首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mechanism of nitrate uptake for assimilation in procaryotes is not known. We used the radioactive isotope, 13N as NO3 -, to study this process in a prevalent soil bacterium, Pseudomonas fluorescens. Cultures grown on ammonium sulfate or ammonium nitrate failed to take up labeled nitrate, indicating ammonium repressed synthesis of the assimilatory enzymes. Cultures grown on nitrite or under ammonium limitation had measurable nitrate reductase activity, indicating that the assimilatory enzymes need not be induced by nitrate. In cultures with an active nitrate reductase, the form of 13N internally was ammonium and amino acids; the amino acid labeling pattern indicated that 13NO3 - was assimilated via glutamine synthetase and glutamate synthase. Cultures grown on tungstate to inactivate the reductase concentrated NO3 - at least sixfold. Chlorate had no effect on nitrate transport or assimilation, nor on reduction in cell-free extracts. Ammonium inhibited nitrate uptake in cells with and without active nitrate reductases, but had no effect on cell-free nitrate reduction, indicating the site of inhibition was nitrate transport into the cytoplasm. Nitrate assimilation in cells grown on nitrate and nitrate uptake into cells grown with tungstate on nitrite both followed Michaelis-Menten kinetics with similar K mvalues, 7 M. Both azide and cyanide inhibited nitrate assimilation. Our findings suggest that Pseudomonas fluorescens can take up nitrate via active transport and that nitrate assimilation is both inhibited and repressed by ammonium.  相似文献   

2.
Seven species of marine dinoflagellates were grown in nitrogen-sufficient media under a 12:12 h L:D cycle, and then tested for their ability to take up nitrate and ammonium in the light and in the dark in short-term experiments with 15N-labelled substrate. The effect of the N substrate chosen, and the effect of sampling time in the L:D cycle, on the relative nitrogen content (the C:N ratio) was investigated at the same time. The physiological extremes in the material were represented by Prorocentrum minimum (Pav.) J. Schiller, which took up and presumably assimilated nitrate equally fast in the light and in the dark, and Gyrodinium aureolum Hulburt, which did not take up nitrate in the dark when in a state of nitrogen sufficiency. A strong coupling between nitrate assimilation and photosynthetic carbon assimilation in the latter species was suggested by the close similarity of the light saturation curves of 15NO3? and 14CO2 incorporation, and by a complete blocking of 15NO3? incorporation by 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU). Nitrogen starvation for 24 h induced a capacity in G. aureolum for taking up nitrate in the dark, or in the light in the presence of DCMU, a phenomenon that might be useful for identifying nitrogen limitation in this species in the field. Our study emphasizes the variability of dinoflagellate nitrogen nutrition and illustrates the difficulty of associating mass occurrences of dinoflagellates in nature with any particular nutritional mode.  相似文献   

3.
The effects of Fe deficiency on the marine cyanobacterium Synechococcus sp. were examined in batch cultures grown on nitrate or ammonium as a sole nitrogen source under two different irradiances. Fe-stressed cells showed lower chlorophyll a content and cellular C and N quotas. Light limitation increased the critical iron concentration below which both suppression of growth rate and changes in cellular composition were observed. At a limiting irradiance (26 μmol.m−2.s−1), this critical value was ∼10 nM, a 10 times increase compared to high-light cultures. Moreover, at low light the cellular chlorophyll a concentration was higher than at saturating light (110 μmol.m−2.s−1), this difference being most pronounced under Fe-stressed conditions. Cells grown on ammonium showed a lower half-saturation constant for Fe (Ks) compared to cells grown on nitrate, indicating Synechococcus sp. has the ability to grow faster on ammonium than on nitrate in a low Fe environment at high light. Consequently, in high-nutrient and low-chlorophyll regions where Fe limits new production, cyanobacteria most likely grow on regenerated ammonium, which requires less energy for assimilation. The Ks for growth on Fe at low light was significantly higher than at high light compared with the cells grown on the same N source, suggesting the cells require more Fe at low light. Therefore, if cells that are already Fe-limited also become light-limited, their iron stress level will increase even more. For cyanobacteria this is the first report of a study combining the interactions of Fe limitation, light limitation, and nitrogen source (NO3 vs. NH4+).  相似文献   

4.
In the non-N2-fixing cyanobacterium Phormidium laminosum (Agardh) Gomont (strain OH-I-pCl1), N starvation induced an increase in the rate of respiration and a decrease in the rate of O2 evolution. When NO3? was added to illuminated N-starved cells, O2 evolution immediately increased to levels shown by NO3? grown cells, even though N-starved cells had lost most of their in vitro photosynthetic activities. Stimulation of noncyclic electron flow was maximal under light-saturating conditions and after 2–3 days of N starvation. The respiratory rate of N-starved cells was stimulated by the addition of NO3? or NH4+ and partially inhibited at very low irradiances, even in the presence of DCMU (3-(3,4-dichlorophenyl)-1,1-dimethylurea). Results indicate that N-starved cells obtain the energy supply for N assimilation through a process different from that used by N-sufficient cells. N-starved cells were able to take up NO3? in the dark and when illuminated in the presence of DCMU under anaerobiosis. Following NO3? addition, the photosynthetic yield of the in vivo noncyclic electron transport slightly increased, whereas it decreased after NH4+ addition. Addition of NO3? or NH4+ favored photoinhibition of photosystem II, the effect being faster after NH4+ addition.  相似文献   

5.
Uptake and assimilation kinetics of nitrate and ammonium were investigated along with inhibition of nitrate uptake by ammonium in the harmful dinoflagellate Alexandrium minutum Halim at different nitrogen (N)–limited growth rates. Alexandrium minutum had a strong affinity for nitrate and ammonium (Ks=0.26±0.03 and 0.31±0.04 μmol·L?1, respectively) whatever the degree of N deficiency of the cells. Ammonium was always the preferred form of nitrogen taken up (=0.42–0.50). In the presence of both forms, nitrate uptake was inhibited by ammonium, and inhibition was particularly marked in N‐sufficient cells (Imax~0.9 and Ki=0.31–0.56 μmol·L?1). In the case of N assimilation, ammonium was also the preferred form in N‐deficient cells (=0.54–0.72), whereas in N‐sufficient cells, both N sources were equally preferred (=0.90–1.00). The comparison of uptake and assimilation rates highlighted the ability of A. minutum to significantly store in 1 h nitrate and ammonium in amounts sufficient to supply twice the daily N requirements of the slowest‐growing N‐deficient cells. Nitrogen uptake kinetic parameters of A. minutum and their ecological implications are discussed.  相似文献   

6.
The effect of amino acids on nitrate transport was studied in Zea mays cell suspension cultures and in Zea mays excised roots. The inclusion of aspartic acid, arginine, glutamine and glycine (15mM total amino acids) in a complete cell-culture media containing 1.0 mM NO3 - strongly inhibited nitrate uptake and the induction of accelerated uptake rates. The nitrate uptake rate increased sharply once solution amino acid levels fell below detection limits. Glutamine alone inhibited induction in the cell suspension culture. Maize seedlings germinated and grown for 7 days in a 15 mM mixture of amino acids also had lower nitrate uptake rates than seedlings grown in 0.5 mM Ca(NO3)2 or 1 mM CaCl2. As amino acids are the end product of nitrate assimilation, the results suggest an end-product feed-back mechanism for the regulation of nitrate uptake.  相似文献   

7.
Prelabeled Anabaena variabilis Kütz. evolves 14CO2 in the light with KCN and DCMU (2,4-dichlorophenyl-1,1-dimethylurea) present, comparable to the dark control without inhibitors added. Double-reciprocal plots of CO2 release vs. light intensity with either KCN or KCN+DCMU present result in two straight lines intersecting at the ordinate. Apparently, reducing equivalents originating from carbohydrate catabolism are channeled into the photosynthetic electron-transport chain, competing for electrons from photosystem II. Under these conditions, the CO2 release is accompanied by a light-dependent oxygen uptake, presumably due to oxygen-reducing photosystem-I activity while ribulose-bisphosphate carboxylase is inhibited by KCN.Comparing nine blue-green algae it was shown that only nitrogen-fixing species release substantial amounts of CO2 in the light with KCN or KCN+DCMU present. This release is particularly obvious with Anabaena variabilis Kütz. under nitrogen-fixing conditions, but small when the alga is grown with combined nitrogen.We conclude that nitrogen-fixing species share a common link between respiratory and photosynthetic electron transport. The physiological role may be electron supply of nitrogenase by photosystem I.  相似文献   

8.
Nitrate uptake experiments were conducted at 18 and 25 C on subtropical and temperate isolates of the neritic diatom Biddulphia aurita (Lyngb.) Breb. & Godey. Two clones (STX-88 and B1) were grown in a 12:12 LD cycle in NO3-limited continuous cultures used for uptake experiments. The half-saturation constant (Ks) and the maximum NO3- uptake rate (Vm) were measured under conditions in which external NO3- concentration controlled uptake rate. The kinetic constants for both clones were higher at the higher temperature. The subtropical clone (STX-88) had lower kinetic values than temperate clone (B1) at both temperatures. The differences appear to be of adaptive significance since STX-88 has a NO3- uptake system, described by its lower Ks value, which minimizes the double stress effects of high temperature-low NO3- concentration conditions characteristic of its habitat. Cytoplasmic enzyme electrophoretic analyses were conducted on the clones. Differences in banding patterns and mobilities showed evidence of allelic substitution. The results suggest genetic variation at the intraspecific level.  相似文献   

9.
Work is described which suggests that glutamine synthetase (GS) could play an important and direct regulatory role in the control of NO3 assimilation by the alga. In both steady-state cells and ones disturbed physiologically by changes in light or nitrogen supply the assimilation of NO3 appears to be limited by the activity of GS. Moreover although in normal cells NH3 can completely inhibit NO3 uptake, promote the deactivation of nitrate reductase (NR) and repress the synthesis of NR and nitrite reductase (NIR), these controls are relaxed in cells in which GS is deactivated by treatment with L-methionine-DL-sulfoximine (MSO). It is proposed that the reversible deactivation of GS may play an important part in the regulation of NO3 assimilation although it is still not clear whether the enzyme itself or products of its metabolism are responsible.Abbreviations GS glutamine synthetase - GSs glutamine synthetase, synthetase activity - GSt glutamine synthetase, transferase activity - NR nitrate reductase - NIR nitrite reductase - GDH glutamate dehydrogenase - CHX cycloheximide - MSO L-methionine-DL-sulfoximine - FAD flavine adenine dinucleotide  相似文献   

10.
Since the recognition of iron‐limited high nitrate (or nutrient) low chlorophyll (HNLC) regions of the ocean, low iron availability has been hypothesized to limit the assimilation of nitrate by diatoms. To determine the influence of non‐steady‐state iron availability on nitrogen assimilatory enzymes, cultures of Thalassiosira weissflogii (Grunow) Fryxell et Hasle were grown under iron‐limited and iron‐replete conditions using artificial seawater medium. Iron‐limited cultures suffered from decreased efficiency of PSII as indicated by the DCMU‐induced variable fluorescence signal (Fv/Fm). Under iron‐replete conditions, in vitro nitrate reductase (NR) activity was rate limiting to nitrogen assimilation and in vitro nitrite reductase (NiR) activity was 50‐fold higher. Under iron limitation, cultures excreted up to 100 fmol NO2?·cell?1·d?1 (about 10% of incorporated N) and NiR activities declined by 50‐fold while internal NO2? pools remained relatively constant. Activities of both NR and NiR remained in excess of nitrogen incorporation rates throughout iron‐limited growth. One possible explanation is that the supply of photosynthetically derived reductant to NiR may be responsible for the limitation of nitrogen assimilation at the NO2? reduction step. Urease activity showed no response to iron limitation. Carbon:nitrogen ratios were equivalent in both iron conditions, indicating that, relative to carbon, nitrogen was assimilated at similar rates whether iron was limiting growth or not. We hypothesize that, diatoms in HNLC regions are not deficient in their ability to assimilate nitrate when they are iron limited. Rather, it appears that diatoms are limited in their ability to process photons within the photosynthetic electron transport chain which results in nitrite reduction becoming the rate‐limiting step in nitrogenassimilation.  相似文献   

11.
Growth rates and rates of nitrate uptake by N-depleted cells were measured for an oceanic diatom, Chaetoceros gracilis, and a neritic diatom, Asterionella japonica, as functions of nitrate concentration of the medium. Both growth and N-uptake rates appeared to be hyperbolic with nitrate concentration and could be fit to an equation of Michaelis-Menten form: where v is rate, Vm. is the maximum rate, S is nitrate concentration, and Ksis the half-saturation constant. Ksvalues for uptake and growth were similar if not identical for each species. Uptake experiments can provide a presumptive measure of Ksfor growth, thought to be an ecologically significant characteristic of a species.  相似文献   

12.
Laminaria saccharina Lamour. sporophytes were grown in enriched and synthetic media through a range of nitrate concentrations, There was an approximately linear relationship between growth and nutrient concentration up to 10 μ substrate concentration. The half-saturation constant (K2) was ca. 1.4 μ NO3-. The internal levels of NO3- increased at substrate concentrations above 10 μM b>3- and reached levels several thousand times higher than the surrounding medium. Thus there is evidence for luxury consumption of NOsb>3-. The chlorophyll content and photosynthetic capacities of plants also increased with increasing external NO3- The ecological implications of this work are considered.  相似文献   

13.
Kinetics of Denitrifying Growth by Fast-Growing Cowpea Rhizobia   总被引:3,自引:2,他引:1       下载免费PDF全文
Two fast-growing strains of cowpea rhizobia (A26 and A28) were found to grow anaerobically at the expense of NO3, NO2, and N2O as terminal electron acceptors. The two major differences between aerobic and denitrifying growth were lower yield coefficients (Y) and higher saturation constants (Ks) with nitrogenous oxides as electron acceptors. When grown aerobically, A26 and A28 adhered to Monod kinetics, respectively, as follows: Ks, 3.4 and 3.8 μM; Y, 16.0 and 14.0 g · cells eq−1; μmax, 0.41 and 0.33 h−1. Yield coefficients for denitrifying growth ranged from 40 to 70% of those for aerobic growth. Only A26 adhered to Monod kinetics with respect to growth on all three nitrogenous oxides. The apparent Ks values were 41, 270, and 460 μM for nitrous oxide, nitrate, and nitrite, respectively; the Ks for A28 grown on nitrate was 250 μM. The results are kinetically and thermodynamically consistent in explaining why O2 is the preferred electron acceptor. Although no definitive conclusions could be drawn regarding preferential utilization of nitrogenous oxides, nitrite was inhibitory to both strains and effected slower growth. However, growth rates were identical (μmax, 0.41 h−1) when A26 was grown with either O2 or NO3 as an electron acceptor and were only slightly reduced when A28 was grown with NO3 (0.25 h−1) as opposed to O2 (0.33 h−1).  相似文献   

14.
The effect of CO2 on potassium transport by Chlorella fusca   总被引:1,自引:1,他引:0  
Abstract. The effect of CO2 on net K+ uptake by Chlorella fusca grown on high CO2 levels was examined by passing 1.5% CO2 through algal suspensions gassed previously with air or CO2-free air Addition of CO2 in the light caused a large net uptake of K+ (initial velocity 4.2–9.2 mmol s?1 m?3 cells) which decreased the concentration of K+ in the supernatant from 0.1–0.2 mol m?3 to 3–10 mmol m?3. In the dark and in the presence of 30 mmol m?3 DCMU, no effects were found. Measurement or the unidirectional K+ fluxes by using 86Rb+ as a label showed that in the presence of 1.5% CO2, influx of K+ was increased by a factor of 2–4 while efflux was inhibited completely. CO2 hyperpolarized the membrane potential (determined through TPP+ uptake) from –120mV to –130 mV which could not explain the more than 15,000-fold K+ accumulations. In the light, CO2 lowered the intracellular pH (determined with DMO) by 0.5 units. In the dark and in the presence of DCMU only, a small acidification of 0.1 units was found. During the first 15 min after addition of CO2 the malate content of the cells increased from 0.7 to 1.5 mol m?3 packed cells. On the basis of these and earlier results, CO2-induced net K+ uptake is interpreted as a stimulation of an electroneutral ATP-dependent K+/H+ exchange at the plasmalemma. This exchange acts as a ‘pHstat’ by reducing the intracellular acidification caused by production of acidic assimilation products.  相似文献   

15.
Mass spectrometric analysis shows that assimilation of inorganic nitrogen (NH4+, NO2, NO3) by N-limited cells of Selenastrum minutum (Naeg.) Collins results in a stimulation of tricarboxylic acid cycle (TCA cycle) CO2 release in both the light and dark. In a previous study we have shown that TCA cycle reductant generated during NH4+ assimilation is oxidized via the cytochrome electron transport chain, resulting in an increase in respiratory O2 consumption during photosynthesis (HG Weger, DG Birch, IR Elrifi, DH Turpin [1988] Plant Physiol 86: 688-692). NO3 and NO2 assimilation resulted in a larger stimulation of TCA cycle CO2 release than did NH4+, but a much smaller stimulation of mitochondrial O2 consumption. NH4+ assimilation was the same in the light and dark and insensitive to DCMU, but was 82% inhibited by anaerobiosis in both the light and dark. NO3 and NO2 assimilation rates were maximal in the light, but assimilation could proceed at substantial rates in the light in the presence of DCMU and in the dark. Unlike NH4+, NO3 and NO2 assimilation were relatively insensitive to anaerobiosis. These results indicated that operation of the mitochondrial electron transport chain was not required to maintain TCA cycle activity during NO3 and NO2 assimilation, suggesting an alternative sink for TCA cycle generated reductant. Evaluation of changes in gross O2 consumption during NO3 and NO2 assimilation suggest that TCA cycle reductant was exported to the chloroplast during photosynthesis and used to support NO3 and NO2 reduction.  相似文献   

16.
Nitrogen assimilation was studied in the deciduous, perennial climber Clematis vitalba. When solely supplied with NO3 in a hydroponic system, growth and N-assimilation characteristics were similar to those reported for a range of other species. When solely supplied with NH4+, however, nitrate reductase (NR) activity dramatically increased in shoot tissue, and particularly leaf tissue, to up to three times the maximum level achieved in NO3 supplied plants. NO3 was not detected in plant material that had been solely supplied with NH4+, there was no NO3 contamination of the hydroponic system, and the NH4+-induced activity did not occur in tobacco or barley grown under similar conditions. Western Blot analysis revealed that the induction of NR activity, either by NO3 or NH4+, was matched by NR and nitrite reductase protein synthesis, but this was not the case for the ammonium assimilation enzyme glutamine synthetase. Exposure of leaf disks to N revealed that NO3 assimilation was induced in leaves directly by NO3 and NH4+ but not glutamine. Our results suggest that the NH4+-induced potential for NO3 assimilation occurs when externally sourced NH4+ is assimilated in the absence of any NO3 assimilation. These data show that the potential for nitrate assimilation in C. vitalba is induced by a nitrogenous compound in the absence of its substrate and suggest that NO3 assimilation in C. vitalba may have a significant role beyond the supply of reduced N for growth.  相似文献   

17.
Measurements of CO2 and O2 gas exchange and chlorophyll a fluorescence were used to test the hypothesis that elevated atmospheric CO2 inhibits nitrate (NO3) photo‐assimilation in the C4 plant, maize (Zea mays L.). The assimilatory quotient (AQ), the ratio of net CO2 assimilation to net O2 evolution, decreases as NO3 photo‐assimilation increases so that the difference in AQ between the ammonium‐ and nitrate‐fed plants (ΔAQ) provided an in planta estimate of NO3 photo‐assimilation. In fully expanded maize leaves, NO3 photo‐assimilation was detectable only under high light and was not affected by CO2 treatments. Furthermore, CO2 assimilation and O2 evolution were higher under NO3 than ammonia (NH4+) regardless of CO2 levels. In conclusion, NO3 photo‐assimilation in maize primarily occurred at high light when reducing equivalents were presumably not limiting. Nitrate photo‐assimilation enhanced C4 photosynthesis, and in contrast to C3 plants, elevated CO2 did not inhibit foliar NO3 photo‐assimilation.  相似文献   

18.
Physiology, regulation and biochemical aspects of the nitrogen assimilation are well known in Prokarya or Eukarya but they are poorly described in Archaea domain. The haloarchaeon Haloferax mediterranei can use different nitrogen inorganic sources (NO3, NO2 or NH4+) for growth. Different approaches were considered to study the effect of NH4+ on nitrogen assimilation in Hfx. mediterranei cells grown in KNO3 medium. The NH4+ addition to KNO3 medium caused a decrease of assimilatory nitrate (Nas) and nitrite reductases (NiR) activities. Similar effects were observed when nitrate-growing cells were transferred to NH4+ media. Both activities increased when NH4+ was removed from culture, showing that the negative effect of NH4+ on this pathway is reversible. These results suggest that ammonium causes the inhibition of the assimilatory nitrate pathway, while nitrate exerts a positive effect. This pattern has been confirmed by RT-PCR. In the presence of both NO3 and NH4+, NH4+ was preferentially consumed, but NO3 uptake was not completely inhibited by NH4+ at prolonged time scale. The addition of MSX to NH4+ or NO3 cultures results in an increase of Nas and NiR activities, suggesting that NH4+ assimilation, rather than NH4+ per se, has a negative effect on assimilatory nitrate reduction in Hfx. mediterranei. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
The nitrogen isotope composition (δ15N) of plants has potential to provide time‐integrated information on nitrogen uptake, assimilation and allocation. Here, we take advantage of existing T‐DNA and γ‐ray mutant lines of Arabidopsis thaliana to modify whole‐plant and organ‐level nitrogen isotope composition. Nitrate reductase 2 (nia2), nitrate reductase 1 (nia1) and nitrate transporter (nrt2) mutant lines and the Col‐0 wild type were grown hydroponically under steady‐state NO3 conditions at either 100 or 1000 μM NO3 for 35 days. There were no significant effects on whole‐plant discrimination and growth in the assimilatory mutants (nia2 and nia1). Pronounced root vs leaf differences in δ15N, however, indicated that nia2 had an increased proportion of nitrogen assimilation of NO3 in leaves while nia1 had an increased proportion of assimilation in roots. These observations are consistent with reported ratios of nia1 and nia2 gene expression levels in leaves and roots. Greater whole‐plant discrimination in nrt2 indicated an increase in efflux of unassimilated NO3 back to the rooting medium. This phenotype was associated with an overall reduction in NO3 uptake, assimilation and decreased partitioning of NO3 assimilation to the leaves, presumably because of decreased symplastic intercellular movement of NO3 in the root. Although the results were more varied than expected, they are interpretable within the context of expected mechanisms of whole‐plant and organ‐level nitrogen isotope discrimination that indicate variation in nitrogen fluxes, assimilation and allocation between lines.  相似文献   

20.
Kiwifruit plants (Actinidia deliciosa cv. Hayward) were grown in Hoagland nutrient solution with calcium nitrate, potassium nitrate, ammonium nitrate or ammonium chloride as the nitrogen source. Plants grown in the solution with nitrate nitrogen displayed a higher oxalate content, greater shoot length and leaf area, and higher content of ascorbic acid and NO3 ions in the leaves. Plants grown in the solution with ammonium nitrate, and particularly with ammonium chloride, showed low oxalate content, low content of ascorbic acid and NO3 , high content of Cl and Na+, low shoot length and leaf area. Oxalate formation appeared to be connected with the assimulation of nitrate, more precisely with nitrate reduction, while ammonium nitrogen assimilation did not induce the synthesis of oxalic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号