首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The same nine plots were used in this study as in our previous study on inhibition of nitrification (Rice and Pancholy, 1972). These consisted of three stands representing two stages of old field succession and the climax in each of three vegetation types in Oklahoma: tall grass prairie, post oak-blackjack oak forest, and oak-pine forest. Soil samples were analyzed three times during the growing season of 1972 for exchangeable ammonium nitrogen, nitrate, and numbers of Nitrosomonas and Nitrobacter. Results were similar to those obtained during the entire year of 1971. The amount of ammonium nitrogen was lowest in the first successional stage, intermediate in the intermediate successional stage, and highest in the climax. The amount of nitrate was highest in the first successional stage, intermediate in the intermediate successional stage, and lowest in the climax. The numbers of nitrifiers were highest in the first successional stage usually and decreased to a very low number in the climax. These data furnish additional evidence that the nitrifiers are inhibited in the climax so that ammonium nitrogen is not oxidized to nitrate as readily in the climax as in the successional stages. This would aid in the conservation of nitrogen and energy in the climax ecosystem. Some inhibition of nitrification occurred in the intermediate stage of succession also. Previous studies of tannins indicated that these are inhibitory to nitrification, so all important plant species in the intermediate successional stage and the climax were analyzed for total tannin content. A method for extracting and quantifying condensed tannins from soils was developed and the amounts of tannins were determined in each 15-cm level down to 60 cm in the same two plots in each vegetation type. Gallic and ellagic acids, which result from the digestion of hydrolyzable tannins in oak species, were also extracted and quantified in the climax oak-pine forest. All the important herbaceous species, including the grasses, were found to have considerable amounts of condensed tannins. The highest amounts of tannins occurred in the oaks and pine, however. Condensed tannins, hydrolyzable tannins, ellagic acid, gallic acid, digallic acid, and commercial tannic acid (hydrolyzable tannin), in very small concentrations, were all found to completely inhibit nitrification by Nitrosomonas in soil suspensions for 3 weeks, the duration of the tests. Slightly larger concentrations were required to inhibit nitrification by Nitrobacter under similar conditions. The concentrations of tannins, gallic acid, and ellagic acid found in the soil of the research plots were several times higher than the minimum concentrations necessary to completely inhibit nitrification. The inhibition of nitrification was always greater in the climax stand than in the intermediate successional stage in each vegetation type, and the concentration of tannins in the top 15 cm of soil was always higher in the climax stand than in the intermediate successional stage. Moreover, the amounts of tannins calculated to be added to each plot each year are much less than the amounts found in the soil, indicating that the tannins accumulate over a period of time. Thus, it appears that the tannins and tannin derivatives may play a continuous and rather prominent role in the inhibition of nitrification by vegetation.  相似文献   

2.
The dynamics of ponderosa pine (Pinus ponderosa Dougl.) stands in western North Dakota were studied to determine the influence of plant-produced chemicals on nitrification rates and competitive interactions within the stands. Ponderosa pine accounted for more than 98% of all tree and shrub stratum stems in this climax community. Low levels of nitrate-nitrogen relative to ammonium-nitrogen and low numbers of Nitrosomonas and Nitrobacter in the soils indicated that nitrification rates were low. Inhibition of nitrification is often attributed to low soil pH in coniferous forests, but the slightly alkaline soils in this study (pH 7.25–7.75) suggested that another factor caused the low nitrification. Evidence obtained suggested that the reduction in nitrate synthesis was due to the production and subsequent transfer to the soil of secondary plant chemicals that were toxic to Nitrosomonas. Chemical inhibitors of nitrification, including caffeic acid, chlorogenic acid, quercitin, and condensed tannins, were found in extracts from ponderosa pine needles, bark, and A horizon soils. These extracts proved to be toxic to soil suspensions of Nitrosomonas causing reductions of from 68–93% of the control. These findings indicate that climax ponderosa pine communities minimize the conversion of ammonia-nitrogen to nitrate-nitrogen by chemically inhibiting nitrification.  相似文献   

3.
The effects of H ion were studied by lowering the soil pH in a deciduous forest. Increased H+ burden significantly reduced the dry mass of herbaceous vegetation. Increased H+ significantly mobilized Ca (226%) and Mg (244%) to the deeper soil profile, thus reducing uptake of those nutrients by intact vegetation. Moreover, the low pH also had a drastic impact on nitrifiers and nitrification. The 70% reduction in NO-3-N was directly related to the reduction in numbers of Nitrosomonas (91%) and Nitrobacter (100%). Ammonium N also declined under H+ stress, indicating a reduction in N-mineralization process. It was hypothesized that increased H+ stress in deciduous forests may deplete major nutrients, mobilize micronutrients, reduce soil microbial populations and decrease plant biomass. Thus a deciduous forest may evolve into a nutrient-poor soil ecosystem and may shift toward a “semi-podzol ecosystem.”  相似文献   

4.
Three plots representing two stages of old-field succession and the climax were selected in each of three vegetation types in Oklahoma: oak-pine forest, post oak-blackjack oak forest, and tall grass prairie. Soil samples from the 0–15 and 45–60 cm levels were analyzed every other month for 1 yr for exchangeable ammonium nitrogen and for nitrate. On alternate months numbers of Nitrosomonas and Nitrobacter were determined in the 0–15 cm level. The amount of ammonium nitrogen was lowest in the first successional stage, intermediate in the second successional stage, and highest in the climax stand. This trend was remarkably consistent throughout all sampling periods, all vegetation types, and both sampling levels in the soil. The amount of nitrate was highest in the first successional stage, intermediate in the second successional stage, and lowest in the climax stand in both sampling levels, all vegetation types, and virtually all sampling periods. The numbers of nitrifiers were high in the first successional stage, generally, and decreased to a very low level in the climax. In fact, there was often no Nitrobacter in the climax stands. These results indicate that the nitrifiers are inhibited in the climax so that ammonium nitrogen is not oxidized to nitrate as readily in the climax as in the successional stages. Evidence from other geographic areas and vegetation types strongly supports this conclusion. This would certainly appear to be a logical trend in the evolution of ecosystems because of the increased conservation of nitrogen and energy. The ammonium ion is positively charged and is adsorbed on the negatively charged colloidal micelles, thus preventing leaching below the depth of rooting. On the other hand, nitrate ions are negatively charged, are repelled by the colloidal micelles in the soil, and thus readily leach below the depth of rooting or are washed away in surface drainage. There is growing evidence also that many plant species can use ammonium nitrogen as effectively or more so than nitrate nitrogen. If ammonium nitrogen is used directly, this eliminates four chemical steps because nitrogen which is oxidized to nitrite and then to nitrate must be reduced back to nitrite and then to ammonium nitrogen before it can react with keto-acids in the formation of amino acids. The two reduction reactions require considerable expenditure of energy.  相似文献   

5.
Ion exchange resins and glass microscope slides were used to investigate factors affecting attachment of nitrifying bacteria to solid surfaces and the effect of attachment on inhibition ofNitrobacter by potassium ethyl xanthate. The ammonium oxidizerNitrosomonas attached preferentially to cation exchange resins while the nitrite oxidizerNitrobacter colonized anion exchange resins more extensively. Colonization was always associated with growth, and the site of substrate (NH4 + or NO2 ) adsorption was the major factor in attachment and colonization. The specific growth rate of cells colonizing either ion exchange resin beads or glass surfaces was greater than that of freely suspended cells, butNitrobacter populations colonizing glass surfaces were more sensitive to the inhibitor potassium ethyl xanthate. The findings indicate that surface growth alone does not protect soil nitrifying bacteria from inhibition by potassium ethyl xanthate and explain different patterns of inhibition for ammonium and nitrite oxidizers in the soil.  相似文献   

6.
The adhesion of Nitrosomonas sp. and Nitrobacter sp. cells isolated from fishpond sediment to different solid particles was studied. Nitrosomonas and Nitrobacter cells rapidly attached to particles of bentonite, calcium carbonate, amberlite, and fishpond sediment, however they did not adhere to phenyl-sepharose beads. The nitrifying activity of attached bacteria was greater than the activity of freely suspended cells or the activity of cells which have been detached from CaCO3 particles. The enhancement in the nitrifying activity was rapid and was already observed within the first hour after attachment (which equals only 1/24 to 1/50 of the generation time of Nitrosomonas sp. or Nitrobacter sp. In addition, the survival of the attached bacteria under both anaerobic and under aerobic incubation was extended to weeks, compared to only a few days for the free cells. The presence of substrate (ammonia or nitrite) during the anaerobic incubation period was found not to affect the survival time of the bacteria. Finally, it was found that the attachment of Nitrosomonas and Nitrobacter cells to CaCO3 particles affected the dispersal and sinking rate of these particles.  相似文献   

7.
Inhibition of nitrification and nitrifiers was significantly variable under different tree species in the same forest ecosystem. Nitrate nitrogen was always lower than ammonium nitrogen when compared under each species. On the other hand, low numbers of Nitrosomonas and Nitrobacter showed an inverse relationship with large amounts of ammonium in most samples. Aforementioned variation is due to the variable tree litter under different species, which in turn produces inhibitors of nitrification and nitrifiers. Inhibition of nitrification in natural ecosystems increases the amounts of ammonium nitrogen thus resulting in a conservation of energy, if plants utilize such nitrogen directly.  相似文献   

8.
  • 1 Zebra mussels (Dreissena polymorpha) are successful colonisers of lake littoral habitats and they interact strongly with littoral benthos. Previous research suggests that localised areas colonised by zebra mussels may be hotspots of nitrogen (N) cycling.
  • 2 The effects of zebra mussels on nitrification and denitrification rates were examined approximately every other month for 1 year in Gull Lake, Michigan, U.S.A. Littoral sediment was collected from an area free of zebra mussels and distributed into shallow trays; rocks colonised with zebra mussels were placed in half of the trays, while uncolonised rocks were placed in the remaining trays. After an incubation period of 6–8 weeks in the lake, sediment and zebra mussels were collected from the trays, replaced with new sediment and zebra mussels, and placed in the lake for the next interval. In the laboratory, sediment nitrification and denitrification rates were measured for each tray.
  • 3 Sediment nitrification rates did not increase in the presence of zebra mussels; instead nitrification rates were sensitive to changes in water temperature and increased with increasing exchangeable sediment ammonium. In contrast, denitrification rates increased in sediment trays with zebra mussels in the winter when nitrate (NO3) availability was high and when Chara did not grow in the trays.
  • 4 Sediment denitrification was NO3‐limited in all seasons, regardless of zebra mussel treatment. However, sediment in the presence of zebra mussels responded less to NO3 addition, suggesting that NO3 limitation of denitrification can be reduced by zebra mussel activity. Zebra mussels have a seasonally variable impact on sediment denitrification rates, and this may translate into altered seasonal patterns of N cycling in localised areas of lakes where they are particularly abundant.
  相似文献   

9.
In this study, we analysed metagenomes along with biogeochemical profiles from Skagerrak (SK) and Bothnian Bay (BB) sediments, to trace the prevailing nitrogen pathways. NO3 ? was present in the top 5 cm below the sediment-water interface at both sites. NH4 + increased with depth below 5 cm where it overlapped with the NO3 ? zone. Steady-state modelling of NO3 ? and NH4 + porewater profiles indicates zones of net nitrogen species transformations. Bacterial protease and hydratase genes appeared to make up the bulk of total ammonification genes. Genes involved in ammonia oxidation (amo, hao), denitrification (nir, nor), dissimilatory NO3 ? reduction to NH4 + (nfr and otr) and in both of the latter two pathways (nar, nap) were also present. Results show ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) are similarly abundant in both sediments. Also, denitrification genes appeared more abundant than DNRA genes. 16S rRNA gene analysis showed that the relative abundance of the nitrifying group Nitrosopumilales and other groups involved in nitrification and denitrification (Nitrobacter, Nitrosomonas, Nitrospira, Nitrosococcus and Nitrosomonas) appeared less abundant in SK sediments compared to BB sediments. Beggiatoa and Thiothrix 16S rRNA genes were also present, suggesting chemolithoautotrophic NO3 ? reduction to NO2 ? or NH4 + as a possible pathway. Our results show the metabolic potential for ammonification, nitrification, DNRA and denitrification activities in North Sea and Baltic Sea sediments.  相似文献   

10.
Bacterial aggregates from a chemolithoautotrophic, nitrifying fluidized bed reactor were investigated with microsensors and rRNA-based molecular techniques. The microprofiles of O2, NH4+, NO2, and NO3 demonstrated the occurrence of complete nitrification in the outer 125 μm of the aggregates. The ammonia oxidizers were identified as members of the Nitrosospira group by fluorescence in situ hybridization (FISH). No ammonia- or nitrite-oxidizing bacteria of the genus Nitrosomonas or Nitrobacter, respectively, could be detected by FISH. To identify the nitrite oxidizers, a 16S ribosomal DNA clone library was constructed and screened by denaturing gradient gel electrophoresis and selected clones were sequenced. The organisms represented by these sequences formed two phylogenetically distinct clusters affiliated with the nitrite oxidizer Nitrospira moscoviensis. 16S rRNA-targeted oligonucleotide probes were designed for in situ detection of these organisms. FISH analysis showed that the dominant populations of Nitrospira spp. and Nitrosospira spp. formed separate, dense clusters which were in contact with each other and occurred throughout the aggregate. A second, smaller, morphologically and genetically different population of Nitrospira spp. was restricted to the outer nitrifying zones.  相似文献   

11.
Chemolithoautotrophically growing cells of Nitrosomonas europaea quantitatively oxidized ammonia to nitrite under aerobic conditions with no loss of inorganic nitrogen. Significant inorganic nitrogen losses occurred when cells were growing mixotrophically with ammonium, pyruvate, yeast extract and peptone. Under oxygen limitation the nitrogen losses were even higher. In the absence of oxygen pyruvate was metabolized slowly while nitrite was consumed concomitantly. Nitrogen losses were due to the production of nitric oxide and nitrous oxide. In mixed cultures of Nitrosomonas and Nitrobacter, strong inhibition of nitrite oxidation was reproducibly measured. NO and ammonium were not inhibitory to Nitrobacter. First evidence is given that hydroxylamine, the intermediate of the Nitrosomonas monooxygenase-reaction, is formed. 0.2 to 1.7 M NH2OH were produced by mixotrophically growing cells of Nitrosomonas and Nitrosovibrio. Hydroxylamine was both a selective inhibitory agent to Nitrobacter cells and a strong reductant which reduced nitrite to NO and N2O. It is discussed whether chemodenitrification or denitrification is the most abundant process for NO and N2O production of Nitrosomonas.  相似文献   

12.
13.
A bioluminescence assay using recombinant Nitrosomonas europaea was adopted to detect and quantify natural nitrification inhibitors in plant–soil systems. The recombinant strain of N. europaea produces a distinct two-peak luminescence due to the expression of luxAB genes, introduced from Vibrio harveyi, during nitrification. The bioluminescence produced in this assay is highly correlated with NO2 production (r 2 = 0.94). Using the assay, we were able to detect significant amounts of a nitrification inhibitor produced by the roots of Brachiaria humidicola (Rendle) Schweick. We propose that the inhibitory activity produced/released from plants be termed ‘biological nitrification inhibition’ (BNI) to distinguish it from industrially produced inhibitors. The amount of BNI activity produced by roots was expressed in units defined in terms of the action of a standard inhibitor allylthiourea (AT). The inhibitory effect from 0.22 μM AT in an assay containing 18.9 mM of NH4+ is defined as one AT unit of activity. A substantial amount of BNI activity was released from the roots of B. humidicola (15–25 AT unit g−1 root dry wt day−1). The BNI activity released was a function of the growth stage and N content of the plant. Shoot N levels were positively correlated with the release of BNI activity from roots (r 2 = 0.76). The inhibitor/s released from B. humidicola roots suppressed soil nitrification. Additions of 20 units of BNI per gram of soil completely inhibited NO3 formation in a 55-day study and remained functionally stable in the soil for 50 days. Both the ammonia monooxygenase and the hydroxylaminooxidoreductase enzymatic pathways in Nitrosomonas were effectively blocked by the BNI activity released from B. humidicola roots. The proposed bioluminescence assay can be used to characterize and determine the BNI activity of plant roots, thus it could become a powerful tool in genetically exploiting the BNI trait in crops and pastures.  相似文献   

14.
Zusammenfassung Von August 1963 bis März 1964 durchgeführte Laboratoriumsversuche an größeren Elbwasserproben von der Station Hamburg-Blankenese ergaben, daß es bei 21–24° C stets schon nach kurzer Zeit zu lebhafter Nitrit- und Nitratbildung kam; bei 4–5° C war auch nach 2–3 Wochen noch keine Zunahme des NO2 -- und NO3 --Gehaltes zu beobachten. Ganz entsprechend nahm die Zahl der Nitrit- und Nitratbakterien in den kühlgestellten Wasserproben ständig ab. Es kann also in der kalten Jahreszeit auch bei Vorhandensein von Nitrosomonas- und Nitrobacter-Keimen im Strom weder Nitrit noch Nitrat durch Nitrifikation gebildet werden. Diese ist allein auf die Sommermonate beschränkt. Damit fanden die am Fluß gewonnenen Beobachtungen (Rheinheimer 1964a) ihre Bestätigung durch das Experiment im Laboratorium.  相似文献   

15.
Propionate and NH4+ were accumulated in the effluent during anaerobic treatment of five-fold diluted distillery wastewater from shochu making. Propionate could be removed efficiently during biological denitrification by the addition of NO3 (4.2 g/l) to the anaerobically treated wastewater. At a hydraulic retention time of more than 2 h, a TOC removal efficiency of 90% could be achieved. The wastewater was then treated aerobically by biological nitrification. With a hydraulic retention time of more than 14 h the efficiency of reduction of NH4+ could be maintained above 97%. In order to reduce the amount of NO3 addition necessary for the removal of propionate, simultaneous removal of propionate and NH4+ was studied by recirculating the effluent from a nitrification process to a denitrification process using denitrification and nitrification reactors connected in series. At a recirculation ratio of 2, the amount of NO3 that had to be added was reduced to 0.3 g/l of anaerobically treated wastewater, which corresponds to 6.9% of the theoretical value. Under the same conditions except for the addition of NO3 at 1.0 g/l, TOC and BOD in the effluent from the nitrification were 23 and 5 mg/l respectively, which are sufficiently low to allow discharge into river water. Moreover, the NO3 concentration in the effluent decreased with increases in the recirculation ratio.  相似文献   

16.
Ammonia-oxidizing bacteria (AOB) populations were studied on the root surface of different rice cultivars by PCR coupled with denaturing gradient gel electrophoresis (DGGE) and fluorescence in situ hybridization (FISH). PCR-DGGE of the ammonium monooxygenase gene (amoA) showed a generally greater diversity on root samples compared to rhizosphere and unplanted soil. Sequences affiliated with Nitrosomonas spp. tended to be associated with modern rice hybrid lines. Root-associated AOB observed by FISH were found within a discrete biofilm coating the root surface. Although the total abundance of AOB on root biofilms of different rice cultivars did not differ significantly, there were marked contrasts in their population structure, indicating selection of Nitrosomonas spp. on roots of a hybrid cultivar. Observations by FISH on the total bacterial community also suggested that different rice cultivars support different bacterial populations even under identical environmental conditions. The presence of active AOB in the root environment predicts that a significant proportion of the N taken up by certain rice cultivars is in the form of NO3 -N produced by the AOB. Measurement of plant growth of hydroponically grown plants showed a stronger response of hybrid cultivars to the co-provision of NH4 + and NO3 . In soil-grown plants, N use efficiency in the hybrid was improved during ammonium fertilization compared to nitrate fertilization. Since ammonium-fertilized plants actually receive a mixture of NH4 + and NO3 with ratios depending on root-associated nitrification activity, these results support the advantage of co-provision of ammonium and nitrate for the hybrid cultivar.  相似文献   

17.
Pure cultures of the marine ammonium-oxidizing bacterium Nitrosomonas sp. were grown in the laboratory at oxygen partial pressures between 0.005 and 0.2 atm (0.18 to 7 mg/liter). Low oxygen conditions induced a marked decrease in the rate for production of NO2-, from 3.6 × 10−10 to 0.5 × 10−10 mmol of NO2- per cell per day. In contrast, evolution of N2O increased from 1 × 10−12 to 4.3 × 10−12 mmol of N per cell per day. The yield of N2O relative to NO2- increased from 0.3% to nearly 10% (moles of N in N2O per mole of NO2-) as the oxygen level was reduced, although bacterial growth rates changed by less than 30%. Nitrifying bacteria from the genera Nitrosomonas, Nitrosolobus, Nitrosospira, and Nitrosococcus exhibited similar yields of N2O at atmospheric oxygen levels. Nitrite-oxidizing bacteria (Nitrobacter sp.) and the dinoflagellate Exuviaella sp. did not produce detectable quantities of N2O during growth. The results support the view that nitrification is an important source of N2O in the environment.  相似文献   

18.
An expression vector for the luxAB genes, derived from Vibrio harveyi, was introduced into Nitrosomonas europaea. Although the recombinant strain produced bioluminescence due to the expression of the luxAB genes under normal growing conditions, the intensity of the light emission decreased immediately, in a time-and dose-dependent manner, with the addition of ammonia monooxygenase inhibitors, such as allylthiourea, phenol, and nitrapyrin. When whole cells were challenged with several nitrification inhibitors and toxic compounds, a close relationship was found between the change in the intensity of the light emission and the level of ammonia-oxidizing activity. The response of bioluminescence to the addition of allylthiourea was considerably faster than the change in the ammonia-oxidizing rate, measured as both the O2 uptake and NO2 production rates. The bioluminescence of cells inactivated by ammonia monooxygenase inhibitor was recovered rapidly by the addition of certain substrates for hydroxylamine oxidoreductase. These results suggested that the inhibition of bioluminescence was caused by the immediate decrease of reducing power in the cell due to the inactivation of ammonia monooxygenase, as well as by the destruction of other cellular metabolic pathways. We conclude that the assay system using luminous Nitrosomonas can be applied as a rapid and sensitive detection test for nitrification inhibitors, and it will be used to monitor the nitrification process in wastewater treatment plants.  相似文献   

19.
Cloned luciferase-encoding operons were transferred by conjugation to a natural isolate of the ammonia-oxidizing bacterial strain Nitrosomonas sp. RST41–3, thereby establishing conjugation as a tool for gene transfer into Nitrosomonas strains. Luminescence was dependent on the pH of the medium and the concentration of the substrate ammonium chloride. Moreover, the luminescence of the transconjugants was reduced immediately by micromolar concentrations of nitrapyrin and allylthiourea, which are specific inhibitors of nitrification. Our results indicate that luminescent Nitrosomonas strains may be useful as a probe to detect nitrification conditions in the natural environment as well as in sewage plants.  相似文献   

20.
Nitrite (NO2) can accumulate during nitrification in soil following fertilizer application. While the role of NO2 as a substrate regulating nitrous oxide (N2O) production is recognized, kinetic data are not available that allow for estimating N2O production or soil‐to‐atmosphere fluxes as a function of NO2 levels under aerobic conditions. The current study investigated these kinetics as influenced by soil physical and biochemical factors in soils from cultivated and uncultivated fields in Minnesota, USA. A linear response of N2O production rate () to NO2 was observed at concentrations below 60 μg N g−1 soil in both nonsterile and sterilized soils. Rate coefficients (Kp) relating to NO2 varied over two orders of magnitude and were correlated with pH, total nitrogen, and soluble and total carbon (C). Total C explained 84% of the variance in Kp across all samples. Abiotic processes accounted for 31–75% of total N2O production. Biological reduction of NO2 was enhanced as oxygen (O2) levels were decreased from above ambient to 5%, consistent with nitrifier denitrification. In contrast, nitrate (NO3)‐reduction, and the reduction of N2O itself, were only stimulated at O2 levels below 5%. Greater temperature sensitivity was observed for biological compared with chemical N2O production. Steady‐state model simulations predict that NO2 levels often found after fertilizer applications have the potential to generate substantial N2O fluxes even at ambient O2. This potential derives in part from the production of N2O under conditions not favorable for N2O reduction, in contrast to N2O generated from NO3 reduction. These results have implications with regard to improved management to minimize agricultural N2O emissions and improved emissions assessments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号