首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated the acclimation of Chondrus crispus to growth at 5°C and 20°C in the laboratory. We were specifically interested in the responses of light-limited photosynthesis to temperature and the effects of short-term thermal changes (of the order of minutes). Thermal acclimation to constant temperatures over 3–4 weeks had significant effects on the light-use characteristics of this species such that in comparison with those grown at 5°C, 20°C-grown plants had higher concentrations of chlorophyll a and total phycobilins, which were associated with larger photosynthetic unit sizes. Plants grown at the higher temperature had greater photosynthetic efficiencies (α) and higher rates of light-limited photosynthesis at a given photon flux density than did plants acclimated to 5°C. Plants acclimated to 20°C were less sensitive to short-term temperature changes than were 5°C-acclimated plants. These results are discussed in terms of (1) the effects of growth temperature on light harvesting and (2) the implications of exposure to constant temperature for short-term thermal responses.  相似文献   

2.
We examined the effect of growth temperature on the underlying components of growth in a range of inherently fast‐ and slow‐growing plant species. Plants were grown hydroponically at constant 18, 23 and 28 °C. Growth analysis was conducted on 16 contrasting plant species, with whole plant gas exchange being performed on six of the 16 species. Inter‐specific variations in specific leaf area (SLA) were important in determining variations in relative growth rate (RGR) amongst the species at 23 and 28 °C but were not related to variations in RGR at 18 °C. When grown at 18 °C, net assimilation rate (NAR) became more important than SLA for explaining variations in RGR. Variations in whole shoot photosynthesis and carbon concentration could not explain the importance of NAR in determining RGR at the lower temperatures. Rather, variations in the degree to which whole plant respiration per unit leaf area acclimated to the different growth temperatures were responsible. Plants grown at 28 °C used a greater proportion of their daily fixed carbon in respiration than did the 18 and 23 °C‐grown plants. It is concluded that the relative importance of the underlying components of growth are influenced by growth temperature, and the degree of acclimation of respiration is of central importance to the greater role played by NAR in determining variations in RGR at declining growth temperatures.  相似文献   

3.
Plants can avoid freezing damage by preventing extracellular ice formation below the equilibrium freezing temperature (supercooling). We used Olea europaea cultivars to assess which traits contribute to avoid ice nucleation at sub‐zero temperatures. Seasonal leaf water relations, non‐structural carbohydrates, nitrogen and tissue damage and ice nucleation temperatures in different plant parts were determined in five cultivars growing in the Patagonian cold desert. Ice seeding in roots occurred at higher temperatures than in stems and leaves. Leaves of cold acclimated cultivars supercooled down to ?13 °C, substantially lower than the minimum air temperatures observed in the study site. During winter, leaf ice nucleation and leaf freezing damage (LT50) occurred at similar temperatures, typical of plant tissues that supercool. Higher leaf density and cell wall rigidity were observed during winter, consistent with a substantial acclimation to sub‐zero temperatures. Larger supercooling capacity and lower LT50 were observed in cold‐acclimated cultivars with higher osmotically active solute content, higher tissue elastic adjustments and lower apoplastic water. Irreversible leaf damage was only observed in laboratory experiments at very low temperatures, but not in the field. A comparative analysis of closely related plants avoids phylogenetic independence bias in a comparative study of adaptations to survive low temperatures.  相似文献   

4.
Park S. Nobel 《Oecologia》1984,62(3):310-317
Summary Extreme temperatures near the soil surface, which can reach 70°C at the main study site in the northwestern Sonoran Desert, markedly affect seedling survival. Computer simulations indicated that for the rather spherical barrel cactus Ferocactus acanthodes (Lem.) Britt. & Rose the maximum surface temperature decreased 8°C and the minimum temperature increased 3°C as the seedling height was increased from 1 mm up to 50 mm. Simulated changes in shortwave and longwave irradiation alone showed that shading could decrease the maximum temperature by about 5°C for the common desert agave, Agave deserti Engelm., and raise the minimum 1°C. Actual field measurements on seedlings of both species, where shading would affect local air temperatures and wind speeds in addition to irradiation, indicated that shading decreased the average maximum surface temperature by 11°C in the summer and raised the minimum temperature by 3°C in winter.Seedlings grown at day/iight air temperatures of 30°C/20°C tolerated low temperatures of about -7°C and high temperatures of about 56°C, as measured by the temperature where stain uptake by chlorenchyma cells was reduced 50%. Seedling tolerance to high temperatures increased slightly with age, and F. acanthodes was more tolerant than A. deserti. Even taking the acclimation of high temperature tolerance into account (2.7°C increase per 10°C increase in temperature), seedlings of A. deserti would not be expected to withstand the high temperatures at exposed sites, consistent with previous observations that these seedlings occur only in protected microhabitats. Based primarily on greater high temperature acclimation (4.3°C per 10°C), seedlings of F. acanthodes have a greater high temperature tolerance and can just barely survive in exposed sites. Wide ranges in photoperiod had little effect on the thermal sensitivities of either species. When drought increased the chlorenchyma osmotic pressure from about 0.5 MPa to 1.3 MPa, seedlings of both species became about 2°C less tolerant of high temperatures, which would be nonadaptive in a desert environment, and 2°C more tolerant of low temperatures, which also occurs for other species.In conclusion, seedlings of A. deserti and F. acanthodes could tolerate tissue temperatures over 60°C when acclimated to high temperatures and below -8°C when acclimated to low temperatures. However, the extreme environment adjacent to desert soil requires sheltered microhabitats to protect the plants from high temperature damage and also to protect them from low temperature damage at their upper elevational limits.  相似文献   

5.
不同环境条件下沙生植物的CO2气体交换研究   总被引:9,自引:1,他引:9  
对腾格里沙坡头地区两种沙生植物:油蒿(ArtemisisaordosicaKrasch.)和柠条(CaraganakorshinskiiKom)。在旱季和雨季时CO2气体交换特点及其动态变化进行了研究,结果表明:在干旱条件下,油蒿(A)和柠条(C)的光合作用均受到严重影响,其光合率率日变化日出后(7:00-9:a.m.)有一较小高峰外,基本处于很低水平。降水后,A和C的光合作用均明显提高,但Pn  相似文献   

6.
Summary Seedlings representative of Verbascum thapsus L. populations from thermally diverse habitats were grown under uniform, controlled conditions. The plants were used to obtain temperature response curves for net photosynthesis over a range of 15–40°C. In general, all experimental plants exhibited similar rates of net photosynthesis at 20, 25, 30, and 35°C. Plants representative of cool habitat populations (high-latidude and high-altitude) had greatest rates of net photosynthesis at the lower temperatures and much lower rates at 40°C. Plants representative of warm habitat populations (low-latitude and low-altitude) exhibited rates of net photosynthesis at 40°C which were nearly twice those of plants representative of cool habitat populations. Carbon dioxide transfer resistances are discussed with reference to plant control of photosynthesis at different temperatures. Patterns of photosynthesis and resistance response among plants representative of different habitats suggest ecotypic variation has occurred only to a very limited extent. Therefore, the patterns exhibited by experimental plants suggest that Verbascum thapsus' success in a number of diverse sites is related to the ability of all members of the species to photosynthesize over a broad range of temperatures.  相似文献   

7.
Three desert perennials from the Wahiba Sands, Oman were studied for their ability to withstrand high air temperatures combined with low water availability. Plants were also sprayed with antitranspirant to reduced water loss. This limited the potential for evaporative leaf cooling and resulted in high leaf temperatures in Prosopis cineraria (Druce) and Zygophyllum qatarense (Hadidi). Diurnal measurements were made of leaf and air temperature and of of photosynthesis and transpiration. Antitranspirants did not significantly reduce transpiration in Heliotropium kotschyi (Guerke), which contained high concentrations of the quaternary compound betaine. Transpiration continued through the hottest periods of the day and appeared to be essential for leaf cooling. All species appeared to have a threshold leaf temperature above which photosynthesis was severely impaired. Samples were taken for analysis of amino acids, quaternary ammonium compounds (QACs) and low molecular weight carbohydrates in conjunction photosynthesis and transpiration in order to examine any possible protective functions. In Prosopis cineraria the background concentration of the cyclitol, pinitol was high but there was no increase in response to the antitranspirant induced increase in leaf temperatures. Proline concentration increased in leaves of Zygophyllum qatarense throughout the day but this did not appear to be related to leaf temperature.  相似文献   

8.
Temperature adaptation of biological membranes was examined by comparing the fragmented sarcoplasmic reticulum preparation of goldfish acclimated to different temperatures. Membrane fluidity was estimated using the fluorescence polarization technique. There was considerable variation between preparations, but no consistent differences in fluidity were observed between 5- and 25°C-acclimated goldfish, fish species adapted over an evolutionary period to arctic or desert temperatures, and rat. The fatty acid composition of the sarcoplasmic reticulum preparations of differently acclimated goldfish showed differences in the proportion of mono- and polyunsaturated fatty acids while the proportion of saturated fatty acids remained relatively constant. However, the fatty acid composition of sarcoplasmic reticulum phosphoglycerides became more unsaturated in the order rat, desert pupfish, arctic sculpin, which correlates with their respective environmental or body temperature. It is concluded that differences in membrane components other than fatty acids are important in determining membrane dynamic structure. The inability to demonstrate homeoviscous adaptation in sarcoplasmic reticulum is supported by other evidence suggesting that functions of the sarcoplasmic reticulum that are measured in vitro are not affected by such modifications of their phosphoglyceride fatty acid composition as occur during thermal acclimation.  相似文献   

9.
The seasonal temperature acclimation in crassulacean acid metabolism (CAM) and photosynthetic performance were investigated in the aquatic isoetid, Littorella uniflora. Plants were collected monthly from January to September, and CAM capacity and photosynthesis rates were measured at 5, 10, 15, and 20?°C. Seasonal acclimation was observed for CAM (Q (10) range: 0.6-1.8), and CAM was optimised close to ambient temperature throughout the season. Thus, in winter acclimated L. uniflora, the short-term response to raised temperature resulted in a decline in CAM capacity. Even though the ambient CAM increased from winter to spring/summer, CAM was present in cold acclimated plants, thus indicating an ecophysiological role for CAM even in winter. Similar to CAM, seasonal acclimation was observed in the light and carbon-saturated photosynthesis (Q (10) values ranged from 1.4 to 2.3), and the photosynthetic capacity was generally higher during the winter at all temperatures, indicating compensatory investments in the photosynthetic apparatus. Thus, L. uniflora displayed seasonal temperature acclimation with respect to both CAM and photosynthesis. The estimated in situ contribution of CAM to the carbon budget in L. uniflora was independent of season and varied from 23 to 46?%. A positive correlation between photosynthetic capacity and CAM capacity (both measured in the lab at temperature close to ambient temperature) was found, and the ratio of CAM activity to photosynthetic capacity was higher in summer compared with winter plants. Overall, the results from the present study support the suggested role of CAM as a carbon conserving mechanism of importance for survival in a carbon-limited habitat.  相似文献   

10.
C4 plants are rare in the cool climates characteristic of high latitudes and altitudes, perhaps because of an enhanced susceptibility to photo‐inhibition at low temperatures relative to C3 species. In the present study we tested the hypothesis that low‐temperature photo‐inhibition is more detrimental to carbon gain in the C4 grass Muhlenbergia glomerata than the C3 species Calamogrostis Canadensis. These grasses occur together in boreal fens in northern Canada. Plants were grown under cool (14/10 °C day/night) and warm (26/22 °C) temperatures before measurement of the light responses of photosynthesis and chlorophyll fluorescence at different temperatures. Cool growth temperatures led to reduced rates of photosynthesis in M. glomerata at all measurement temperatures, but had a smaller effect on the C3 species. In both species the amount of xanthophyll cycle pigments increased when plants were grown at 14/10 °C, and in M. glomerata the xanthophyll epoxidation state was greatly reduced. The detrimental effect of low growth temperature on photosynthesis in M. glomerata was almost completely reversed by a 24‐h exposure to the warm‐temperature regime. These data indicate that reversible dynamic photo‐inhibition is a strategy by which C4 species may tolerate cool climates and overcome the Rubisco limitation that is prevalent at low temperatures in C4 plants.  相似文献   

11.
Photosynthetic and respiratory rates were studied in Cetraria islandica, C. nivalis, and Cladonia rangiferina in the alpine zone of Mt. Washington, New Hampshire. Measurements were made in the field using an infrared gas analyzer; light, temperature, and thallus water content were varied. In all species, considerable reduction in photosynthesis and respiration occurred with drying, more rapidly in photosynthesis than respiration. Optimal photosynthetic rates in all 3 species occurred at 15–20 C with light levels of 1,600 ft-c. Light compensation points ranged from 200 to 350 ft-c. Optimal respiratory rates were attained at 15 C in the 2 species of Cetraria and at 20 C in Cladonia. The data indicate that these wide-ranging, arctic-alpine and arctic-temperate lichens on Mt. Washington are quite well adapted to a moist, foggy environment with cool temperatures and low light levels, conditions which predominate in summer.  相似文献   

12.
残遗植物半日花与四合木生理生态特征的比较研究   总被引:11,自引:0,他引:11  
利用CI-301PS便携式光合作用测定仪,CI-203手持式激光叶面积测定仪对濒危植物半日花和四合木进行了光合、蒸等生理生态学指标的测定,揭示了2种荒漠植物的生理生态学特征,并探讨了其对干旱生态环境的适应机制。分析表明,2种植物都是通过减少叶面积、降低蒸腾、减新新陈代谢活动来抵御干旱、高温的自然环境。  相似文献   

13.
Light utilization efficiency in five species of marine macroalgae was measured in laboratory growth experiments (13–41 days duration) at different irradiances at 7°C. All species acclimated to irradiance by changing their light absorption, resulting in a peak in light absorption between 2 and 15 μmol·m?2.s?1. Light absorption increased with thallus-specific chlorophyll and carbon content according to linear inverse relationships between chlorophyll content (chlarea?1) and log[transmission] and between log[carbon content, Carea?1] and log[transmission]. Quantum yields for light-limited growth and estimated gross photosynthesis were calculated based on incident and absorbed light. Quantum yield for photosynthesis based on light absorbed by pigments was high (mean = 114 mmol C·mol?1 photons) and similar among the species. Quantum yield for net growth based on incident light was also high but more variable, between 22 and 75 mmol C·mol?1 photons. Differences among species were mainly due to differences in light absorption. In conclusion, all species acclimated to low light by increasing light absorption to the maximum attainable, and growth efficiencies based on absorbed light were close to the maximum theoretically possible.  相似文献   

14.
The reproductive behaviour of the sexually coercive male eastern mosquitofish (Gambusia holbrooki) offers an excellent model system for testing the benefits of reversible thermal acclimation responses to mating success. We acclimated male mosquitofish to either 18 or 30 degrees C (14 h light:10 h dark) for six weeks and tested their ability to obtain coercive copulations in the presence and the absence of male-male competition. Based on the beneficial acclimation hypothesis, we predicted for both sets of experiments that 18 degrees C acclimated males would outperform 30 degrees C acclimated males when tested at 18 degrees C, and vice versa when tested at 30 degrees C. We found that copulation success was greater for acclimated than non-acclimated males at both temperatures when individual males were tested without competing males. In contrast, when males from the different acclimation treatments were competed against each other for copulations with a single female, the 30 degrees C acclimated males were more aggressive and obtained a greater number of copulations at both test temperatures. Thus, we found a clear benefit for acclimation when fish were tested in a non-competitive environment, but acclimation to cool temperatures was associated with a decrease in aggressive behaviour that reduced mating performance at both test temperatures in a competitive environment. In contrast with the long-held assumption that reversible plasticity is beneficial, the adaptive significance of reversible physiological plasticity is affected by a variety of other ecological factors and is more complex than previously suggested.  相似文献   

15.
A comparative phylogenetic approach was used to test the following adaptive hypotheses pertaining to the physiological abilities of the Namib desert tenebrionid beetle genus Onymacris to withstand the hot, dry desert environment: (1) Desert-interior species evolved longer legs (relative to body size) than beetles in the cooler coastal region to facilitate stilting, i.e., elevating their bodies out of the hot boundary layer of air close to the substrate. (2) Wax blooms on the exoskeleton, which reduce evaporative water loss, are more likely to evolve in desert-interior species than in coastal species. (3) The high costs of activity in the extreme climates select for perfect coadaptation of preferred body temperatures (i.e., optimal temperatures for activity) and those they achieve in the field. All three of these adaptive hypotheses were supported by the results of squared-change parsimony and independent-contrasts analyses. Additionally, a parsimony approach suggested that a novel means of obtaining water from periodic fogs, known as fog basking, has evolved independently on two occasions.  相似文献   

16.
Most plants growing in temperate desert zone exhibit brief temperature-induced inhibition of photosynthesis at midday in the summer. Heat stress has been suggested to restrain the photosynthesis of desert plants like Alhagi sparsifolia S. It is therefore possible that high midday temperatures damage photosynthetic tissues, leading to the observed inhibition of photosynthesis. In this study, we investigated the mechanisms underlying heat-induced inhibition of photosynthesis in A. sparsifolia, a dominant species found at the transition zone between oasis and sandy desert on the southern fringe of the Taklamakan desert. The chlorophyll (Chl) a fluorescence induction kinetics and CO2 response curves were used to analyze the thermodynamic characters of both photosystem II (PSII) and Rubisco after leaves were exposed to heat stress. When the leaves were heated to temperatures below 43°C, the initial fluorescence of the dark-adapted state (Fo), and the maximum photochemical efficiency of PSII (Fv/Fm), the number of active reaction centers per cross section (RCs) and the leaf vitality index (PI) increased or declined moderately. These responses were reversed, however, upon cooling. Moreover, the energy allocation in PSII remained stable. The gradual appearance of a K point in the fluorescence curve at 48°C indicated that higher temperatures strongly impaired PSII and caused irreversible damage. As the leaf temperature increased, the activity of Rubisco first increased to a maximum at 34°C and then decreased as the temperature rose higher. Under high-temperature stress, cell began to accumulate oxidative species, including ammoniacal nitrogen, hydrogen peroxide (H2O2), and superoxide (O2 ·−), suggesting that disruption of photosynthesis may result from oxidative damage to photosynthetic proteins and thylakoid membranes. Under heat stress, the biosynthesis of nonenzyme radical scavenging carotenoids (Cars) increased. We suggest that although elevated temperature affects the heat-sensitive components comprising of PSII and Rubisco, under moderately high temperature the decrease in photosynthesis is mostly due to inactivation of dark reactions.  相似文献   

17.
Oscillatorian cyanobacteria dominate benthic microbial mat communities in many polar freshwater ecosystems. Capable of growth at low temperatures, all benthic polar oscillatorians characterized to date are psychrotolerant (growth optima > 15° C) as opposed to psychrophilic (growth optima ≤ 15° C). Here, psychrophilic oscillatorians isolated from meltwater ponds on Antarctica's McMurdo Ice Shelf are described. Growth and photosynthetic rates were investigated at multiple temperatures, and compared with those of a psychrotolerant isolate from the same region. Two isolates showed a growth maximum at 8° C, with rates of 0.12 and 0.08 doublings·d ? 1, respectively. Neither displayed detectable growth at 24° C. The psychrotolerant isolate showed almost imperceptible growth at 4° C and a rate of 0.9 doublings·d ? 1 at its optimal temperature of ~23° C. In both photosynthesis versus irradiance and photosynthesis versus temperature experiments, exponentially growing cultures were acclimated for 14 days at 3, 8, 12, 20, and 24° C under saturating light intensity, and [14C] photoincorporation rates were measured. Psychrophilic isolates acclimated at 8° C showed greatest photosynthetic rates; those acclimated at 3° C were capable of active photosynthesis, but photoincorporation was not detected in cells acclimated at 20 and 24° C, because these isolates were not viable after 14 days at those temperatures. The psychrotolerant isolate, conversely, displayed maximum photosynthetic rates at 24° C, though photoincorporation was actively occurring at 3° C. Within acclimation temperature treatments, short‐term photosynthetic rates increased with increasing incubation temperature for both psychrophilic and psychrotolerant isolates. These results indicate the importance of temperature acclimation before assays when determining optimal physiological temperatures. All isolates displayed photosynthetic saturation at low light levels (<128 μmol·m ? 2·s ? 1) but were not photoinhibited at the highest light treatment (233 μmol·m ? 2·s ? 1). Field studies examining the impact of temperature on photosynthetic responses of intact benthic mats, under natural solar irradiance, showed the mat communities to be actively photosynthesizing from 2 to 20° C, with maximum photoincorporation at 20° C, as well as capable of a rapid response to an increase in temperature. The rarity of psychrophilic cyanobacteria, relative to psychrotolerant strains, may be due to their extremely slow growth rates and inability to take advantage of occasional excursions to higher temperatures. We suggest an evolutionary scenario in which psychrophilic strains, or their most recent common ancestor, lost the ability to grow at higher temperatures while maintaining a broad tolerance for fluctuations in other physical and chemical parameters that define shallow meltwater Antarctic ecosystems.  相似文献   

18.
本文比较了草鱼(Ctenopharyngodon idellus)瓦氏雅罗鱼(Leucisous waleckii)和鲮鱼(Cirrhinus molitorella)在常、低温驯养时,肝细胞线粒体ATP酶活性;并采用吐温80处理线粒体,观察其对线粒体ATP酶活化能Arrhenius图折点温度的影响,讨论了线粒体ATP酶活性与鱼类低温适应能力的相关性。认为鱼类线粒体ATP酶活化能折点温度在常、低温驯养时的差异程度和鱼的抗寒性能有关;低温驯养时,线粒体ATP酶活化能折点温度的高低和鱼的低温耐受能力有关。  相似文献   

19.
The interaction of low water potential effects on photosynthesis, and leaf K+ levels in wheat (Triticum aestivum L.) plants was studied. Plants were grown at three K+ fertilization levels; 0.2, 2, and 6 millimolar. With well watered plants, 2 millimolar K+ supported maximal photosynthetic rates; 0.2 millimolar K+ was inhibitory, and 6 millimolar K+ was superoptimal (i.e. rates were no greater than at 2 millimolar K+). Photosynthesis was monitored at high (930 parts per million) and low (330 parts per million) external CO2 throughout a series of water stress cycles. Plants subjected to one stress cycle were considered nonacclimated; plants subjected to two successive cycles were considered acclimated during the second cycle. Sensitivity of photosynthesis to declining leaf water potential was affected by K+ status; 6 millimolar K+ plants were less sensitive, and 0.2 millimolar K+ plants were more sensitive than 2 millimolar K+ plants to declining water potential. This occurred with nonacclimated and acclimated plants at both high and low assay CO2. It was concluded that the K+ effect on photosynthesis under stress was not mediated by treatment effects on stomatal resistance. Differences between the K+ treatments were much less pronounced, however, when photosynthesis of nonacclimated and acclimated plants was plotted at a function of declining relative water content during the stress cycles. These results suggest that K+ effects on the relationship between relative water content and water potential in stressed plants was primarily responsible for the bulk of the K+-protective effect on photosynthesis in stressed plants. In vitro experiments with chloroplasts and protoplasts isolated from 2 millimolar K+ and 6 millimolar K+ plants indicated that upon dehydration, K+ efflux from the chloroplast stroma into the cytoplasm is less pronounced in 6 millimolar K+ protoplasts.  相似文献   

20.
Inorganic carbon acquisition in red tide dinoflagellates   总被引:3,自引:0,他引:3  
Carbon acquisition was investigated in three marine bloom-forming dinollagellates-Prorocentrum minimum, Heterocapsa triquetra and Ceratium lineatum. In vivo activities of extracellular and intracellular carbonic anhydrase (CA), photosynthetic O2 evolution, CO2 and HCO3- uptake rates were measured by membrane inlet mass spectrometry (MIMS) in cells acclimated to low pH (8.0) and high pH (8.5 or 9.1). A second approach used short-term 14C-disequilibrium incubations to estimate the carbon source utilized by the cells. All three species showed negligible extracellular CA (eCA) activity in cells acclimated to low pH and only slightly higher activity when acclimated to high pH. Intracellular CA (iCA) activity was present in all three species, but it increased only in P. minimum with increasing pH. Half-saturation concentrations (K1/2) for photosynthetic O2 evolution were low compared to ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) kinetics. Moreover, apparent affinities for inorganic carbon (Ci) increased with increasing pH in the acclimation, indicating the operation of an efficient CO2 concentration mechanism (CCM) in these dinoflagellates. Rates of CO2 uptake were comparably low and could not support the observed rates of photosynthesis. Consequently, rates of HCO3- uptake were high in the investigated species, contributing more than 80% of the photosynthetic carbon fixation. The affinity for HCO3- and maximum uptake rates increased under higher pH. The strong preference for HCO3- was also confirmed by the 14C-disequilibrium technique. Modes of carbon acquisition were consistent with the 13C-fractionation pattern observed and indicated a strong species-specific difference in leakage. These results suggest that photosynthesis in marine dinoflagellates is not limited by Ci even at high pH, which may occur during red tides in coastal waters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号