15, 35/20 and 40/25 C. Stratification in darkness was completely ineffective, but stratification in light was partially effective in overcoming the light requirement for germination. Inability of seeds to germinate at low temperatures prevents germination after dispersal in late autumn and winter, when freezing temperatures could kill the seedlings. The lowering of the temperature requirement for germination during winter stratification allows the seeds to germinate and the resulting vegetative rosettes to become well established before the onset of the periodic summer droughts that occur in habitats occupied by A. pilosus.  相似文献   

4.
《Acta Oecologica》2001,22(1):1-8
Seeds of Drosera anglica collected in Sweden were dormant at maturity in late summer, and dormancy break occurred during cold stratification. Stratified seeds required light for germination, but light had to be given after temperatures were high enough to be favorable for germination. Seeds stratified in darkness at 5/1 °C and incubated in light at 12/12 h daily temperature regimes of 15/6, 20/10 and 25/15 °C germinated slower and to a significantly lower percentage at each temperature regime than those stratified in light and incubated in light. Length of the stratification period required before seeds would germinate to high percentages depended on (1) whether seeds were in light or in darkness during stratification and during the subsequent incubation period, and (2) the temperature regime during incubation. Seeds collected in 1999 germinated to 4, 24 and 92 % in light at 15/6, 20/10 and 25/15 °C, respectively, after 2 weeks of stratification in light. Seeds stratified in light for 18 weeks and incubated in light at 15/6, 20/10 and 25/15 °C germinated to 87, 95 and 100 %, respectively, while those stratified in darkness for 18 weeks and incubated in light germinated to 6, 82 and 91 %, respectively. Seeds collected from the same site in 1998 and 1999, stratified in light at 5/1 °C and incubated in light at 15/6 °C germinated to 22 and 87 %, respectively, indicating year-to-year variation in degree of dormancy. As dormancy break occurred, the minimum temperature for germination decreased. Thus, seed dormancy is broken in nature by cold stratification during winter, and by spring, seeds are capable of germinating at low habitat temperatures, if they are exposed to light.  相似文献   

5.
In 1879 Dr. W. J. Beal selected seeds of 23 different species of locally common plants, mixed 50 seeds of each species with moist sand in unstoppered one-pint bottles, and buried the bottles in a sandy knoll to be unearthed and the viability of the seeds tested periodically. The year 1970 marked the ninetieth year the seed had been buried, and the thirteenth bottle was recovered to test for seed viability. Of the three species which had germinated in the 1960 test (curly dock, Rumex crispus; evening primrose, Oenothera biennis; and moth mullein, Verbascum blattaria), only V. blattaria had viable seed with 20% germination. No other species germinated. All ten seedlings of V. blattaria were grown to maturity, and seeds were then harvested to study the possible deviations from normality and the requirements for seed germination. All seedlings emerging from the first progeny seed appeared normal. The most prominent requirement for germination was light, and this is a possible explanation of why the seeds had remained viable but dormant for so long a period. One-third of the freshly harvested seed germinated in darkness and, furthermore, redrying of dark-moistened seed in the absence of light induced additional germination. Germination of dark-moistened seed was not completely restored when the still moist seeds were subsequently exposed to light. However, when dark-moistened seeds were dried and then remoistened in the light, germination was about 95 %. About 5 % of the seed did not germinate under the conditions used. We find that 5 % of the population of V. blattaria seeds are dormant for unknown reasons, that 30 % will germinate if supplied only with moisture, and that 65 % are inhibited and require light and moisture simultaneously for germination. Supplying this 65 % of the population with moisture in darkness results in the development of a second type of inhibition which is no longer light reversible. It appears that the simultaneous requirement for light and moisture is an important factor in permitting V. blattaria seeds to remain dormant during prolonged burial.  相似文献   

6.
Seasonal Periodicity in Germination of Seeds of Chenopodium album L.   总被引:1,自引:0,他引:1  
Seeds of Chenopodium album L. were buried under field and controlledconditions. The germination capacity of these seeds was testedover a range of conditions at regular intervals. Seed buriedin the field only showed small seasonal changes in germinationcapacity when tested at constant temperatures in incubators.However, when germination was tested at field temperatures,seasonal changes in germination were more obvious. Nitrate andlight always promoted germination. There was a strong positiveinteraction between the effects of the two factors. When nitrateand light were combined, exhumed seeds germinated over a muchlonger period of the year than in water with or without light.Desiccation only stimulated under particular conditions, forexample, when germination was tested in nitrate in darkness.A regression model was developed with the data from the germinationtests in incubators. The model describes the changes in dormancyand germination and estimates germination at field temperaturesaccurately throughout the year. Despite the absence of clearseasonal changes in the temperatures suitable for germination(computed with the model), germination in the field showed seasonalperiodicity, because the field temperature and the germination-temperaturerange only overlapped from spring to late summer.Copyright 1993,1999 Academic Press Chenopodium album, lamb's quarters, dormancy pattern, germination, regression model, temperature, light, nitrate, desiccation  相似文献   

7.
Trials conducted under glasshouse conditions showed that control of Otiorhynchus sulcatus larvae in strawberry plants can be effective using Steinernema carpocapsae and Heterorhabditis megidis, given that temperature and moisture extremes are avoided. In field experiments, the double line T-Tape® drip irrigation system performed better than the single line T-Tape® system, effectively distributing the nematodes along and across strawberry raised beds, and placing them close to the root zone where O. sulcatus larvae feed. As soil temperatures are satisfactory for nematode infectivity from late spring to early autumn, nematode applications were aimed at late instar larvae during spring, and early instar larvae during summer. Late summer field treatment with S. carpocapsae induced 49.5% reduction of the early instar larvae, and field application of the same nematode species in late spring resulted in 65% control of late instar larvae. In the same trial, spring application of H. megidis caused 26% mortality of late instar larvae of O. sulcatus.  相似文献   

8.

Background and Aims

Little is known about morphological (MD) or morphophysiological (MPD) dormancy in cold desert species and in particular those in Liliaceae sensu lato, an important floristic element in the cold deserts of Central Asia with underdeveloped embyos. The primary aim of this study was to determine if seeds of the cold desert liliaceous perennial ephemeral Eremurus anisopterus has MD or MPD, and, if it is MPD, then at what level.

Methods

Embryo growth and germination was monitored in seeds subjected to natural and simulated natural temperature regimes and the effects of after-ripening and GA3 on dormancy break were tested. In addition, the temperature requirements for embryo growth and dormancy break were investigated.

Key Results

At the time of seed dispersal in summer, the embryo length:seed length (E:S) ratio was 0·73, but it increased to 0·87 before germination. Fresh seeds did not germinate during 1 month of incubation in either light or darkness over a range of temperatures. Thus, seeds have MPD, and, after >12 weeks incubation at 5/2 °C, both embryo growth and germination occurred, showing that they have a complex level of MPD. Since both after-ripening and GA3 increase the germination percentage, seeds have intermediate complex MPD.

Conclusions

Embryos in after-ripened seeds of E. anisopterus can grow at low temperatures in late autumn, but if the soil is dry in autumn then growth is delayed until snowmelt wets the soil in early spring. The ecological advantage of embryo growth phenology is that seeds can germinate at a time (spring) when sand moisture conditions in the desert are suitable for seedling establishment.  相似文献   

9.
Temperate forest herbs with seeds exhibiting both a physical and a physiological dormancy mechanism are rare, and knowledge on the factors regulating germination of these species is fragmentary. The biennial Geranium robertianum L. grows mainly in temperate woodlands, but can also be found in exposed habitats. Seedlings of G. robertianum are known to emerge from spring until autumn, but little is known about the environmental factors regulating germination. In this study, phenology of seedling emergence and of physical dormancy loss was examined for seeds buried at shaded or sunny exposed locations. The role of temperature in regulating dormancy and germination was analysed by incubating seeds in temperature sequences simulating temperatures that seeds experience in nature. The results indicate that most seeds of G. robertianum buried in sunny conditions germinate immediately after physical dormancy loss in summer. Seeds buried in shaded conditions also lose physical dormancy mainly during summer, but remain physiologically dormant and do not germinate until late winter or early spring. Besides physical dormancy, seeds of G. robertianum also initially have a high level of physiological dormancy, which is reduced during dry storage. Physiological dormancy is reduced through chilling in winter, thus enabling the seeds to germinate at low temperatures. We conclude that a complex combination of physical and physiological dormancy ensures that G. robertianum seeds germinate in summer at exposed sites and in early spring at shaded sites.  相似文献   

10.
Picris hieracioides var. japonica (Asteraceae), which grows in occasionally disturbed habitats such as riverbanks, is rarely observed under dense vegetation. We examined the effect of the experience and timing of receiving leaf-transmitted light in gap-detecting seed germination in this plant. Seeds under unfiltered light, which simulated the light conditions of seeds on the soil surface in a canopy gap, germinated at a constant temperature of 20°C. However, most seeds in darkness, which simulated the light conditions of seeds buried in the soil without receiving leaf-transmitted light, germinated under temperature fluctuations of over 4°C. Seeds in darkness after receiving leaf-transmitted light for 1 week, which simulated the light conditions of seeds buried in the soil after receiving leaf-transmitted light, germinated under temperature fluctuations of over 8°C. Finally, seeds under continuous leaf-transmitted light, which simulated the light conditions of seeds on the soil surface below preexisting vegetation, germinated under temperature fluctuations of over 12°C. Seeds that experience unfiltered light, which suggests that they are in a gap, should not delay germination. In contrast, seeds that have received leaf-transmitted light should delay germination until the vegetation above is removed. Seeds exposed to leaf-transmitted light required larger temperature fluctuations in darkness than did untreated seeds, and seeds under continuous leaf-transmitted light required the largest temperature fluctuations. The various germination reactions to each gap signal in P. hieracioides var. japonica seeds allow the more reliable detection of gaps for subsequent seedling establishment. The requirement for gap signals that created high precision of timing in the germination process results in the germination of this species only in gaps. Therefore, P. hieracioides var. japonica is rarely found under dense vegetation.  相似文献   

11.
The germination ecophysiology of Arenaria glabra Michx., a characteristic winter annual plant species of granite and sandstone outcrops of southeastern United States, was investigated. Seeds germinate in early autumn, plants overwinter in the rosette stage and then flower, set seeds, and die in late spring; seeds are dispersed soon after maturity. Eighty-five to 90% of freshly-matured seeds were innately dormant, and the other 10–15% germinated only at temperatures lower than those that occur in the habitat at the time of seed dispersal in June. During the summer after-ripening period, seeds stored dry under ambient laboratory conditions exhibited progressive increases in rates and total percentages of germination, a widening of the temperature range for germination, and a loss of the light requirement. At a 14-hr daily photoperiod, seeds kept on continuously moist soil germinated to 83% at simulated July and August temperatures during July and August, and the remainder germinated at September temperatures in September. On the other hand, seeds subjected to alternate wetting and drying during July and August germinated to only 9% during those 2 months, and the remainder germinated after the soil was kept continuously moist, beginning on 1 September, at simulated habitat temperatures during September and October. Thus, the timing of germination of A. glabra in the field is controlled by an interplay of the seeds' physiological state with the dynamics of temperature and soil moisture conditions.  相似文献   

12.
Cysts of the toxic dinoflagellate Alexandrium tamarense (Lebour) Balech 1992 from the lower St. Lawrence estuary were used in a test of the following hypotheses: (1) cyst germination is triggered by a change in temperature, and (2) germination rate varies throughout the year and is controlled by a circannual internal biological clock. Results show that cyst germination was not affected significantly by temperature of incubation over the range 1°–16° C, and light showed no significant stimulation of germination. This is supported by the lack of effect of cyst incubation conditions during evaluation of the seasonal changes in germination rate (two temperatures: 4° and 15° C, and two light conditions: darkness and 150 μmol photons·m?2·s?1). Thus, direct environmental control through short-term increases in temperature and exposure to light has no effect on the germination of the cysts tested. The rate of germination, observed monthly over a 16-month period, showed low germination (<20%) over most of the period tested, except for a maximum reaching more than 50% germination in August to October of the second year of the experiment. This pattern was observed for cysts both from monthly field collections and from laboratory-stored cysts kept under constant environmental conditions (4° C, in the dark). The peak in germination observed under constant environmental conditions (in the laboratory), the almost coincidental increase in cyst germination observed for the field-collected cysts, and the absence of effects of temperature and light during incubation could be explained either by a temperature-controlled cyst maturation period (the time-temperature hypothesis of Huber and Nipkow 1923) or by the presence of an internal biological clock. However, the large decline in the rate of germination 2 months after the maximum provides strong support for the biological clock hypothesis. The ca. 12-month maturation (dormancy) period observed for the laboratory-stored cysts is the longest reported for this species to our knowledge; this might be related to the low storage temperature (4° C), which is close to bottom temperatures generally encountered in this environment (0° to 6° C). Similar field and laboratory storage temperatures could explain the coincidental increase in germination rate in the fall of the second year if cyst maturation is controlled by temperature. A fraction of the laboratory-stored cysts did not follow a rhythmic pattern: A rather constant germination rate of about 20% was observed throughout the year. This continuous germination of likely mature cysts may supplement the local blooms of this toxic dinoflagellate, as these often occur earlier than peak germination observed in late summer. It seems that two cyst germination strategies are present in the St. Lawrence: continuous germination after cyst maturation, with temperature controlling the length of the maturation period, and germination controlled by a circannual internal rhythm.  相似文献   

13.
Dormancy break and germination of seeds are governed by climatic cues, and predicted changes in climate may impact the ecology and conservation of species. Paysonia perforata and P. stonensis are rare brassicaceous winter annuals occurring primarily in fields on floodplains, where corn or soybeans are recommended for habitat maintenance. We tested the effects of precipitation, based on two predictions of changes in climate, on seed germination in these two species and placed the results into a management framework. Seeds of both species, collected during peak dispersal in late April/early May, were given various periods of light (or darkness) followed by darkness (or light) at summer temperatures before placement in darkness during late summer/early autumn in both laboratory and field. The light requirement was met earliest at 10 wk (mid-July) on alternating wet/dry substrate (simulating current climatic conditions). However, seeds of P. perforata and P. stonensis were photostimulated earliest at 2 wk (mid-May) and 6 wk (mid-June), respectively, on a continuously moist substrate (simulating predicted future conditions). The soil seed bank could be depleted if plowing coincides with photostimulation of seeds. Fields should be prepared after dispersal but before seeds are photostimulated and harvesting completed before seed germination in early September. Because seeds are highly photostimulated in late summer, disturbance from harvesting must be low to prevent burial. Cultivation of soybean, particularly for forage, is better matched to the seed biology and life cycle of Paysonia than that of corn under current and predicted climates.  相似文献   

14.
Studies on Sclerotium cepivorum infection of salad onions in artificially infested soil showed that under field conditions infection was greatest in late spring and summer and declined to a low level in the late autumn and winter months. Change of infection levels was found to be correlated with the effect of soil temperature in the field on the germination of sclerotia. This was substantiated in laboratory studies which demonstrated that sclerotium germination, mycelial growth and seedling infection were all markedly influenced by temperature.  相似文献   

15.
The effects of stratification temperatures and burial in soil on dormancy levels of Carex pendula L. and C. remota L., two spring-germinating perennials occurring in moist forests, were investigated. Seeds buried for 34 months outdoors, and seeds stratified in the laboratory at temperatures between 3 and 18 °C for periods between 2 and 28 weeks, were tested over a range of temperatures. Seeds of the two species responded similarly to stratification treatments, except for an absolute light requirement in C. pendula. Primary dormancy was alleviated at all stratification temperatures, but low temperatures were more effective than higher ones . (≥ 12 °C). Dormancy induction in non-dormant seeds kept at 5 °C occurred when seeds were subsequently exposed to 18 °C. Dormancy was not induced by a transfer to lower temperatures. Buried seeds of both species exhibited seasonal dormancy cycles with high germination from autumn to spring and low germination during summer. Temperatures at which the processes of dormancy relief and of dormancy induction occurred, overlapped to a high degree. Whether, and when, dormancy changes occurred depended on test conditions. The lower temperature limit for germination (> 10%) was 9 °C in C. remota and 15 °C in C. pendula. Germination ceased abruptly above 36 °C. Germination requirements and dormancy patterns suggest regeneration from seed in late spring and summer at disturbed, open sites (forest gaps) and the capability to form long, persistent seed banks in both species.  相似文献   

16.
The 2 types of fruit (aerial and subterranean) borne by the dwarf desert annual Gymnarrhena micrantha were compared with regard to their responses to factors affecting their formation, dispersal, germination and seedling mortality. The 2 types of fruit differed markedly in several respects. In comparison with the subterranean fruits, the aerial ones are much smaller and more numerous, but the formation of the inflorescence in which they develop is more dependent on a favorable supply of soil moisture. The aerial fruits are dispersed by wind, after becoming detached by a complex series of hygroscopic movements which involve several organs and tissues, while the subterranean fruits never leave the dead parent plant, germinating right through its tissues. Germination of the subterranean fruits starts after a shorter incubation period and is less temperature-dependent in both light and dark. Light stimulated germination of both types of fruit, increasing their germination rates and final percentages, but not affecting the duration of the incubation period. In the subterranean fruits, the rate of germination was equally stimulated by light over the entire temperature range, with a well-defined optimum at 15 C in both light and dark. In the aerial fruits, the same optimum was found only in the light, rates in darkness increasing with decreasing temperatures. In the aerial fruits, alternations of light and dark were more favorable to germination than either continuous light or dark, the full effect being obtained with a single 8-hr or 16-hr light period, provided it was preceded by 16 or 8 hr of darkness, respectively. Similar reactions to combinations of light and dark were not observed in the subterranean fruits. Seedlings developing from the subterranean fruits were much larger, but grew at a relatively much slower rate than those from aerial fruits. The former were distinctly more tolerant of unfavorable soil-moisture regimes, such as low moisture supply and drought. It was concluded that the 2 types of fruit serve 2 distinct functions in the biology of the plant. The aerial fruits are adapted to the function of increasing the distribution of the species within suitable habitats, while the subterranean fruits are adapted to increasing the probability of the survival of the species.  相似文献   

17.
Studies of leaf and shoot demography and growth in Baccharis pilularis ssp. consanguinea indicated that shoot mortality and rates of leaf loss were higher in older shrubs. Shoot elongation was greatest in summer and rates of leaf loss and litterfall highest in winter. Leaf addition was greatest in spring and fall, corresponding to periods of favorable temperature and moisture conditions.  相似文献   

18.
In this study we examined the germination ecology with special reference to the temperature requirements for embryo development and germination of Corydalis cava subsp. cava, under both outdoor and laboratory conditions. Corydalis cava is a spring flowering woodland tuberous geophyte widely distributed across Europe. Germination phenology, including embryo development and radicle and cotyledon emergence, was investigated in a population growing in northern Italy. Immediately after harvest, seeds of C. cava were sown both in the laboratory under simulated seasonal temperatures and naturally. Embryos, undifferentiated at the time of seed dispersal, grew during summer and autumn conditions, culminating in radicle emergence in winter, when temperatures fell to ca 5°C. Cotyledon emergence also occurred at ca 5°C, but first emergence was delayed until late winter and early spring. Laboratory experiments showed that high (summer) followed by medium (autumn) and low temperatures (winter) are needed for physiological dormancy loss, embryo development and germination respectively. Unlike seeds of C. cava that germinated in winter, in other Corydalis species radicle emergence occurred in autumn (C. flavula) or did not depend on a period of high summer temperature to break dormancy (C. solida). Our results suggest that subtle differences in dormancy and germination behavior between Corydalis species could be related to differences in their geographical distribution.  相似文献   

19.
Schütz  Wolfgang  Rave  Gerhard 《Plant Ecology》1999,144(2):215-230
The germination responses of 32 temperate Carex species were tested in light and darkness at five constant temperatures and under one fluctuating temperature regime, before and after cold-wet stratification. Using a linear logistic regression model, the probability of germination tested across all species was found to be significantly higher after stratification, in light and at the fluctuating temperature. In addition, the probability increased with temperature. Stratification increased germination in 28 species and had very little or no effect on four species. There was almost no germination in darkness prior to stratification, and the germination in light was considerably higher in all but two species compared with that in darkness. Thus, it can be concluded that the Carex species tested have broadly similar germination response patterns. The fact that Carices can be released from high levels of primary dormancy by low-temperature stratification implies that they are spring germinators. A light requirement after stratification in the major fraction of seeds and the capability of almost all investigated sedges to respond to fluctuating temperatures make it likely that persistent seed banks are formed. Additionally, sedges generally seem to have a high temperature requirement for germination which prevents them from emerging at the very beginning of the growing season. Regeneration by seed is probably largely restricted to gaps resulting from late spring disturbances where buried seeds have an opportunity to germinate and grow. Differences in germination were apparent between species occupying different habitats. Overall germination was significantly higher in wetland species than in dry-site species, probably owing to the greater capability of wetland species to respond to fluctuating temperatures. Differences in germination between forest and open-site species can be attributed to the higher capability of forest sedges to respond to low temperatures and temperature fluctuations. The influence of seed weight on germination was not significant in the 18 species adapted to wet, open habitats. There was, however, a tendency for the germination percentages to be low for large-seeded Carices. The interpretation of habitat differences is difficult due to a positive correlation between seed weight and dry habitats.  相似文献   

20.
Seed dormancy induction and alleviation in the winter‐flowering, moist temperate woodland species Galanthus nivalis and Narcissus pseudonarcissus are complex and poorly understood. Temperature, light and desiccation were investigated to elucidate their role in the germination ecophysiology of these species. The effect of different seasonal temperatures, seasonal durations, temperature fluctuations, the presence of light during different seasons and intermittent drying (during the summer period) over several ‘years’ on seed germination was investigated with outdoor and laboratory experiments. Warm summer‐like temperatures (20 °C) were necessary for germination at subsequent cooler autumn‐like temperatures (greatest at 15 °C in G. nivalis and 10 °C in N. pseudonarcissus). As the warm temperature duration increased, so did germination at subsequent cooler temperatures; further germination occurred in subsequent ‘years’ at cooler temperatures following a second, and also third, warm period. Germination was significantly greater in darkness, particularly in G. nivalis. Dormancy increased with seed maturation period in G. nivalis, because seeds extracted from green capsules germinated more readily than those from yellow capsules. Desiccation increased dormancy in an increasing proportion of N. pseudonarcissus seeds the later they were dried in ‘summer’. Seed viability was only slightly reduced by desiccation in N. pseudonarcissus, but was poor and variable in G. nivalis. Shoot formation occurred both at the temperature at which germination was greatest and also if 5 °C cooler. In summary, continuous hydration of seeds of both species during warm summer‐like temperatures results in the gradual release of seed dormancy; thereafter, darkness and cooler temperatures promote germination. Cold temperatures, increased seed maturity (G. nivalis) and desiccation (N. pseudonarcissus) increase dormancy, and light inhibits germination. © 2014 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 177 , 246–262.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号