首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Conjugating Tetrahymena were irradiated by ultraviolet-B (UV-B) at various stages of conjugation. When the conjugants were exposed to the UV-B at late meiotic prophase (the stage from pachytene to diplotene), abortive conjugation was induced at high frequencies. After completing meiosis, a significant number of the conjugants showed marked anomalies, i.e., failure of nuclear selection after meiosis, and abortion of the subsequent conjugation process such as a postmeiotic division to form gametic nuclei, nuclear exchange, synkaryon formation, and postzygotic development. The conjugating pairs retained the parental macronucleus and separated earlier as compared with a control. The resultant exconjugants degenerated meiotic products and became amicronucleates. These observations strongly suggest the presence of a UV-sensitive molecule that is expressed specifically at the meiotic prophase and that directs the subsequent development after meiosis. Dev. Genet. 23:151–157, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

2.
The charophyte algae are the closest living relatives of land plants. Their life cycles are usually characterized as haploid with zygotic meiosis. This conclusion, however, is based on a small number of observations and on theoretical assumptions about what kinds of life cycle are possible. Little is known about the life cycles of most charophytes, but unusual phenomena have been reported in comparatively well‐studied taxa: Spirogyra and Sirogonium are reported to produce diploid gametes with synapsis of homologous chromosomes before fusion of gametic nuclei; Closterium ehrenbergii is reported to undergo chromosome reduction both before and after syngamy; and zygotes of Coleochaete scutata are reported to replicate their DNA to high levels before a series of reduction divisions. All of these phenomena require confirmation, as does the conventional account.  相似文献   

3.
Two types of tubulin induction are observed in Chlamydomonas reinhardi. One is elicited by flagellar detachment and the other occurs as a normal event of the vegetative cell cycle. In the former case, a strong and extensive induction of tubulin synthesis occurs following deflagellation of cells in all phases of the life cycle [vegetative, gametic, and (early) zygotic]. Synthesis is initiated in all three cell types within 15 min after deflagellation. In gametic and zygotic cells, tubulin synthesis so induced accounts for 15 to 20% of the total protein synthesis during the 1-hr peak period of tubulin production. The ability to support both tubulin synthesis and flagellar regeneration is lost in zygotes at 1.5 hr after the initiation of zygotic development. This alteration represents one of several dramatic shifts in the programming of protein synthesis that occur during the first 4 hr of zygotic differentiation in C. reinhardi. The second (i.e., cell cycle-dependent) type of induction is observed in synchronously growing vegetative cells at ~1.5–2 hr prior to cytokinesis. Tubulin synthesis, in this case, persists at relatively high levels (~5% of the total protein synthesis) for the next 9 hr, i.e., through the entire period of cell division to a time just before the liberation of fully flagellated daughter cells at hr 20 of the cell cycle. Changes in the programming of protein synthesis, and of tubulin synthesis in particular, are discussed in relation to specific physiological and cytological transitions that occur during the growth and differentiation of C. reinhardi.  相似文献   

4.
Paramecium caudatum loses the ability to form food vacuoles at the crescent stage of the micronucleus from 5 to 6 hr after the initiation of conjugation and regains it immediately after the third division of the zygotic nucleus. To assess the micronuclear function in the development of the oral apparatus after coniugation, prezygotic micronuclei was removed from cells at various stages of conjugation, and their ability to form food vacuoles were examined. (1) When all of the prezygotic micronuclear derivatives were eliminated before the stage of formation of the zygotic nucleus, the exconjugant did not regain its ability. (2) When a zygotic nucleus or postzygotic nuclei were removed, in some cases the cell formed as many food vacuoles as did nonoperated cells after conjugation, while in other operated cells the number of food vacuoles was subnormal. (3) When a micronucleus from a cell at vegetative phase (G1) was transplanted into a cell of an amicronucleate mating pair at the stage between 8 and 9 hr after the initiation of conjugation, the implanted cell regained the ability to form food vacuoles. However, no cell regained the ability when the implantation was carried out within 1 hr after the separation of the mates. The results show that the micronucleus plays an indispensable role in the development of the oral apparatus at the stages of exchange of gametic nuclei and fertilization and that the micronucleus transplanted from asexual cells can fulfill this function. On the other hand, removal of the macronucleus from exconjugants showed that the maternal macronucleus also has an indispensable function in regaining the ability to form food Vacuoles. © 1992 Wiley-Liss, Inc.  相似文献   

5.
Development of megaspores and megagametophytes was analyzed for several diploid potato clones (Solanum spp.) that exhibit either high (HI) or low (LO) seed set when crossed as female with the tetraploid cultivated potato S. tuberosum Group Tuberosa. The objectives were to determine the relationship between ploidy and diam of nuclei and nucleoli, and to determine the mechanism(s) and frequencies of 2n megagametophyte formation. Sizes of nuclei and nucleoli were found to depend on ploidy. For HI clones, the distributions of sizes indicated that doubling occurred during meiosis, and that 30 to 50% of the megaspores and megagametophytes were 2n rather than haploid. Omission of the second meiotic division led to formation of second division restitution (SDR) 2n megagametophytes. Only one HI clone had abnormal meiosis I, in addition to omission of meiosis II in some meiocytes; this clone seemed to produce not only 1n and 2n, but also 4n megagametophytes. The results indicated that high crossability of the HI clones as female with tetraploids largely was due to formation of SDR 2n megagametophytes, a finding strongly supporting the hypothesis that sexual polyploidization is the driving force behind polyploidization of Solanums. The results contribute to increasing evidence that meiotic mutants and abnormalities play an important role in angiosperm evolution.  相似文献   

6.
DNA content of the nucleus in the placoderm desmid, Closterium ehrenbergii Meneghini was measured throughout the life cycle by epifluorescence microspectrophotometry after DNA specific dye [4′,6-diamidino-2-phenylindol (DAPI)] staining. Postulating a mean DNA content of gamete nuclei as 1C, the nucleus of a newly divided vegetative cell was 2C. Most vegetative cells in the stage of exponential growth had a DNA content from 2C to 4C, while most in stationary phase, with the highest frequency of zygote formation, were 2C. They became pre-gametes (2C) upon mixing two heterothallic strains. Four gametes were made by a DNA reduction division of each pre-gamete cell. Therefore, there was a nonmeiotic DNA reduction stage by one half. During germination, the zygote underwent meiosis to produce two gones, each of which contained one surviving nucleus (large nucleus) and one degenerating nucleus (small nucleus). The DNA content of these four nuclei was 1C basically. The DNA of the surviving nucleus duplicated to 2C and further quadruplicated to 4C without cell or nuclear division. These two 4C gones had different cell morphology from ordinary vegetative cells. After the first cell division following meiosis, each gone produced two vegetative cells in which the DNA content became 2C to 4C again.  相似文献   

7.
SYNOPSIS. During conjugation of Kahlia the micronuclei divide 3 times before synkaryon formation and 2 times thereafter. The 1st division is heterotypic, as in other ciliates, in that it is characterized by the parachute stage. Following this stage, 24 to 26 bivalents and 4 to 8 univalents appear in the micronuclear area. When the bivalents move to organize the metaphase plate, the univalents lag behind and fail to reach the equatorial region at the same time. Due to this irregular behavior of the univalents there is no distinct metaphase in the first meiotic division. A few meiotic irregularities including the breakdown of the spindle apparatus have been observed. During the breakdown of the spindle apparatus the chromosomes fuse into irregular bodies which resemble the chromosome aggregates observed during the somatic divisions. Generally 1, and rarely more, of the products of the 1st division enter the 2nd division. The spindles of this division are oriented parallel to the long axis of the cell, and 1 of the daughter nuclei reaches the partition membrane separating the conjugants. This nucleus alone undergoes the 3rd division, resulting in the formation of gametic nuclei. Reciprocal exchange and fusion of the gametic nuclei result in the synkaryon formation. The synkaryon divides twice in rapid succession resulting in 4 daughter nuclei; 1 of them degenerates and 2 condense and become functional micronuclei. The chromosomes of the remaining daughter nucleus resemble in size and number the bivalents of the 1st meiotic division. They become polytenic and then reproduce to give rise to the polyploid macronucleus. The development of the macronucleus has been traced from a single diploid set of chromosomes and no evidence has been found for the formation of genetic “subnuclei.” During the early stages of the development of the macronuclear anlage, somatic pairing forces keep the homologs together, while in the later stages these forces cease to exert influence. While these changes are in progress the old macronucleus; breaks up into small irregular polymorphic bodies which are scattered throughout in the cytoplasm. The exconjugants usually encyst and the cysts are not favorable for detailed cytologic study.  相似文献   

8.
One crucial feature of zygotic linkage disequilibrium (LD) analysis is its direct use of diploid genotyping data, irrespective of the type of mating system. Previous theories from an evolutionary perspective mainly focus on gametic LD, but the equivalent development for zygotic LD is not available. Here I study the evolution of zygotic LD and the covariances between gametic and zygotic LDs or between distinct zygotic LDs in a finite local population under constant immigration from a continent population. I derive the analytical theory under genetic hitchhiking effects or in a neutral process. Results indicate that zygotic LDs (diploid level) are more informative than gametic LD (haploid level) in indicating the effects of different evolutionary forces. Zygotic LDs may be greater than or comparable to gametic LD under the epistatic selection process, but smaller than gametic LD under the non epistatic selection process. The covariances between gametic and zygotic LDs are strongly affected by the mating system, linkage distance, and genetic drift effects, but weakly affected by seed and pollen flow and natural selection. The covariances between different zygotic LDs are generally robust to the effects of gene flow, selection, and linkage distance, but sensitive to the effects of genetic drift and mating system. Consistent patterns exist for the covariances between the zygotic LDs for the two-locus genotypes with one common genotype at one locus or without any common genotype at each locus. The results highlight that zygotic LDs can be applied to detecting natural population history.  相似文献   

9.
Two diploid taxa, Grindelia procera and G. camporum, and 3 tetraploid ones, G. camporum, G. hirsutula, and G. stricta, have been studied to ascertain their interrelationships. Meiosis in diploid parental strains was regular, the common chromosome configuration being 5 rod bivalents and 1 ring bivalent. The average chiasmata frequency per chromosome was 0.60. Pollen fertility was about 90% in all strains examined. Diploid interspecific hybrids had normal meiosis with an average chiasmata frequency of 0.56 per chromosome. No heterozygosity for inversions or interchanges was detected, and pollen fertility was above 85%. Meiosis in parental tetraploid strains was characterized by the presence of quadrivalents in addition to a complementary number of bivalents. The average chiasmata frequency per chromosome was 0.59 and pollen fertility was generally about 80%. Tetraploid interspecific hybrids also had quadrivalents, normal meiosis, and high pollen fertility. Close genetic relationships between the diploids and between the tetraploids are indicated, and geographical, ecological, and seasonal barriers to gene exchange exist. Attempts to obtain hybrids between diploids and tetraploids were successful in a few cases. The hybrids were tetraploid and had normal meiosis and fertility similar to parental and F1 tetraploids. Their origin was by the union of unreduced gametes of the diploid female parent and normal pollen from the tetraploid parent. On the basis of chromosome homology, normal meiosis, plus high fertility exhibited in the diploid, tetraploid, and diploid X tetraploid interspecific hybrids, these species of Grindelia are considered to be a part of an autopolyploid complex. Gene exchange between diploids and diploids, tetraploids and tetraploids, and diploids and tetraploids is possible. Tetraploid G. camporum may have originated by hybridization between G. procera and diploid G. camporum with subsequent doubling of chromosomes and selection for the combined characteristics of the diploids.  相似文献   

10.
Diploid cells of Tetrahymena thermophila were crossed to strain A*V, whose micronucleus is defective, to induce the unilateral transfer of gametic nuclei from the diploid cells to the A*V cells (round I of genomic exclusion). These haploid nuclei presumably undergo one endomitotic cycle and then become diploid with a G1 (2C) DNA content. However, further DNA replication from 2C to 4C was transiently arrested until the pairs separated. When endomitosis was blocked by treatment with cycloheximide during 6-8 hours of conjugation, the exconjugants of round I of genomic exclusion remained haploid. Competence for diploidization is apparently limited to some period of time after nuclear transfer. Blocking of diploidization during round I of genomic exclusion can be used as an efficient way to induce haploid strains in Tetrahymena.  相似文献   

11.
A homothallic haploid strain of the fission yeast Schizosaccharomyces pombe initiates sexual reproduction (mating, meiosis and sporulation) in nitrogen-free sporulation medium. Cellular fine structures of eleven sporulation-deficient mutants (spo2, spo3, spo4, spo5, spo6, spo13, spo14, spo15, spo18, spo19 and spo20) of S. pombe in sporulation medium were examined by serial section-electron microscopy. The striking features of these spo mutants were: 1) the disappearance of the spindle pole bodies (SPBs) after the second meiotic division, and 2) the accumulation of unorganized structures. Based on histochemical staining, these structures were presumably unorganized spore wall precursors. In some mutants (spo3, spo5, spo6, spo19 and spo20), diploid zygotes contained four spore-like bodies which had walls similar to complete spore walls but failed to enclose any nuclei. After completion of the second meiotic division the nuclei were abnormally distributed in zygotic diploid cells. In the spo5, spo13, spo14, spo15 and spo19 mutants, the nuclei remained attached to each other. In spo5 and spo19, the inner membrane of the nuclear envelope was separated, but its outer membrane was shared by two sister nuclei. These observations suggest that the spo+ gene products play important roles in spatial and temporal organization of cellular structures during ascospore development.Abbreviations SPB spindle pole body - PTA-Cr phosphotungstic acid and chromic acid - PATAg periodic acid, thiocarbohydrazide and silver proteinate  相似文献   

12.
《Autophagy》2013,9(2):285-295
Many of the mechanisms by which organelles are inherited by spores during meiosis are not well understood. Dramatic chromosome motion and bouquet formation are evolutionarily conserved characteristics of meiotic chromosomes. The budding yeast bouquet genes (NDJ1, MPS3, CSM4) mediate these movements via telomere attachment to the nuclear envelope (NE). Here, we report that during meiosis the NE is in direct contact with vacuoles via nucleus-vacuole junctions (NVJs). We show that in meiosis NVJs are assembled through the interaction of the outer NE-protein Nvj1 and the vacuolar membrane protein Vac8. Notably, NVJs function as diffusion barriers that exclude the nuclear pore complexes, the bouquet protein Mps3 and NE-tethered telomeres from the outer nuclear membrane and nuclear ER, resulting in distorted NEs during early meiosis. An increase in NVJ area resulting from Nvj1-GFP overexpression produced a moderate bouquet mutant-like phenotype in wild-type cells. NVJs, as the vacuolar contact sites of the nucleus, were found to undergo scission alongside the NE during meiotic nuclear division. The zygotic NE and NVJs were partly segregated into 4 spores. Lastly, new NVJs were also revealed to be synthesized de novo to rejoin the zygotic NE with the newly synthesized vacuoles in the mature spores. In conclusion, our results revealed that budding yeast nuclei and vacuoles exhibit dynamic interorganelle interactions and different inheritance patterns in meiosis, and also suggested that nvj1Δ mutant cells may be useful to resolve the technical challenges pertaining to the isolation of intact nuclei for the biochemical study of meiotic nuclear proteins.  相似文献   

13.
Summary We have isolated a novel gene (NUM1) with unusual internal periodicity. The NUM1 gene encodes a 313 kDa protein with a potential Ca2+ binding site and a central domain containing 12 almost identical tandem repeats of a 64 amino acid polypeptide. num1-disrupted strains grow normally, but contain many budded cells with two nuclei in the mother cell instead of a single nucleus at the bud neck, while all unbudded cells are uninucleate: This indicates that most G2 nuclei divide in the mother before migrating to the neck, followed by the migration of one of the two daughter nuclei into the bud. Furthermore, haploid num1 strains tend to diploidize during mitosis, and homozygous num1 diploid or tetraploid cells sporulate to form many budded asci with up to eight haploid or diploid spores, respectively, indicating that meiosis starts before nuclear redistribution and cytokinesis. Our data suggest that the NUM1 protein is involved in the interaction of the G2 nucleus with the bud neck.  相似文献   

14.
Summary Using different sources of protoplasts and two complementary techniques, flow cytometry and image analysis, to study the cell-cycle phases, we sought to define the particular protoplast state associated with the disposition to divide. Both inPetunia and inNicotiana plumbaginifolia, tissues with a higher G2 frequency (from different aged plants) yielded protoplasts capable of increased cell division. InSorghum, the age of the plant does not modify the proportion of G2 nuclei in leaf protoplasts, and we used root protoplasts to increase G2 frequencies. InHelianthus annuus, leaf protoplasts did not divide; however, hypocotyl protoplast preparations with relatively high 4C DNA frequencies do divide. Moreover, image analysis of chromatin structure indicated that leaf nuclei were in the G0 phase, unlike those from hypocotyls which were in G1. A high frequency of protoplasts with G2 nuclei appears to be correlated with the ability of a given preparation to undergo division; conversely, the differentiated G0 state is not conducive to division.  相似文献   

15.
Changes in nuclear figures and in activities of nucleic acid and protein syntheses were observed mainly on Saccharomyces cerevisiae G2-2 during sporogenesis. Patterns of DNA synthesis and of meiosis show that the sporogenic process in yeast was divided into an induction phase (I-phase), a DNA-synthesizing phase (S-phase) and a maturation phase (M-phase). Meiotic figures appeared most frequently at the end of the S-phase at approximately 12 hr in sporulation culture. In M-phase visible spores formed. The amount of protein increased in the initial 7 hr culture of 1-phase, then decreased in the S- and M-phases. But in sporulation culture of the asporogenic diploid strain 3c × a, protein did not decrease. RNA increased within 3 hr of the I-phase then stopped increasing. DNA synthesis occurred critically during S-phase, i.e. between 7 and 12 hr. and was somewhat resumed during the later part of M-phase. Oligodeoxyri-bonucleotide content decreased in the I- and M-phases and increased temporarily. Deoxyribosides decreased linearly during the sporogenic processes. Based on these results and results of experiments estimating the incorporation of 14C-uracil into nucleic acid and 14C-amino acid mixture into protein fractions, the roles of nucleic acid synthesis activities in meiosis and in sporulation are discussed.  相似文献   

16.
Interest in dinitroaniline herbicide resistant biotypes ofEleusine indica, and an as yet undetermined taxon ofEleusine, necessitated a revaluation of reported nuclear genome size estimates for available species in the genus. Laser flow cytometry showed that the nuclear DNA content of six of the seven species examined had 15 to 50% less DNA than reported previously. It was also determined that roots, as contrasted to leaves, possessed a large fraction of nuclei at the 4C or 8C DNA content level, in diploid or tetraploid species, respectively (i.e. the G2/M peak). Two major reasons for the previously reported overestimation may include sampling only of root tissues where endopolyploid and normal diploid nuclei both occur and the inappropriate choice of onion nuclei as an internal standard.  相似文献   

17.
Embryogenic and non-embryogenic callus lines derived from the same diploid Cyclamen persicum genotype (`Purple Flamed') were analyzed by flow cytometry and compared to the initial plant material. The DNA content of the diploid plant in the greenhouse was 1.12 pg DNA/2C as estimated in relation to the internal standards tomato nuclei and chicken erythrocytes. In both callus lines the majority of cells contained the same amount of DNA as the initial plant, indicating that no polyploidization has taken place after 5 years of culture on medium containing 2.0 mg/l 2,4-dichlorophenoxyacetic acid (2,4-D) and 0.8 mg/l 6-(γ-γ-dimethylallylamino)purine(zip). Thus, our data suggest that in Cyclamen callus lines there was no strict correlation between the ploidy level and the ability to produce somatic embryos. Furthermore, following the proportion of cells in the three phases of the cell cycle (G0/G1, S, G2/M) during one subculture period of 4 weeks revealed high division activity within the first 2 weeks for both callus lines cultured on the 2,4-D-containing medium. However, when transferred to hormone-free medium, the division activity of the embryogenic cell line decreased markedly, corresponding to the differentiation of somatic embryos. In contrast, for the non-embryogenic callus an increase in cells in the G2/M phase was observed. Received: 22 November 1996 / Revision received: 6 January 1997 / Accepted: 20 February 1997  相似文献   

18.
The germ nuclei (micronuclei) of Paramecium tetraurelia can be eliminated successfully by irradiating the micronucleus with an argon-ion laser microbeam after sensitization with the dye acridine orange. No immediate cytological damage of the irradiated micronuclei is visible, but they are lost before they enter the next division. This method produces cell lines lacking micronuclei (i.e., amicronucleates). These amicronucleates provide favorable materials for the study of micronuclear functions as well as intra-and inter-specific nucleocytoplasmic interactions. Some preliminary observations show that the micronucleus is not required for macronuclear fragmentation and macronuclear regeneration during sexual reproduction, but suggest that the micronucleus might participate in some asexual cellular function in addition to their gametic role.  相似文献   

19.
Nonrandom segregation during meiosis: the unfairness of females   总被引:8,自引:0,他引:8  
Most geneticists assume that chromosome segregation during meiosis is Mendelian (i.e., each allele at each locus is represented equally in the gametes). The great majority of reports that discuss non-Mendelian transmission have focused on systems of gametic selection, such as the mouse t-haplotype and Segregation distorter in Drosophila, or on systems in which post-fertilization selection takes place. Because the segregation of chromosomes in such systems is Mendelian and unequal representation of alleles among offspring is achieved through gamete dysfunction or embryonic death, there is a common perception that true disturbances in the randomness of chromosome segregation are rare and of limited biological significance. In this review we summarize data on nonrandom segregation in a wide variety of genetic systems. Despite apparent differences between some systems, the basic requirements for nonrandom segregation can be deduced from their shared characteristics: i) asymmetrical meiotic division(s); ii) functional asymmetry of the meiotic spindle poles; and iii) functional heterozygosity at a locus that mediates attachment of a chromosome to the spindle. The frequency with which all three of these requirements are fulfilled in natural populations is unknown, but our analyses indicate that nonrandom segregation occurs with sufficient frequency during female meiosis, and in exceptional cases of male meiosis, that it has important biological, clinical, and evolutionary consequences. Received: 28 December 2000 / Accepted: 23 January 2001  相似文献   

20.
Life histories of photosynthetic eukaryotes traditionally-termed algae exhibit a considerably greater degree of complexity than those of ‘higher cryptogams.’ Some algae have a so-called ‘obligate’alternation between spore-producing and gamete-producing phases, but the majority seem capable of following other pathways depending upon environmental conditions. In only four algal classes do life histories show a change in morphological and/or nuclear phases. The following basic life histories are recognized in the Chlorophyceae, Phaeophyceae and Rhodophyceae:(a) monophasic, a diploid or haploid phase, (b) two or more phases, most commonly an alternation of an isomorphic or heteromorphic haploid gametangial phase and a diploid sporangial phase, and (c) three phases (unique to florideophyte Rhodophyceae), with a diploid spore-producing phase (carposporophyte) developing on the gametangial phase, a diploid phase (tetrasporophyte if meiosis is sporic) and a haploid gametangial phase. Evidence from recent research indicates that in many algae there is an uncoupling of the morphological and nuclear phases. The dominance of one phase and suppression of another has been suggested to be due to the common occurrence in algae of apogamy, apomeiosis and parthenogenesis. Free-living morphs in heteromorphic life histories may be morphologically so dissimilar that formerly they were attributed to different genera. Evolution of the carposporangial phase in red algae is speculated to be a means of achieving zygotic amplification to compensate for the infrequency of syngamy. Such amplification allows the production of a large number of dispersible products from a single fertilization. The direct development of a free-living tetrasporangial phase is considered another mechanism for achieving amplification. In freshwater red algae the growth of an upright phase from a perennial microscopic one is considered an adaptation for maintaining their upstream position. Life history pathways in algae are controlled by subtle environmental influences (e.g. photoperiodism, temperature, light quality, nutrients). Experimental evidence is lacking to support the contention that spatial and/or temporal partitioning of the environment is a mechanism favouring the maintenance of heteromorphy. Herbivory is known to be an important selective force suppressing some morphs and accentuating the seasonal dominance of others. Differential resistance of morphs to herbivory in environments where grazing intensity is predictable may lead to the selective maintenance of heteromorphy. Algal life history patterns are unexplored in terms of evolutionary processes. Various models for the evolution of biphasic or polyphasic life histories stress the importance of the capacity for both asexual dispersal of successful genotypes and for the generation of new genotypes via meiosis and syngamy. All evidence points to the fact that many life history processes operative in algae differ significantly from those described for other cryptogams.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号