首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The apical organization of the primary root of Malva sylvestris was analyzed at several growth stages, beginning with the embryo, to determine the structural changes that occurred during growth. Seeds were germinated, and plants were grown under controlled conditions. There were three discrete groups of initials in the embryonic root: those of the central cylinder, cortex, and secondary columella. The secondary columella initials consisted of a plate of cells flanked by a ring of cortical initials. The lateral portion of the rootcap shared a common origin with the epidermis. During growth both the initials of the secondary columella and outer cortex produced rootcap cells. The first indication of the outer cortical initials participating in rootcap formation was observed in roots 3 cm long. In 6-, 9-, and 16-cm roots the cellular continuity between the outer cortex and rootcap was marked, but in 23- and 33-cm roots the histogenic continuity between the outer cortex and rootcap was not evident. In all growth stages the initials of the central cylinder and inner cortex retained their histogenic integrity.  相似文献   

2.
Roots of the aquatic angiosperm Limnobium spongia (Bosc) Steud.were evaluated by light and electron microscopy to determinethe distribution of organelle sedimentation towards gravity.Roots of Limnobium are strongly gravitropic. The rootcap consistsof only two layers of cells. Although small amyloplasts arepresent in the central cap cells, no sedimentation of any organelle,including amyloplasts, was found. In contrast, both amyloplastsand nuclei sediment consistently and completely in cells ofthe elongation zone. Sedimentation occurs in one cell layerof the cortex just outside the endodermis. Sedimentation ofboth amyloplasts and nuclei begins in cells that are in theirinitial stages of elongation and persists at least to the levelof the root where root hairs emerge. This is the first modernreport of the presence of sedimentation away from, but not in,the rootcap. It shows that sedimentation in the rootcap is notnecessary for gravitropic sensing in at least one angiosperm.If amyloplast sedimentation is responsible for gravitropic sensing,then the site of sensing in Limnobium roots is the elongationzone and not the rootcap. These data do not necessarily conflictwith the hypothesis that sensing occurs in the cap in otherroots, since Limnobium roots are exceptional in rootcap originand structure, as well as in the distribution of organelle sedimentation.Similarly, if nuclear sedimentation is involved in gravitropicsensing, then nuclear mass would function in addition to, notinstead of, that of amyloplasts.Copyright 1994, 1999 AcademicPress Limnobium spongia, gravitropism, roots, sedimentation, cortex  相似文献   

3.
Does the diversity of cyanobacteria in the cycad rhizosphere relate to the cyanobiont species found in the coralloid roots of these ancient plants? The aim of this study was to identify the diversity of soil cyanobacteria occurring in the immediate vicinity of 22 colonized coralloid roots belonging to members of the cycad genera: Macrozamia, Lepidozamia, Bowenia and Cycas. The majority of coralloid roots were sampled at depths >?10?cm below the soil surface. A total of 32 cyanobacterial isolates were cultured and their 16S rRNA gene partially sequenced. Phylogenetic analysis revealed nine operational taxonomic units of soil cyanobacteria comprising 30 Nostoc spp., a Tolypothrix sp. and a Leptolyngbya sp. Microscopy indicated that all isolates were unialgal and confirmed their genus identity. Rhizospheric diversity was compared to existing data on cyanobionts isolated at the same time from the cycad coralloid root. The same isolate was present in both the cycad coralloid root and rhizosphere at only six sites. Phylogenetic evidence indicates that most rhizosphere isolates were distinct from root cyanobionts. This weak relationship between the soil cyanobacteria and cycad cyanobionts might indicate that changes in the soil community composition are due to environmental factors.  相似文献   

4.
Coralloid roots of Macrozamia have more apparent developmental stages than those of many other cycad genera, providing an ideal study vehicle for obtaining a better understanding of the growth and development of symbiotic cycad coralloid roots. In M. communis L. Johnson, the process begins with initiation of young apogeotropic, papillose roots called “precoralloids” and involves phases of maturation, cyanobacterial invasion, coralloid formation, senescence, and regeneration. Active precoralloid apices continue to produce papillose tissue, but during precoralloid maturation, the prominent papillose sheath is gradually replaced by a thin, dermal layer with scattered lenticels. Cyanobacterial invasion has been observed at different stages of precoralloid maturation and stimulates further, irreversible development of precoralloids into coralloids. Newly invaded precoralloids in the process of transition may be readily identified by their distinctive apical lenticels. Coralloid development involves transformation of the original, apogeotropic precoralloid tissue as well as production of new coralloid tissue by apical meristems. Although continuous, these two coralloid regions may be recognized by their external morphology. New coralloid growth involves cessation of papillose sheath production, change in gravitropic response, proliferation of lenticels, and early differentiation of a conspicuous cyanobacterial zone. Three mechanisms enabling continuity of the coralloid root system are: 1) production of new precoralloids and coralloids from bases of existing roots of the same kind; 2) initiation of atypical roots from within the internal tissues of degenerating coralloids; and 3) development of internal secondary periderm during decortication of aging coralloid tissue.  相似文献   

5.
Summary Ionic calcium concentration was measured in the gonidial zone of fresh coralloid roots by means of calcium microelectrodes. It was 10−6 M in the apical segments of coralloid roots and increased to 10−5 M in the gonidial zones of median and basal segments. Loosely membrane-bound calcium was evidenced by using chlorotetracycline (CTC) or ethylene glycol-bis-(β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid (EGTA) and CTC, in cell walls of columnar cells ofCycas and in the cytoplasm of cyanobiont. Sub-cellular localization of calcium was obtained by electron spectroscopic imaging (ESI) and electron energy loss spectroscopy (EELS) analyses applied at transmission electron microscopy on thin, unstained sections of gonidial zone of coralloid roots. By means of these techniques, bound-calcium was detected inside the mucilage of apical and median segments whereas, in the basal segments, it was completely absent. In the heterocysts of apical segments of coralloid, calcium was localized on the envelope, cell walls, thylakoids and cyanophycin granules. In the gonidial zone of the basal segments, dead or degenerating heterocysts completely lacked calcium. Therefore, the high ionic calcium amounts detected in the gonidial zone of median and basal segments could represent a minor calcium uptake by the cells or release by lysed ones. The decreases in nitrogenase activity recorded in the median and basal segments of the coralloid roots paralleled the decrease in calcium amount in heterocyst envelope.  相似文献   

6.
Formation and location of phenolic compounds in apogeotropic roots (coralloid roots) were studied in six cycad species, which belong to the genera Cycas, Encephalartos, and Ceratozamia. Total contents of soluble phenolic compounds in coralloid roots in all species studied varied insignificantly, with except for Ceratozamia mexicana that accumulated three times higher amounts of phenolic compounds. Phenolic compounds were accumulated in cell walls of cortical parenchyma of coralloid roots, in intercellular spaces, and in specialized storage cells, found in all zones of apogeotropic roots. The greatest number of phenol-storing cells was situated in the cortical parenchyma of the central part of coralloid roots, adjacent to a zone where active symbiotic cyanobacteria were localized, and in the coralloid root basal region lacking viable forms of cyanobionts. It was suggested that phenolic compounds affect the formation of symbiosis between cyanobacteria and apogeotropic roots of cycad plants, as well as their metabolism.  相似文献   

7.
We describe the occurrence of arbuscular mycorrhizae in the roots ofZamia pumila andDioon edule. Seedlings were grown on native, unsterilized soil taken from local pinelands of south Florida, whereZ. pumila occurs naturally. Arbuscules, hyphae, hyphal coils, and vesicles occur in the parenchyma cells of the root cortex, especially the half of the cortex next to the stele. Hyphae of the arbuscular mycorrhizal fungi (AMF) occur mainly in longitudinal intercellular spaces and conform to theAcorus type. The finest, ultimate roots have AMF, but these roots are extremely brittle, detach with the slightest disturbance, and are usually lost when plants are uprooted from the ground. No AMF were found in the cortex of coralloid roots. Vovides (1991) previously reported that AMF occur onDioon edule and Ceratozamia mexicana, and we reconfirm this inD. edule. In this species, AMF appear to be mostly associated with the outer and to a lesser extent the inner cortex. However, roots of a potted plant of C.hildae growing in native soil lacked AMF. When grown on low phosphorus soils, legumes are known to require AMF in order for theirRhizobium nodules to fix nitrogen. Without AMF, the legumes are deficient in phosphorus, which inhibits nodule production and nitrogen fixation. It is probable that cycads, with their nitrogen-fixing coralloid roots containingNostoc, may also require AMF for successful nitrogen fixation when phosphorus is limiting.  相似文献   

8.
The diversity of cyanobacterial species within the coralloid roots of an individual and populations of Cycas revoluta was investigated based on 16S rRNA gene sequences. Sixty-six coralloid roots were collected from nine natural populations of cycads on Kyushu and the Ryukyu Islands, covering the entire distribution range of the species. Approximately 400?bp of the 5'-end of 16S rRNA genes was amplified, and each was identified by denaturing gradient gel electrophoresis. Most coralloid roots harbored only one cyanobiont, Nostoc, whereas some contained two or three, representing cyanobiont diversity within a single coralloid root isolated from a natural habitat. Genotypes of Nostoc within a natural population were occasionally highly diverged and lacked DNA sequence similarity, implying genetic divergence of Nostoc. On the other hand, Nostoc genotypes showed no phylogeographic structure across the distribution range, while host cycads exhibited distinct north-south differentiation. Cycads may exist in symbiosis with either single or multiple Nostoc strains in natural soil habitats.  相似文献   

9.
The microbial complexes of soil, the rhizosphere, and the rhizoplane of the apogeotropic (coralloid) roots of cycad plants were comparatively studied. The aseptically prepared homogenates of the surface-sterilized coralloid roots did not contain bacterial microsymbiont, indicating that in the root tissues the symbiosis is a two-component one (plant–cyanobacteria). At the same time, associated bacteria belonging to different taxonomic groups were detected in increasing amounts in the cycad rhizoplane, rhizosphere, and the surrounding soil. The bacterial communities found in the cycad rhizoplane and the surrounding soil were dominated by bacteria from the genus Bacillus. The saprotrophic bacteria and fungi colonizing the cycad rhizosphere and rhizoplane were dominated by microorganisms capable of degrading the plant cell walls. The local degradation of the cell wall was actually observed on the micrographs of the thin sections of cycad roots in the form of channels through which symbiotic cyanobacterial filaments can penetrate into the cortical parenchyma.  相似文献   

10.
Filamentous aerobic soil actinobacteria of the genus Frankia can induce the formation of nitrogen-fixing nodules on the roots of a diverse group of plants from eight dicotyledonous families, collectively called actinorhizal plants. Within nodules, Frankia can fix nitrogen while being hosted inside plant cells. Like in legume/rhizobia symbioses, bacteria can enter the plant root either intracellularly through an infection thread formed in a curled root hair, or intercellularly without root hair involvement, and the entry mechanism is determined by the host plant species. Nodule primordium formation is induced in the root pericycle as for lateral root primordia. Mature actinorhizal nodules are coralloid structures consisting of multiple lobes, each of which represents a modified lateral root without a root cap, a superficial periderm and with infected cells in the expanded cortex. In this review, an overview of nodule induction mechanisms and nodule structure is presented including comparisons with the corresponding mechanisms in legume symbioses.  相似文献   

11.
The microbial complexes of soil, the rhizosphere, and the rhizoplane of the apogeotropic (coralloid) roots of cycad plants were comparatively studied. The aseptically prepared homogenates of the surface-sterilized coralloid roots did not contain bacterial microsymbiont, indicating that it was absent in the root tissues. At the same time, associated bacteria belonging to different taxonomic groups were detected in increasing amounts in the cycad rhizoplane, rhizosphere, and the surrounding soil. The bacterial communities found in the cycad rhizoplane and the surrounding soil were dominated by bacteria from the genus Bacillus. The saprotrophic bacteria and fungi colonizing the cycad rhizosphere and rhizoplane were dominated by microorganisms capable of degrading the plant cell walls. The local degradation of the cell wall was actually observed on the micrographs of the thin sections of cycad roots in the form of channels, through which symbiotic cyanobacterial filaments can penetrate into the cortical parenchyma.  相似文献   

12.
A symbiotic, heterocystous, N2-fixing blue-green alga, isolated from the coralloid roots of a xerophytic plant,Cycas revoluta, grew best in liquid medium supplemented with 4 mM NO 3 . Morphologically, the isolated alga was identical to that of the natural endophyte but the cell size had decreased markedly. The alga was heterotrophic. Intact coralloid roots had nearly 4 to 5 times more nitrogenase activity compared with natural- and laboratory-grown agla but nitrate reductase was inducible in both the forms. Plasmid(s) were found in both algal forms.  相似文献   

13.
Although flowers, leaves, and stems of the angiosperms have understandably received more attention than roots, the growing root tips, or root apical meristems (RAMs), are organs that could provide insight into angiosperm evolution. We studied RAM organization across a broad spectrum of angiosperms (45 orders and 132 families of basal angiosperms, monocots, and eudicots) to characterize angiosperm RAMs and cortex development related to RAMs. Types of RAM organization in root tips of flowering plants include open RAMs without boundaries between some tissues in the growing tip and closed RAMs with distinct boundaries between apical regions. Epidermis origin is associated with the cortex in some basal angiosperms and monocots and with the lateral rootcap in eudicots and other basal angiosperms. In most angiosperm RAMs, initials for the central region of the rootcap, or columella, are distinct from the lateral rootcap and its initials. Slightly more angiosperm families have exclusively closed RAMs than exclusively open RAMs, but many families have representatives with both open and closed RAMs. Root tips with open RAMs are generally found in angiosperm families considered sister to other families; certain open RAMs may be ancestral in angiosperms.  相似文献   

14.
Although the rootcap is required for gravitropic sensing, various classical and contemporary data raise the question of whether additional sensing occurs away from the cap in roots. Roots of Equisetum hyemale L. (horsetail) were examined by light and electron microscopy to determine which cell components were distributed with respect to gravity both in and away from the rootcap. Adventitious roots from stem cuttings were gravitropic in a vertical orientation or if reoriented to the horizontal. Obvious amyloplast sedimentation was found in vertical and in reoriented roots 1) in cells in the center of the rootcap and 2) in young, elongating cortical cells located in two to three layers outside the endodermis. These cortical amyloplasts were smaller than cap amyloplasts and, unlike central cap amyloplasts, were occasionally found in the top of the cell. The nucleus was also sedimented on top of the amyloplasts in both cell types, both in vertical and in reoriented roots. Sedimentation of both organelles ceased as cortical cells elongated further or as cap cells became peripheral in location. In both cell types with sedimentation, endoplasmic reticulum was located in the cell periphery, but showed no obvious enrichment near the lower part of the cell in vertical roots. This is the first modern report of sedimentation away from the cap in roots, and it provides structural evidence that gravitropic sensing may not be confined to the cap in all roots.  相似文献   

15.
P. Lindblad  B. Bergman 《Planta》1986,169(1):1-7
Nitrogen-fixing cyanobacteria inhabit the zone between the inner and outer cortex of cycad coralloid roots. In the growing tip of such roots the cyanobacterial heterocyst frequency, nitrogenase activity (C2H2-reduction) and glutamine synthetase activity (both transferase and biosynthetic) were comparable to those found in freeliving cyanobacteria. The relative level of glutamine synthetase protein and its pattern of cellular/subcellular localization in heterocysts and vegetative cells were also similar to those of free-living cyanobacteria. However, there was a progressive decline in nitrogenase activity along the coralloid root with maximum reduction occurring in the regions farthest from the growing tip. A similar but less pronounced pattern was observed for glutamine synthetase activity. Distribution of glutamine synthetase protein in cyanobacteria in the first 2–3 mm of the root tip indicated a slight decrease in the heterocysts and vegetative cells. However, the overall level of cyanobacterial glutamine synthetase protein did not change because of a drastic increase in the numbers of heterocysts, which contain a proportionally higher level of glutamine synthetase than the vegetative cells.Abbreviation GS glutamine synthetase  相似文献   

16.
Roots of seedlings of the “beefwood” tree, Casuarina cunninghamiana Miq. grown in nitrogen-free nutrient solution were inoculated with a suspension prepared from crashed root nodules taken from mature plants. Marked deformation of root hairs was evident but no infection threads were observed in root hairs. The mode of infection remains undetermined. Root nodules were initiated within three weeks and thereafter numerous upward-growing nodule roots developed from each nodule. Nodules in this symbiotic nitrogen-fixing plant resulted from an infection caused by an unidentified actinomycete-like soil microorganism. Anatomical analysis of nodule formation showed that nodules are the result of repeated endogenous lateral root initiations, one placed upon another in a complexly branched and truncated root system. The endophyte-infected cortical tissues derived from successive root primordia form the swollen nodular mass. Nodule roots develop from nodule lobes after escaping from the initial inhibitory effects of the endophyte. Included is a discussion of the anatomical similarities between nodules of Casuarina which produce nodule roots and those of Alnus which form coralloid nodules usually lacking nodule roots.  相似文献   

17.
We tested whether the first response to gravistimulation is an asymmetry in the root tip that results from differential growth of the rootcap itself. The displacement of markers on the rootcap surface of maize (Zea mays L. cv. Merit) roots was quantified from videotaped images using customized software. The method was sensitive enough to detect marker displacements down to 15 microns and root curvature as early as 8 min after gravistimulation. No differential growth of the upper and lower sides of the cap occurred before or during root curvature. Fewer than a third of all gravistimulated roots developed an asymmetrical outline of the root tip after curvature had started, and this asymmetry did not occur in the rootcap itself. Our data support the view that the regions of gravitropic sensing and curvature are spatially separate during all phases of gravitropism in maize roots.  相似文献   

18.
The anatomy of Macrozamia communis L. Johnson lateral roots and nodules was studied following axenic culture in light and darkness. Pointed lateral roots from dark cultures had an open apical organization similar to that of other cycads and gymnosperms. A distinct protoderm-derived epidermis was not observed. At the apex, the dermis was formed by the outer root capcortical cell layer. Subapically, the outer cortex formed the dermis. No evidence of an algal zone was observed in these roots. The stele was bounded by a distinct endodermis and contained an exarch, diarch xylem. Apogeotropic nodules which developed at the root-shoot junction in darkness, branched dichotomously and had rounded tips covered by tangentially-enlarged root cap cells. The root cap was reduced to a few cell layers and was confined to the extreme nodule apex. The central region of the apical meristem was enlarged, and meristematic cells contained differentiated amyloplasts. A presumptive algal zone was present in some but not all nodules and divided the cortex into inner and outer regions. Stelar anatomy was similar to that observed in pointed, dark-grown lateral roots, except that there was greater xylem differentiation. Nodules which developed in the light were similar to dark-formed nodules, except that root cap cells were radially enlarged and extended over the flanks of the nodule forming a persistent root cap. The heteromorphic lateral roots of M. communis formed a developmental continuum not a heterorhizic root system.  相似文献   

19.
Lateral roots of Typha glauca arose from the pericycle of the parent adventitious root. Periclinal divisions of the pericycle gave rise to two layers; the outermost initially produced the ground meristem and protoderm, and the innermost produced the procambium. The immature endodermis of the parent root contributed to the early stages of the root tip as an endodermal covering. Prior to emergence, the ground meristem/protoderm produced cells into the endodermal covering. After emergence, the endodermal covering was replaced by a calyptrogen, which was derived from the ground meristem/protoderm and which, in turn, formed the rootcap. A typical monocotyledonous three-tiered meristem was then produced. An outer ground meristem also arose before emergence to form a hypodermis in many lateral roots; in these, crystalliferous cell production began in midcortex cells before emergence, and a small aerenchyma developed in their cortices. The rootcap columella stored small amounts of starch shortly after emergence. Lateral roots of T. glauca were smaller than their parental adventitious roots; they normally had only two to six poles of xylem and phloem, and the cortex was less than six cells across. During 1–3-cm elongation, the lateral root apical meristem and mature regions narrowed, stored starch disappeared, fewer crystals formed, aerenchyma production ceased, and the roots stopped elongation.  相似文献   

20.
Many soil fungi colonize the roots of pines to form symbiotic organs known as ectomycorrhizas. Dichotomous branching of short lateral roots and the formation of coralloid organs are diagnostic of ectomycorrhizas in many pine species, although the regulation of these changes in root morphology is not well understood. We used axenic root cultures of six pine species to examine the role of auxin, cytokinin, ethylene and nutrients in the regulation of root architecture. Surprisingly, extensive dichotomous and coralloid branching of lateral roots occurred spontaneously in Pinus taeda , P. halepensis and P. muricata . In P. sylvestris , P. ponderosa and P. nigra , treatment with auxin transport inhibitors (ATIs), the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) or the ethylene-releasing compound 2-chloroethylphosphonic acid (CEPA or ethephon) induced extensive dichotomous branching and coralloid organ formation. Formation of both spontaneous and ATI-induced coralloid structures was blocked by treatment with an ethylene synthesis inhibitor L-α-(2-aminoethoxyvinyl)glycine; this inhibition was reversed by either ACC or CEPA. In addition, the induction of this unique morphogenetic pattern in pine root cultures was regulated by nutrient levels. The morphology and anatomical organization of the chemically induced dichotomous and coralloid structures, as well as the regulation of their formation by nutrient levels, show a striking similarity to those of ectomycorrhizas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号