首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
扁圆封印木(相似种)茎干的解剖特征   总被引:2,自引:1,他引:1  
贵州省水城矿区晚二叠世煤核中扁圆封印木(相似种Sigillaria cf.brardiiBrongn.)茎干的主要解剖特征如下:管状中柱,具多边形薄壁细胞组成的髓。初生木质部成环带状,外缘呈规则的齿槽状,向心式发育。次生木质部显束状特征,横切面管胞为方圆至长方形,纵切面为梯状壁增厚,并具流苏纹。射线1—2列细胞宽,数个至十余个细胞高。叶迹起源于初生木质部外缘的槽中,中始式,但以向心发育为主。  相似文献   

2.
The vascular system in the stems of Nymphaea odorata and N. mexicana subgenus Castalia, and N. blanda subgenus Hydrocallis consists of continuing axial stem bundles with eight being the usual number. The stem bundles are concentric and xylem maturation is mesarch. Xylem elements consist of tracheids with spirally or weakly reticulated secondary wall thickenings. The phloem is made up of companion cells and short sieve tube members with simple sieve plates that are nearly transverse. At the node each leaf is supplied with two lateral leaf traces and a median leaf trace. A root trace is also present and supplies a series of adventitious roots borne on the leaf base. Flowers and vegetative buds develop directly from the apical meristem and occupy leaf sites in a single genetic spiral. Each flower or vegetative bud is related to a leaf through specific spatial and vascular association. The related leaf is separated from the related flower by three members of the genetic spiral and occupies an adjacent orthostichy. Vascular tissue for the related flower arises from the inner surfaces of the four stem bundles supplying leaf traces to the related leaf and extends through the pith to the flower or vegetative bud via a peduncle fusion bundle. The vascular system organization in the investigated species of Castalia and Hydrocallis is not typically monocotyledonous or dicotyledonous, nor can it be considered transitional between them. The ontogeny of the vascular system is similar to typical dicotyledons and the investigated species of Nymphaea can, therefore, be considered to represent highly specialized and modified dicotyledons.  相似文献   

3.
The stem specimens of Sigillaria cf. brardii were collected from the coal balls of Upper Permian in Shuicheng Coal Mines in Guizhou Province. The main anatomical characteristics of Sigillaria cf. brardii are described as follows: The stem is siphonostelic, with pith composed entirely of polygonal parenchyma cells, there are secondary walls in some pith cell cavities these secondary walls show the characters of cell division. Surrounding the pith is the continuous cylindrical primary xylem which consists entirely of tracheids. The outermost, and part are the protoxylem elements show spiral secondary thickenings. In cross section, the outer edge of exarch primary xylem appears regularly sinuous, with trace of mesarch leaf originating from the furrows. The centripetal metaxylem is characterized by scalariform wall thickenings on the tracheids, and delicated strands of secondary wall materials extending between abjacent bars, these structures are called fimbris, or williamson striations, and are characteristic in lepidodendrids. The secondary xylem consists of tracheids and vascular rays. The tracheids, too, have scalariform wall thickenings and fimbris. The rays are one-to twocell width and several to more than ten cells in height.  相似文献   

4.
The shoot apex of Dennstaedtia cicutaria consists of three zones—a zone of surface initials, a zone of subsurface initials, and a cup-shaped zone that is subdivided into a peripheral region and central region. A diffuse primary thickening meristem, which is continuous with the peripheral region of the cup-shaped zone, gives rise to a broad cortex. The roots occurring on the rhizomes are initiated very near the shoot apex in the outer derivatives of the primary thickening meristem. The roots that occur on the leaf bases also differentiate from cortical cells. Eventually, those cortical cells situated between the newly formed root apical cell and the rhizome procambium (or leaf trace) differentiate into the procambium of the root trace, thus establishing procambial continuity with that of the rhizome or leaf trace. Parenchymatous root gaps are formed in the rhizome stele and leaf traces when a few of their procambial cells located directly above the juncture of the root trace procambium differentiate into parenchyma. As the rhizome procambium or leaf trace continues to elongate, the parenchyma cells of the gap randomly divide and enlarge, thus extending the gap.  相似文献   

5.
Medullosa and Sutcliffia specimens from the Paleozoic of North America and Europe are examined to determine the architecture of the cauline vasculature and mode of leaf trace production. Emphasis is placed on the identification and characterization of protoxylem strands and their relationship to leaf trace production. Organization of the primary xylem varies from a single protostele to a dissected stele composed of two to many more or less independent bundles. In Medullosa the bundles of primary xylem are each surrounded by secondary xylem, forming separate segments of vascular tissue (‘steles’ of previous workers). These vascular segments may divide and fuse at different levels in the stem. A definite number of protoxylem strands occur near the periphery of the primary xylem. The protoxylem strands divide at intervals producing protoxylem to the departing leaf traces. Leaf traces thus formed arise from all the vascular segments in a coordinated and predictable way and pass outward through emission areas in the secondary xylem. This type of cauline vascular architecture is compared to that of other seed plants. The vascular system of Medullosa stems is interpreted as a dissected monostele. Sympodial vascular architecture has apparently evolved from a protostele separately within the medullosan pteridosperms.  相似文献   

6.
A three-dimensional reconstruction of a fertile floret stele of Panicum dichotomiflorum approaching anthesis was made by a new technique using superimposition of tracings of 80, 1-μm thick serial sections, cleared tracing film, and mounting adhesive. From a collateral bundle, which also served as the median trace to the fertile lemma, most of the vascular tissue branched adaxially and horizontally to become the sole vascular supply to the two lodicules, three stamens, and pistil. The xylem branched at a low level to form a broad and long vessel plexus. The phloem branched at a higher level to overlay the vessel plexus on the right and left with an arc of horizontal sieve tubes in a phloem plexus. Those sieve tubes and vessels which rose after branching from the horizontal plexi assumed a more vertical course in the floret stele. Traces to the right and left lodicules arose from the lower abaxial portions of the flanks of the floret stele. Vessels ascended vertically from the xylem plexus and passed through the phloem plexi and joined with the sieve tubes there to exit at the same level and become the right and left lodicule traces. The vascular tissues to the three filament traces arose from different higher levels of the stele. The sieve tubes for the median filament trace arose vertically from the abaxial side between but above the lodicule traces. At higher levels the sieve tubes for the lateral filaments rose from the horizontal arcs of the flanks of the stele and departed it tangentially. The vessels destined to the filament traces arose in the center of the floret stele from adaxial portions of the horizontal plexus, ascended between the arcs of phloem, exited the stele simultaneously above the phloem of the traces, and followed the courses of their respective sieve tubes. The adaxially displaced apex of the floret stele then contained the vascular tissue related to the pistil. All the sieve tubes and vessels of the floret stele were embedded in a matrix of intermediary cells. The peripheral intermediary cells associated with the vessel plexus were xylem transfer cells with pronounced wall ingrowths. At higher levels in the floret stele, intermediary cells in scattered locations near sieve tubes or vessels had less conspicuous wall ingrowths. No preferred orientation of transfer cells with any particular trace was noted.  相似文献   

7.
Anatomical investigation of the spikelet base in Eriochloa reveals a nonvascularized cup-shaped structure composed of large parenchyma cells surrounding a column of tissue that is continuous with the pedicel. The cup and column are fused only at the base of the cup. No vestigial stelar node occurs in either the cup or the column. The stele branches above the cup at the rachillar node of the second glume. Therefore, the cup-shaped callus characteristic of Eriochloa appears to be formed entirely of parenchymatous tissue and is not derived from the first glume as previously interpreted. The bead of callus at the base of the spikelet in some species of Brachiaria also comprises an unbranched stele surrounded by parenchyma. The vascular tissue branches and enters the first glume at the apex of the bead. The spikelet base of Urochloa has a distinct first glume, nodal complex, and no callus parenchyma. Thus, the cup-shaped callus of Eriochloa and the callus bead of Brachiaria appear to be structurally similar.  相似文献   

8.
Srivastava , L. M., and K. Esau . (U. California, Davis.) Relation of dwarf mistletoe (Arceuthobium) to the xylem tissue of conifers. I. Anatomy of parasite sinkers and their connection with host xylem. Amer. Jour. Bot. 48(2): 159–167. Illus. 1961.—The anatomy of the sinkers of Arceuthobium infecting 7 species of conifers was studied by the use of serial cross, radial, and tangential sections of the host wood. The sinkers were found to be composed of parenchyma cells only, or of parenchyma cells and tracheary elements, including vessel elements. In all species tracheary cells of the sinkers had direct contacts with the host tracheids of axial and radial systems. Typically the sinkers were associated with rays of the host wood. In some species, the centripetal ends of sinkers were wedged in radially among the axial tracheids of the host, but centrifugally such sinkers were usually found associated with rays. In the region of the host cambium the sinker contained parenchyma cells meristematic in appearance and, in 6 out of 7 species, also mature tracheary elements. The oldest of these elements became stretched and ruptured, a circumstance indicating that growth occurred in the part of the sinker embedded in the host cambium. This growth appeared to be coordinated with that of the host cambium, so that the sinker became embedded in the host xylem and phloem. Radial centripetal penetration of sinkers among differentiating axial tracheids of the host possibly occurred to a limited extent.  相似文献   

9.
Haustoria of Triphysaria pusilla and T. versicolor subsp. faucibarbata from a natural habitat were analyzed by light and electron microscopy. Secretory trichomes (root hairs) participate in securing the haustorium to the surface of the host root. The keel-shaped intrusive part of the secondary haustorium penetrates to the depth of the vascular tissue of the host. Some of the epidermal interface cells differentiate into xylem elements. A significant number of haustoria do not differentiate further, but in most haustoria one to five of the epidermal xylem elements terminate a similar number of xylem strands. The strands mostly consist of vessel members and they connect host xylem or occasionally host parenchyma to the plate xylem adjacent to the stele of the parasite root. Each strand of this xylem bridge is accompanied by highly protoplasmic parenchyma cells with supposed transfer cell function. Increased surface area of the plasmalemma occurs in these cells as it does in interface parenchyma cells. Graniferous tracheary elements are restricted to the haustorium and occur most frequently in the plate xylem. The plate xylem is also accompanied by highly protoplasmic parenchyma cells. Hyphae of mycorrhizal fungi of the host root occasionally penetrate into the distal part of the xylem bridge. We combine structural observations and physiological facts into a hypothesis for translocation of water and nutrients between host and parasite. Some evolutionary aspects related to endogeny/exogeny of haustoria are discussed, and it is argued that the Triphysaria haustorium represents a greatly advanced and/or reduced condition within Scrophulariaceae.  相似文献   

10.
Squash (Cucurbita maxima) xylem sap, an apoplastic fluid, contains t-zeatin riboside, glutamine, methylglycine, myo-inositol, fructose, oligosaccharides of arabinogalactan, glucan, galacturonan, and pectins (rhamnogalacturonan-I and rhamnogalacturonan-II), as well as various proteins, including arabinogalactan and pathogen-related proteins. These substances are mainly produced in stele (xylem) parenchyma and the pericycle in the root-hair zone where ion transporter genes are expressed. Glycine-rich protein genes (CRGRPs) cloned by antiserum raised against whole xylem sap of cucumber (Cucumis sativus) were abundantly expressed in the parenchyma cells surrounding xylem vessels in the root-hair zone. CRGRP proteins accumulated and immobilized in the lignified walls of metaxylem vessels and perivascular fibers in shoots, suggesting a systemic delivery mechanism of wall materials via xylem sap. A major 30-kDa protein (XSP30) found in cucumber xylem sap was homologous to the B chains of a lectin (ricin) and bound to a nonfucosylated core N-acetylglucosamine dimer of N-linked glycoproteins abundant in leaf parenchyma cells. XSP30 gene expression, abundant in root xylem parenchyma and pericycle, and the level of XSP30 protein fluctuated diurnally under the control of a circadian clock, and the amplitude was up-regulated by gibberellic acid produced in young leaves, suggesting a long-distance control system between organs.  相似文献   

11.
Eggert , Donald A. (Yale U., New Haven, Conn.) Studies of Paleozoic ferns: Tubicaulis stewartii sp. nov. and evolutionary trends in the genus. Amer. Jour. Bot. 46(8): 594–602. Illus. 1959.—Tubicaulis stewartii, a new species of the order Coenopteridales is described. The specimen was derived from the Upper Pennsylvanian of Berryville, Illinois, and is characterized by having a lacunar middle cortex, a well-developed integumentary system bearing uniseriate hairs, and xylem parenchyma organized into vertically anastomosing strands. In addition, multiseriate (somewhat transitional to reticulate) bordered pitting is present in the petiolar metaxylem elements, while those of the stem stele are multiseriate scalariform. The habit is intermediate between that of a form such as Osmunda and a tree fern, having an upright tapering stem which gives off prominently decurrent petioles in a 2/5 divergence. A reinvestigation of the type specimen of the most closely allied species, T. multiscalariformis, of Upper-Middle Pennsylvanian age, has shown that it has similar features in the cortex, metaxylem, and integumentary layers. Tubicaulis multiscalariformis and T. stewartii form a distinct group in the 6 species now known, whose evolution has most likely involved the retention of a more primitive form of pitting (multiseriate scalariform) with parenchymatization of the xylem. The remaining species of the genus have not developed xylem parenchyma but have developed circular bordered pitting. The relationships of the genus to other genera in the Coenopteridales remain obscure.  相似文献   

12.
Silicified rhizomes from Miocene strata near Yakima, Washington represent a new species of Osmunda. The stems are 8–13 mm in diameter and are surrounded by a thick sheath of adherent leaf bases, each of which shows stipular expansions typical of the Osmundaceae. The new species has an ectophloic siphonostele in which the xylem cylinder is dissected by leaf gaps with 12–14 strands being visible in a given stem cross section. Such sections also show 12–16 leaf traces in the cortex. The xylem of each leaf trace diverges from the xylem cylinder of the stem as an adaxially concave strand with its protoxylem organized into a single medial adaxial cluster. Initial bifurcation of the leaf-trace protexylem occurs as the leaf trace passes through the outer cortex of the stem. In the basal part of the stipular region of the petiole base, thick-walled fibers form an arch on the abaxial side of the sclerenchyma ring around the petiolar bundle. This arch persists throughout most of the length of the stipular region, with the thick-walled fibers becoming reorganized into two lateral masses in the distal part of the stipular region. Similar thick-walled fibers form an elongate strip of tissue in each wing of the stipule along with several small clusters scattered near the sclerenchyma ring. The new species belongs to the subgenus Osmunda and shows that during the Neogene, the latter existed as a group of closely related species much as it does today. Furthermore, Osmunda wehrii combines features of the modern O. regalis, O. japonica, and O. lancea with those of O. claytoniana and thus supports the inclusion of the latter species in the subgenus Osmunda.  相似文献   

13.
Phytolacca dioica L., an evergreen tree of the Phytolaccaceae, is one of the species of Phytolacca which shows anomalous secondary thickening in its stem. This mode of thickening has been regarded as successive cambial activity or alternatively, in some more recent interpretations, as thickening by unidirectional activity of a cambial zone. The stem thickening of P. dioica is of the former type. The cambium produces fascicular strands, showing centrifugal differentiation of xylem and centripetal differentiation of phloem on opposite sides of the cambial layer, and rays are produced between the fascicular areas. In both xylem and phloem the younger elements are closer to the cambium than the older elements. Succeeding cambia arise periodically by periclinal divisions in a layer of parenchyma cells two or three cells beyond the outermost intact phloem derived from the current cambium. Each cambium forms a few parenchyma cells on both sides before it forms derivatives which mature into lignified xylem elements or conductive elements of the phloem. The parenchyma thus formed toward the outside later becomes the site of the origin of the succeeding cambium. Only one or two layers of this phloem parenchyma go on to form the new cambium; the remaining cells accumulate between the outermost phloem and the cortex. P. weberbaueri shows stem structure similar to P. dioica. P. meziana, a shrub, shows normal stem structure.  相似文献   

14.
The genus Palaeosmunda was established by R. E. Gould in 1970 based upon some Late Permian Osmundaceous trunks with well-developed leaf gaps and rhomboidal sclerotic ring within petiolar base seen in cross section. As he thinks that the latter character is more important than the former, this genus could not be assigned to any subfamily of Osmundaceae. However, the leaf gap is one of the most important characters in the structure of the fern stem, so the author suggests that this genus should be assigned to subfamily Osmundoideae and its diagnosis must be emended as follows: The genus Palaeosmunda is represented by some rhizomes (or trunks), roots and leaf bases of ferns which structurally are preserved, resembling Osmundacaulis but which can’t be assigned to any group of this genus. Stem containing an ectophloic dictyoxylic siphonostele; if tracheids present in the pith, they being multiseriate scalariform pitted; pith or cortex sometimes contain ing groups of secretory cells or sclerenchyma; number of leaf traces seen in a tran sverse section of cortex more than 30; leaf traces adaxially curvature, rarely oblong shaped; petiolar bases with or without stipular expansion, containing a C-shaped vascular strand; root diarch. Type species——Palaeosmunda williamsii. According to this diagnosis some primitive osmundaceous species with the leaf gaps, which have already found in Upper Permian and Lower Triassic, could be assigned to this genus. Two of them are P. williamsii Gould and P. playfordii Gould, and Osmundacaulis beardmorensis, which was from Lower Triassic of Antarctica in 1978, should be assigned to the genus Palaeosmunda. In this paper two osmundaceous new species: P. primitiva and P. plenasioides were found in the coal balls of Upper Permian age from Wangjiazhai of Shuicheng of Guizhou Province, China. P. primitiva is represented by two trunks; stem about 4 cm in diameter; stele actophloic dictyoxylic siphonostele; pith cavity about 3—4 mm in diameter, contianing parenchyma and tracheids; xylem cylinder thin, less than 10 tracheids in radial thickness, dissected by leaf gaps. Inner cortex about 1.5 cm thick, mainly parenchymatous, but sometimes containing a few sclerenchymatous; number of leaf traces seen in a transverse section about 50—60; leaf traces departing at 35—45º,open C-shaped at point of departure, gradually becoming shallow C-shaped or V-shaped in different parts; protoxylem in base of leaf traces single, endarch; when leaf traces pass through inner cortex, protoxylem biturcating. Petiole bases without stipular expansion, probablyloosely embracing the stem; xylem strand of potiole trace shallow C-shaped, surrounded by selerenchyma; sclerotic ring round, connected with single sclerenchyma mass in the concavity of the petiole trace. Root arising singly from leaf trace, diarch, with inner and outer cortex. P. plenasioides is represented by a rhizome; stem more than 4 cm in diameter; stele actophloic dictyoxylic siphonostele; xylem cylider with about 20 tracheids in radial thickness, dissected by leaf gaps; xylem bundle U-, O-, or crosier- (i.e. query-) shaped; pith and inner cortex parenchymatous, with many groups of secretory cells; leaf trace C-shaped, its base containing two endarch protoxylem groups; root diareh,with inner and outer cortex, arising singly from leaf trace or its base.  相似文献   

15.
Dahiya P  Findlay K  Roberts K  McCann MC 《Planta》2006,223(6):1281-1291
The vascular cylinder of the mature stem of Zinnia elegans cv Envy contains two anatomically distinct sets of vascular bundles, stem bundles and leaf-trace bundles. We isolated a full-length cDNA of ZeFLA11, a fasciclin-domain-containing gene, from a zinnia cDNA library derived from in vitro cultures of mesophyll cells induced to form tracheary elements. Using RNA in situ hybridization, we show that ZeFLA11 is expressed in the differentiating xylem vessels with reticulate type wall thickenings and adjacent parenchyma cells of zinnia stem bundles, but not in the leaf-trace bundles that deposit spiral thickenings. Our results suggest a function for this cell-surface GPI-anchored glycoprotein in secondary wall deposition during differentiation of metaxylem tissue with reticulate vessels.  相似文献   

16.
Secondary growth in the stem of Dolichos lablab is achieved by the formation of eccentric successive rings of vascular bundles. The stem is composed of parenchymatous ground tissue and xylem and phloem confined to portions of small cambial segments. However, development of new cambial segments can be observed from the obliterating ray parenchyma, the outermost phloem parenchyma and the secondary cortical parenchyma. Initially cambium develops as small segments, which latter become joined to form a complete cylinder of vascular cambium. Each cambial ring is functionally divided into two distinct regions. The one segment of cambium produces thick-walled lignified xylem derivatives in centripetal direction and phloem elements centrifugally. The other segment produces only thin-walled parenchyma on both xylem and phloem side. In mature stems, some of the axial parenchyma embedded deep inside the xylem acquires meristematic activity and leads to the formation of thick-walled xylem derivatives centrifugally and phloem elements centripetally. The secondary xylem comprises vessel elements, tracheids, fibres and axial parenchyma. Rays are uni-multiseriate in the region of cambium that produces xylem and phloem derivatives, while in some of the regions of cambium large multiseriate, compound, aggregate and polycentric rays can be noticed.  相似文献   

17.
A new genus from a Middle Devonian locality near Cairo, N. Y., is described. Actinoxylon gen. nov. is based upon pyritic petrifactions. Three orders of branching are present: penultimate branch, ultimate branch, and leaf. The penultimate branch bears spirally arranged ultimate branches and leaves, the leaves apparently replacing the branches in the spiral. The ultimate branches bear opposite to subopposite and decussate leaves. The leaves are non-planated, unwebbed structures which show at least three dichotomies. Each segment of the leaf is terete as are all other axes. Internally the penultimate branch has a six-lobed actinostele with mesarch protoxylem areas, one or two per lobe. Secondary xylem is visible in the oldest parts of several specimens. The xylem has helical-reticulate, reticulate, scalariform and circular-pitted elements. The presumptive areas of phloem are occupied by cells with dark contents. The cortex is composed of a parenchymatous inner region and a sclerenchymatous outer region. The ultimate branch traces are at first three-lobed protosteles, later becoming four-lobed. Several ultimate branch traces also possess secondary xylem while within the cortex of the penultimate branch. The leaf traces are terete strands. Below each forking of a leaf segment there is a corresponding forking of the vascular strand. Actinoxylon is compared with the progymnosperms Actinopodium, Svalbardia, Archaeopteris, Siderella, and Tetraxylopteris. The anatomy of the penultimate branch of Actinoxylon is similar to that of Actinopodium, Archaeopteris macilenta, and Siderella. The ultimate branch traces of Archaeopteris and Actinoxylon are similar. The ultimate branch stele and pattern of trace formation in Actinoxylon is similar to the stelar configuration and trace formation in the r + 2 axes of Tetraxylopteris schmidtii. The unwebbed leaves are similar to those of Archaeopteris fissilis, Svalbardia, and the terminal units of the Aneurophytales.  相似文献   

18.
A new notation for leaf trace patterns was developed which is consistent with contemporary contact parastichy phyllotaxis notation. New computer-aided methods for generating accurate stem tissue maps were developed. Application of these methods resulted in clarification of the role that parenchyma differentiation plays in delimiting the procambial template for Linum usitatissimum L. stem vasculature through ontogeny. Study of the tissue maps for the various leaf trace patterns exhibited by Linum stems through ontogeny generated a set of observations which permits more rigorous definition of the developmental rules for vascular pattern formation. Long-known geometric principles of phyllotaxis were found applicable to leaf trace patterns.  相似文献   

19.
The present study was designed to study the effect of drought on root, stem and leaf anatomy of Astragalus gombiformis Pomel. Several root, stem and leaf anatomical parameters (cross section diameter, cortex, root cortical cells, pith, leaf lamina and mesophyll thickness) were reduced under moderate to severe water deficit (20–30 days of withheld irrigation). The stele/cross section root ratio increased under moderate water deficit. The root’s and stems vascular systems showed reduced xylem vessel diameter and increased wall thickness under water deficit. In addition, the root xylem vessel density was increased in these drought conditions while it was unchanged in the stems. The stomata density was increased under prolonged drought conditions whereas the stomata size was untouched. The leaf vascular system showed reduced xylem and phloem tissue thickness in the main vein under moderate to severe water deficit. However, in the lamina the vascular tissue and the distance between vascular bundle were unaffected. Our findings suggest a complex network of anatomical adaptations such as a reduced vessel size with increased wall thickness, lesser cortical and mesophyll parenchyma formation and increased stomata density. These proprieties are required for the maintenance of water potential and energy storage under water stress which can improve the resistance of A. gombiformis to survive in arid areas.  相似文献   

20.
The vascular system for the two lodicules in a floret of Dactylis glomerata L. was studied in serial sections. The floret stele contained a few modified tracheary elements and xylem transfer cells enveloped by a phloem of squat sieve-tube members and intermediary cells. A single sieve tube and associated phloem parenchyma exited the right and left sides of the stele and upon nearing the base of each lodicule branched and formed the minor veins of the lodicule. The minor veins underwent limited branching and anastomosing to form a small three-dimensional system which described an arc during its ascent in the adaxial portion of each lodicule. The sieve tubes in the minor veins extended halfway up the lodicule and contained short sieve-tube members with transverse, slightly oblique, or lateral simple sieve plates. The associated phloem parenchyma cells were intermediary cells, companion cells, and less intimate parenchyma cells. Intermediary cells terminated the minor veins and touched the distal ends of the terminal sieve-tube members, which lacked distal sieve plates. Although the transverse area of the sieve-tube members remained constant up the lodicule, the transverse area of the associated phloem parenchyma fluctuated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号