首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 663 毫秒
1.
Offspring from natural hybrids between octoploid Fragaria chiloensis (2n = 56) and diploid F. vesca (2n = 14) backcrossed under natural conditions to F. chiloensis were studied. The natural F1 hybrids themselves were of three kinds: (1) The expected pentaploids which resulted from the union of normally reduced gametes of diploid F. vesca and octoploid F. chiloensis; (2) A hexaploid F1 hybrid which resulted from the union of an unreduced gamete from diploid F. vesca with a normally reduced gamete from octoploid F. chiloensis; and (3) A 9-ploid F1 hybrid which probably arose from the union of an unreduced gamete of the octoploid F. chiloensis with a normally reduced gamete of diploid F. vesca. The progenies that resulted from the natural backcrossing of each of the three sorts of F1 hybrids to F. chiloensis were as follows: The pentaploid F1 hybrids (2n = 35) yielded mostly 9-ploid offspring from unreduced 5X gametes; a relatively high percentage of 14-ploid plants arising from doubled-unreduced 10 X gametes and a few 2N = ±46 aneuploids from reduced gametes. The hexaploid F1 hybrid (2n = 42) on backcrossing yielded over 50% 10-ploid offspring with the rest 2n = ±50 aneuploids from reduced gametes. The 9-ploid F1 hybrid (2n = 63) on backcrossing yielded mostly aneuploids normally distributed about a modal 2n = 59 chromosome class resulting from a 31 chromosome gamete, with a few 2n = 56 and 2n = 63 euploids. The 9-ploids may facilitate diploid Å octoploid introgression. Screening of the open-pollinated offspring from F. chiloensis revealed almost 2% 12-ploid (2n = 84) offspring from the union of the reduced and unreduced F. chiloensis gametes. The probable genomic constitution of the observed novel ploidy levels and those that theoretically may be generated from the known hybrids are presented. The origin of the existing polyploids from diploids through simple unreduction is postulated.  相似文献   

2.
Du XZ  Ge XH  Zhao ZG  Li ZY 《Plant cell reports》2008,27(2):261-271
The intertribal sexual hybrids between three Brassica napus (2n = 38) cultivars and Lesquerella fendleri (2n = 12) with the latter as pollen parent were obtained and characterized for their phenotypes and chromosomal and genomic constitutions. F1 plants and their progenies mainly resembled female B. napus parents, while certain characters of L. fendleri were expressed in some plants, such as longer flowering period, basal clustering stems and particularly the glutinous layer on seed coats related to drought tolerance. Twenty-seven F1 plants were cytologically classified into five types: type I (16 plants) had 2n = 38, type II (2) had 2n = 38–42, type III (3) had 2n = 31–38, type IV (5) had 2n = 25–31, and type V (1) had 2n = 19–22. Some hybrids and their progenies were mixoploids in nature with only 1–2 chromosomes or some chromosomal fragments of L. fendleri included in their cells. AFLP (Amplified fragments length polymorphism) analysis revealed that bands absent in B. napus, novel for two parents and specific for L. fendleri appeared in all F1 plants and their progenies. Some progenies had the modified fatty acid profiles with higher levels of linoleic, linolenic, eicosanoic and erucic acids than those of B. napus parents. The occurrence of these partial hybrids with phenotypes, genomic and fatty acid alterations resulted possibly from the chromosome elimination and doubling accompanied by the introgression of alien DNA segments and genomic reorganization. The progenies with some useful traits from L. fendleri should be new and valuable resource for rapeseed breeding.  相似文献   

3.
 The objective of the current research was to generate a ploidy series of backcross progenies from a single triploid (2n=3x=24) Trifolium repens×T. nigrescens F1 hybrid (3x H-6909-5). The 3x H-6909-5 plant was highly sterile and produced no seeds from approximately 3000 reciprocal backcrosses to both parental species. Chromosome doubling by an in vitro colchicine method resulted in a marked increase in fertility. Pollen stainability was increased from 9.9% in 3x H-6909-5 to an average of 89.2% (range 87.7–90.9%) in the three chromosome-doubled 6x H-6909-5 plants. Subsequent backcrosses of 6x H-6909-5 and interbreeding of backcross derivatives resulted in an array of fertile hybrids at 4x, 5x and 7x levels and some aneuploids. The occurrence of 7x BC1F1 progeny from the T. repens×6x H-6909-5 (4x×6x) cross is the first unequivocal evidence of functional female 2n gametes in white clover. Meiotic pairing in F1 and BC1F1 progeny indicated the presence of allosyndetic pairing, suggesting that genetic exchange between the two species is possible. Received: 17 October 1996 / Accepted: 8 November 1996  相似文献   

4.
Oryza australiensis, a diploid wild relative of cultivated rice, is an important source of resistance to brown planthopper (BPH) and bacterial blight (BB). Interspecific hybrids between three breeding lines of O. sativa (2n=24, AA) and four accessions of O. australiensis (2n=24, EE) were obtained through embryo rescue. The crossability ranged from 0.25% to 0.90%. The mean frequency of bivalents at diakinesis/metaphase I in F1 hybrids (AE) was 2.29 to 4.85 with a range of 0–8 bivalents. F1 hybrids were completely male sterile. We did not obtain any BC1 progenies even after pollinating 20,234 spikelets of AE hybrids with O. sativa pollen. We crossed the artificially induced autotetraploid of an elite breeding line (IR31917-45-3-2) with O. australiensis (Acc. 100882) and, following embryo rescue, produced six F1 hybrid plants (AAE). These triploid hybrids were backcrossed to O. sativa. The chromosome number of 16 BC1 plants varied from 28 to 31, and all were male sterile. BC2 plants had 24–28 chromosomes. Eight monosomic alien addition lines (MAALs) having a 2n chromosome complement of O. sativa and one chromosome of O. australiensis were selected from the BC2 F2 progenies. The MAALs resembled the primary trisomies of O. sativa in morphology, and on the basis of this morphological similarity the MAALs were designated as MAAL-1, -4, -5, -7, -9, -10, -11, and -12. The identity of the alien chromosome was verified at the pachytene stage of meiosis. The alien chromosomes paired with the homoeologous pairs to form trivalents at a frequency of 13.2% to 24.0% at diakinesis and 7.5% to 18.5% at metaphase I. The female transmission rates of alien chromosomes varied from 4.2% to 37.2%, whereas three of the eight MAALs transmitted the alien chromosome through the male gametes. BC2 progenies consisting of disomic and aneuploid plants were examined for the presence of O. australiensis traits. Alien introgression was detected for morphological traits, such as long awns, earliness, and Amp-3 and Est-2 allozymes. Of the 600 BC2 F4 progenies 4 were resistant to BPH and 1 to race 6 of BB. F3 segregation data suggest that earliness is a recessive trait and that BPH resistance is monogenic recessive in two of the four lines but controlled by a dominant gene in the other two lines.  相似文献   

5.
Segregation for self-fertility has been studied in progenies from the crosses of self-sterile (SS) plants with interline hybrids obtained by a diallel scheme of pollinations between seven self-fertile (SF) lines (nos. 2–8) and with F1 (SS plant x SF line) hybrids. All the offspring families from the SS plant x F1 (SS plant x SF line) crosses demonstrated a 1SF1SS segregation. The crosses of SS plants with some interline hybrids gave only self-fertile plants, whereas the crosses with other interline hybrids gave a segregation of 3SF:1SS expected in the case of digenic segregation. The data obtained permitted us to identify three different S loci (S1, S2, S5) and to estimate the genotypes of self-fertile lines for their Sf alleles: lines 5, 6, 7 and 8 are S1f/S1f S2n/S2n S5m/S5m, line 4 is S1n/S1n S2f/S2f S5m/S5m, and lines 2 and 3 are S1n/S1n S2m/S2m S5f/S5f(Sn, Sm designate active alleles of the incompatibility genes). The identification of the particular S gene which is presented by the Sf allele in each line has been made on the basis of our data concerning the linkage of the Sf mutation with isozyme markers of particular rye chromosomes, which is reported in an accompanying paper.  相似文献   

6.
ABSTRACT Caespitose and cold-tolerant plants of Parthenium ligulatum (Jones) Barneby (Asteraceae) from a native population in the Uinta Basin, Utah, were uprooted, potted, and transferred to a greenhouse in California. Approximately two years after transfer, the plants flowered and subsequently were crossed to diploid guayule (Parthenium argentatum Gray), the rubber-bearing species, native to the state of Durango, Mexico. Only female guayule × male P. ligulatum crosses produced F1 hybrids. Only crosses involving guayule as female parent and F1 plants as male parents produced backcross (BC,) plants. Hybrid plants were variable with respect to their growth habit, inflorescence, and leaf shape. Both parents and F1 hybrids had 2n = 36 chromosomes. Unlike the parents, however, meiosis was irregular in the hybrids which showed a range of 0–5 and an average of 2.1 univalents at metaphase I. Hybrids averaged 0.87 laggards at anaphase I and 0.83 micronuclei at the tetrad stage. The crossability of guayule and P. ligulatum, the high degree of chromosome pairing of the F1 hybrids, and the production of BC1 plants indicate that the two species are related in spite of their distinct morphological and ecological differences. This study suggests that the cold-tolerance trait of P. ligulatum may be transferred to guayule through interspecific hybridization followed by backcrossing. The development of cold-tolerant guayule cultivars is expected to expand the areas of guayule production beyond that of the Chihuahuan desert and similar climates.  相似文献   

7.
Summary Interspecific hybrids between Brassica napus and B. oleracea are difficult to produce, and previous attempts to transfer economic characters from one species to the other have largely been unsuccessful. In these studies, oilseed rape cv. Tower (2n38) (B. napus) was crossed with broccoli and kale (2n18) (B. oleracea), and hybrid plants were developed from embryos in culture by either organogenesis or somatic embryogenesis. In rape × broccoli, F1 plants were regenerated from hybrid embryos and the plants produced viable selfed seeds. F5 plants (2n38) homozygous for white flower colour were selected for high oil content (47%) and Line 15; a selection from these plants produced fertile hybrids with rape, broccoli and kale without embryo culture. In reciprocal crosses between oilseed rape cv. Tower and an aphid resistant diploid kale, 28 and 56 chromosome F1 hybrid plants were regenerated from somatic embryos. The 56 chromosome plants were self-fertile and it was concluded from F2 segregation ratios that a single dominant gene controls resistance to cabbage aphid in kale. The 28 chromosome F1's were self-sterile, but these and the 56 chromosome F1's could be backcrossed to rape and kale. A cross between the F1 (2n56) and a forage rape resulted in the selection of a cabbage aphid (Brevicoryne brassicae L.) resistant line (Line 3). Both Line 15 and Line 3 can serve as bridges for gene interchange between B. campestris, B. napus and B. oleracea, which has not been possible hitherto. Hybridisations between rape and tetraploid kale produced F1 plants with 37 chromosomes. One F2 plant possessed coronal scales and the inheritance was shown to be controlled by a single recessive gene unlinked to petal colour.This paper is dedicated to Mr. T. P. Palmer, a colleague and close friend who retired from the DSIR as Assistant Director of the Crop Research Division in September 1984  相似文献   

8.
Jaranowski , J. K. (Coll. of Agriculture, ul. Wojska Polskiego 71c, Poznan, Poland.) Semisterility in the interspecific hybrid Melilotus polonica × M. alba. Amer. Jour. Bot. 48(1): 28–35. Illus. 1961.—Interspecific hybrids between Melilotus polonica (n = 8) and M. alba (n = 8) are readily secured. The F1 hybrids are intermediate between the parents and partially sterile with a mean percentage of 58.8 (ranging from 46.8 to 72.6) defective pollen grains. Six bivalents and a chain or ring of 4 chromosomes occur at diakinesis and metaphase-I of microsporogenesis. A crossshaped configuration characteristic of a reciprocal translocation is present at pachytene, indicating that one of the parents is homozygous for an interchange of relatively large section between two of the members of the chromosome complex. Chromosome bridges, lagging chromosomes, movement of the univalents to the same pole and precocious division of the univalents lead to aberrant chromosome distribution during the course of meiosis. Reduction in self-fertility indicates a corresponding aberrant distribution of chromosomes during megasporogenesis. Pollen sterility in the F2 generation ranged from 24.8% to 72.5% with a mean value of 54.6%. Two plants in the F2 generation which had relatively low pollen sterility proved to be aneuploids (2n + 1). Meiotic irregularities in the F2 plants were comparable to those exhibited by the F1 plants.  相似文献   

9.
The cytological possibility of gene transfer from Sinapis pubescens to Brassica napus was investigated. Intergeneric hybrids between Brassica napus (2n = 38) and Sinapis pubescens (2n = 18) were produced through ovary culture. The F1 hybrids were dihaploid and the chromosome configurations were (0–1) III + (2–11) II + (5–24) I . One F2 plant with 38 chromosomes was obtained from open pollination of the F1 hybrid. Thirty-one seeds were obtained from the backcross of the F2 plant with B. napus. Five out of seven plants had 38 chromosomes, and the pollen stainability ranged from 0% to 81.4%. In the B2 plants obtained from the backcross of B1 plants with B. napus, 66.7% of the plants examined had 38 chromosomes. S. pubescens may become a gene source for the improvement of B. napus.  相似文献   

10.
Summary Crosses were made to obtain interspecific hybrids between B. fruticulosa (wild species , 2n = 16) × B. campestris (cultivar , 2n = 20). Although many pollen grains germinated and their tubes entered the style, only about 30% of the ovules received pollen tubes. Fertilized ovules aborted at various stages of development. A few hybrid seeds resulted from hand pollinations in the field, and they showed poor germination and seedling establishment. The in vitro culture of ovaries, ovules, and seeds increased the frequency of obtaining hybrid seeds and plants: the most effective method was ovary culture followed by ovule culture. The hybrid nature of the plants was confirmed through morphological, cytological, and electrophoretic studies. A meiotic analysis of F1 hybrids (2n = 18) showed that they had 0–5 bivalents and were completely pollen sterile. Electrophoretic analysis of leaf esterases and acid phosphatases of F1 hybrids revealed bands derived from each parent. Induced amphidiploids of F1 hybrids contained mostly bivalents, and had about 50% fertile pollen.  相似文献   

11.
The fertility characteristics expressed during morphogenesis in first-generation self-pollinated backcrossed progenies (BC1) obtained from amphiploid barley–wheat hybrids [Hordeum geniculatum All. (2n= 28) ×Triticum aestivum L. (2n= 42)] (2n = 70) backcrossed with common wheat were studied. It was found that, in the case of self-pollination of BC1 plants, karyotype stabilization leads to the formation of alloplasmic euploid (2n = 42), telocentric substitution (2n = 40 + 2t), and telocentric addition (2n = 42 + t), (2n = 42 + 2t) plant forms, which may serve as the sources of the respective alloplasmic lines of common wheat. That the expression of fertility characters in BC1F8plants was shown to depend on growth conditions. The main mechanism of hybrid incompatibility of BC1F1–BC1F8plants was expressed as grass-clump dwarfism.  相似文献   

12.
The new salt tolerant cereal, Tritipyrum (2n=6x=42, AABBEbEb) offers potential to introduce desirable characters for wheat improvements. This study was aimed to generate a segregating population from Iranian local wheat cultivars (2n=6x=42, AABBDD) and Tritipyrum crosses, study of the meiotic behaviour in F2 hybrids and identification of Eb chromosomes in F3 individuals. Results showed meiotic abnormalities in F2 plants and different pairing frequency in the meiosis among F2 plants. Genomic in situ hybridization revealed that total and Eb chromosome number of F3 seeds ranged from 39 to 45 and 0 to 10, respectively. A significant prevalence of hyper-aneuploidy was observed among F3 genotypes. C-banding patterns identified Eb chromosomes in Tritipyrum, indicating that it also can be useful to study wheat-Tritipyrum derivatives.  相似文献   

13.
The crossability between Brassica tournefortii (TT, 2n = 20) and Brassica rapa (AA, 2n = 20) and the cytomorphology of their F1 hybrids were studied. Hybrids between these two species were obtained only when B. tournefortii was involved as a female parent. The hybrid plants were intermediate for most of the morphological attributes and were found to be free from white rust under field conditions. The F1 plants showed poor pollen fertility, although occasional seed set was achieved from open pollination. Self-pollination or backcrosses did not yield any seeds in these plants. The occurrence of chromosome association ranging from bivalents (0–7), trivalents (0–2) to a rare quadrivalent (0–1) in the dihaploid hybrids indicates pairing between the T and A genomes. The homoeologous pairing coupled with seed set in the F1 plants offer an opportunity for interspecific gene transfers from B. tournefortii to B. rapa and vice-versa through interspecific hybridization. Received: 3 July 2000 / Accepted: 22 September 2000  相似文献   

14.
Genomic in situ hybridization (GISH) has been used to study characteristics of the formation of alloplasmic lines detected among self-pollinated backcrossed progeny (BC1F5–BC1F8) of barley–wheat amphiploids [Hordeum geniculatum All. (2n = 28) × Triticum aestivum L. (2n = 42)] (2n = 70). The chromosome material of the wild barley H. geniculatum has been shown to contribute to these lines. For example, fifth-generation plants (BC1F5) had genotypes (2n= 42w + 2g), (2n = 42w + 1g + 1tg), and (2n = 41w + 1g), where w is common wheat chromosomes, g is barley (H. geniculatum) chromosomes, and tg is the telocentric chromosome of wild barley. Beginning from theBC1F6 generation, alloplasmic telocentric addition lines (2n= 42 + 2tg) and (2n = 42 + 1tg) appear. This lines has been found cytogenetically unstable. The progeny of each of these cytological types include not only the (2n= 42 + 2tg) and (2n = 42 + 1tg) addition plants, but also plants with the monosomic (2n = 41 + 1tg) and the disomic (2n = 40 + 2tg) substitutions, as well as the (2n = 41 + 2tg) plants, which lack one wheat chromosome and have two telocentric barley chromosomes. It has been demonstrated that the selection for well-filled grains favors the segregation of telocentric addition lines (2n = 42 + 2tg) and (2n = 42 + 1tg).  相似文献   

15.
The backcross progenies of the barley–wheat hybrids Hordeum vulgare L. (2n = 14) × Triticum aestivum L. (2n= 42) and two alloplasmic lines derived from them were studied using microsatellite markers of barley and wheat. The F1 hybrids and first backcross plants BC1 contained the genetic material of both cultivated barley and the cultivars of common wheat involved in developing of these hybrid genotypes. The genomes of BC3, BC4, and alloplasmic lines contained no microsatellite markers of the cultivated barley, whereas chromosomes of each homeologous group of common wheat were identified. In chromosomes of backcross progenies BC3, BC4, and alloplasmic lines yielded by backcrosses of hybrids and various common wheat cultivars, microsatellite markers of the parental wheat cultivars were shown to undergo recombination.  相似文献   

16.
Menzel, Margaret Y. (Florida State U., Tallahassee), and F. D. Wilson. Cytotaxonomy of twelve species of Hibiscus section Furcaria. Amer. Jour. Bot. 50(3): 262–271. Illus. 1963.—Metaphase-I chromosome numbers and pairing in 88 accessions showed that H. cannabinus, H. costatus, and H. surattensis are diploid (n = 18); and H. acetosella, H. aculeatus, H. bifurcatus, H.furcellatus, H. meeusei, H. radiatus, H. rostellatus and H. sabdariffa are tetraploid (n = 36), with similar low multivalent frequencies, hence probably allotetraploids each combining 2 well-differentiated genomes. No intraspecific variation in ploidy was found. Fertile, vigorous F1 hybrids between H.furcellatus and H. bifurcatus showed complete chromosome pairing (n = 36), confirming a close relationship between the parents. Two African strains of H. diversifolius were octoploid (n = 72) with low multivalent frequency and hence probably contain 4 differentiated genomes. At least 4, perhaps 5 or 6, differentiated genome groups are represented in tropical Africa, and at least 2 in the American tropics.  相似文献   

17.
Summary Interspecific F1 hybrids of Nicotiana debneyi Domin (2n=48) and N. umbratica Burbidge (2n=46), both belonging to the section Suaveolentes, showed a high degree of meiotic chromosome pairing. Two of the five F2 plants obtained exhibited chromosome mosaicism. The first colchiploid generation (C1) had the expected chromosome number of 2n=94 while C2 showed 2n=88, a loss of three pairs of chromosomes. This same chromosome number continued in further colchiploid generations, followed up to C5, except for a few plants in C3 which showed chromosome mosaicism. The F1 phenotype was stable through C1 to C5 and fertility was normal in colchiploids through all generations in spite of the loss of three pairs of chromosomes and chromosome mosaicism. This stability and fertility apparently reflect the tolerance of the genomes to the genetic adjustment of chromosome complements which is believed to be associated with the originally polyploid nature of the parental species and the chromosome doubling brought about in the amphidiploids.  相似文献   

18.
Metaphase-I chromosome association in PMCs of five F1 hybrids 6x-triticale x T. turgidum (2n=5x=35 and genomes AABBR), and 13 plants from their backross or self offspring is reported. In wheat 18 chromosome arms and in rye 14 arms were recognized after C-banding and individually studied. Plants of backcross and F2 showed variability for number and type of rye chromosomes, having in common the 28 durum wheat chromosomes (AABB). By testing meiotic association in plants with different rye chromosome constitutions, significant negative correlations were found. A clear negative effect of rye heterochromatin on pairing in wheat chromosomes is observed, the influence being more pronounced for large arms than for the short ones.  相似文献   

19.
Nuclear DNA content varies over 20% within the diploid (2n = 18) species M. douglasii and M. bigelovii. Two different intraspecific crosses were made between M. douglasii biotypes which differed by about 10% in 2C nuclear DNA content. The F2 progeny of one intraspecific cross showed no striking evidence of segregation for DNA content. The mean DNA contents of F2 progeny from two sister hybrids from the second intraspecific cross were significantly different at the 1% level. An interspecific cross was made between biotypes of M. douglasii and M. bigelovii that differed by approximately 10% in DNA amount. The 12 F1 progeny did not cluster around the parental midpoint, but instead encompassed nearly the entire range between the parental means. The five families of F2 progeny studied each had a mean DNA content corresponding to that of the particular F1 from which they were derived, indicating that the F1 plants were not of identical DNA content. The results of this study suggest that DNA sequences which account for the DNA content differences among the plants are unstable and can undergo deletion or amplification in a hybrid. The altered DNA content may be heritably stable and show little or no segregation in the F2 progeny.  相似文献   

20.
Summary New interspecific hybrids between alfalfa (Medicago sativa L.) and several perennial Medicago species were obtained by embryo rescue techniques. The methodology, designated ovule-embryo culture, involved preculturing the fertilized ovule (10 to 20 days post-pollination) for a period of six to 12 days followed by excision and direct culture of the embryo. Placement of the hybrid embryo directly onto culture medium without the interim ovule culture was unsuccessful. Ovule culture to germination without removing the embryo also was unsuccessful. Ovule-embryo culture was essential for recovering interspecific hybrids between diploid alfalfa (2n=2x=16) and the following diploid (2n=2x=16) species: M. hybrida Traut., M. marina L., M. papillosa Boiss., M. rhodopea Velen. and M. rupestris M.B. In addition, trispecies hybrids between M. sativa x M. dzhawakhetica Bordz. F1 hybrids (2n=3x=24) and either M. cancellata M.B. (2n=6x=48) or M. saxatilis M.B. (2n=6x=48) were obtained from ovuleembryo culture. Media manipulations using M. sativa x M. rupestris F1 and first backcross generation embryos demonstrated the optimum concentration of 12.5 mM NH4 + for successful embryo rescue; ammonium salt formulation (whether chloride, nitrate or sulfate) was not critical. From a few thousand crosses, hybrids between M. sativa and either M. rhodopea or M. rupestris were recovered relatively efficiently with 157 and 66 hybrids, respectively. However, only 13 hybrids between M. sativa and M. papillosa were obtained from more than 2,000 crosses, and just two hybrids each have been recovered from the combinations M. sativa x M. hybrida and M. sativa x M. marina from 2,000 to 3,000 crosses. The predominant chromosome number between diploid alfalfa and the other diploid perennial species was 2n=2x=16. Morphology of the hybrids was generally intermediate. Electrophoretic analysis of the F1 hybrids and parental clones on uniform or gradient polyacrylamide gels demonstrated that peroxidase phenotypes could be used to confirm hybridity. For all interspecific combinations there was at least one peroxidase isozyme unique to the wild species that was present in the F1 interspecific hybrid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号