首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The energy dependence of the chemical properties of cytochrome c oxidase   总被引:3,自引:0,他引:3  
The addition of ATP to intact mitochondria induces a high- to low-spin state transition in a heme of oxidized cytochrome oxidase. This transition is dependent on the phosphate potential with one-half effect requiring a phosphate potential approximately 2 × 103m−1. The data are consistent with a phosphate potential dependent equilibrium between two oxidized forms of cytochrome oxidase (one oxidase per ATP). The addition of ATP to mitochondria decreases the rate of reaction of cyanide with oxidized cytochrome oxidase by at least 103 and modifies both affinity and spectral change induced by adding cyanide to reduced cytochrome oxidase.  相似文献   

2.
《Insect Biochemistry》1988,18(3):313-321
Treatment of Drosophila melanogaster Kc 0% cells with juvenile hormone (JH), which is of crucial importance to insect physiology, leads to a specific, early apparent increase in mitochondrial protein synthesis and to a later increase in cytochrome oxidase activity. This increase is at a maximum after a 12-h treatment with JH concentrations ranging from 10−12 to 10−9 M. Electrophoretic analysis of the mitochondrial translation products shows that all the mitochondria but a stimulating effect by a simultaneously. We saw no hormonal effect on isolated mitochondria but a stimulating effect by a post-mitochondrial supernatant from induced cells, strongly suggests that the action of JH is indirect and may result from a nuclear effect. 2-D electrophoretic analysis of the total mitochondrial proteins shows that at least two polypeptides coded by nuclear genome are affected. Such results suggest that despite the absence of morphological cellular modification, JH does have an active influence on energy metabolism.  相似文献   

3.
The effect of derivatives of benzoic and cinnamic acids, quereetin,p-benzoquinone, and 2,5-dimethylbenzoquinone on oxygen consumption mitoehondrial suspensions and on the activity of some respiratory chain enzymes was studied. Benzoquinone and 2,5-dimethylbenzoquinone highly significantly inhibited the respiration and phosphorylation rates and malate- and succinate dehydrogenase activities. Chlorogenic acid, similarly as the quinones, very significantly inhibited the activities of the studied dehydrogenases but did not affect cytochrome oxidase. Oxygen consumption by intact mitochondria was not inhibited, only the oxidativo phosphorylation was significantly uncoupled. Quereetin significantly enhanced dehydrogenase activities and completely inhibited cytochrome oxidase activity. The respiration and phosphorylation activities of the mitochondria were significantly inhibited by quereetin. The effect of the other phenolic compounds studied on respiration and phosphorylation activities was not significant. Succinate dehydrogenase activity was the most affected enzyme among the respiratory chain enzymes. It was significantly inhibited by all the above phenolic compounds at 1-4M or 5 10-5M concentrations with the exception of gallic acid.  相似文献   

4.
Abstract

4-Hydroxynonenal (HNE) is a highly toxic product of lipid peroxidation (LPO). Its role in the inhibition of cytochrome c oxidase activity and oxidative modifications of mitochondrial lipids and proteins were investigated. The exposure of mitochondria isolated from rat heart to HNE resulted in a time- and concentration-dependent inhibition of cytochrome c oxidase activity with an IC50 value of 8.3 ± 1.0 μM. Immunoprecipitation-Western blot analysis showed the formation of HNE adducts with cytochrome c oxidase subunit I. The loss of cytochrome c oxidase activity was also accompanied by reduced thiol group content and increased HNE-lysine fluorescence. Furthermore, there was a marked increase in conjugated diene formation indicating LPO induction by HNE. Fluorescence measurements revealed the formation of bityrosines and increased surface hydrophobicity of HNE-treated mitochondrial membranes. Superoxide dismutase + catalase and the HO? radical scavenger mannitol partially prevented inhibition of cytochrome c oxidase activity and formation of bityrosines. These findings suggest that HNE induces formation of reactive oxygen species and its damaging effect on mitochondria involves both formation of HNE–protein adducts and oxidation of membrane lipids and proteins by free radicals.  相似文献   

5.
A variant of the hypoxanthine-guanine phosphoribosyltransferase deficient, and adenine phosphoribosyltransferase deficient mouse A9 cell line has been obtained by selecting cells which are resistant to 6-azauridine. These cells are not only resistant to 6-azauridine (5 × 10−4 M), but also to adenosine (10−3 M). Resistance persists indefinitely even in the absence of both compounds. The resistant cells are killed by 5-fluorouridine (10−6 M), indicating that the part of the salvage pathway for pyrimidine ribonucleotide biosynthesis which is relevant to the action of 6-azauridine is intact. The heritable change producing concurrent resistance to 6-azauridine and adenosine probably involves the de novo pyrimidine biosynthetic pathway.  相似文献   

6.
The mitochondria of adult and plerocercoid Spirometra mansoni were characterized in isolated mitochondria and in situ by electron microscopic histochemistry with special attention to the respiratory chain. Although the specific activities of the constituent enzyme complexes of succinate oxidase are fairly similar in adult and plerocercoid mitochondria, those of succinate oxidase and NADH-FRD are approximately 4- and 25-fold higher in adult mitochondria than in plerocercoid mitochondria, respectively. Quinone analysis by high performance liquid chromatography and mass spectrometry showed that adult and plerocercoid mitochondria contained both rhodoquinone-10 and ubiquinone-10 at concentrations of 4.98 and 0.106 nmol mg−1 for adult, and 0.677 and 0.137 nmol mg−1 for plerocercoid, respectively. Inhibition studies on the succinate-oxidase system of adult mitochondria showed that they possessed both cyanide-sensitive and -insensitive succinate oxidases, the latter of which produces hydrogen peroxide. Adult mitochondria, when NADH was used as a substrate, were shown to produce hydrogen peroxide, and the production of hydrogen peroxide decreased to undetectable levels in the presence of fumarate. The specific activities of NADH-fumarate reductase and cytochrome c oxidase were significantly higher in mature proglottids than in immature and gravid proglottids. Isopycnic density-gradient centrifugation analyses and in situ electron microscopic histochemistry revealed that both adult and plerocercoid mitochondria were heterogeneous in terms of respiratory function and physicochemical properties. The physiological significance of adult and plerocercoid mitochondria is discussed in relation to the oxygen tension of their parasitic habitats.  相似文献   

7.
To identify some of the mechanisms involved in the high resistance to Cd2+ in the protist Euglena gracilis, we studied the effect of Cd2+ exposure on its energy and oxidative stress metabolism as well as on essential heavy metals homeostasis. In E. gracilis heterotrophic cells, as in other organisms, CdCl2 (50 μM) induced diminution in cell growth, severe oxidative stress accompanied by increased antioxidant enzyme activity and strong perturbation of the heavy metal homeostasis. However, Cd2+ exposure did not substantially modify the cellular respiratory rate or ATP intracellular level, although the activities of respiratory complexes III and IV were strongly decreased. In contrast, an enhanced capacity of the alternative oxidase (AOX) in both intact cells and isolated mitochondria was determined under Cd2+ stress; in fact, AOX activity accounted for 69-91% of total respiration. Western blotting also revealed an increased AOX content in mitochondria from Cd2+-exposed cells. Moreover, AOX was more resistant to Cd2+ inhibition than cytochrome c oxidase in mitochondria from control and Cd2+-exposed cells. Therefore, an enhanced AOX seems to be a relevant component of the resistance mechanism developed by E. gracilis against Cd2+-stress, in addition to the usual increased antioxidant enzyme activity, that enabled cells to maintain a relatively unaltered the energy status.  相似文献   

8.
In the presence of the uncoupler, external zinc ions inhibit rapidly turnover of cytochrome c oxidase reconstituted in phospholipid vesicles or bound to the membrane of intact mitochondria. The effect is promoted by electron leaks into the oxidase during preincubation with Zn2+. Inhibition of liposome-bound bovine cytochrome oxidase by external Zn2+ titrates with a Ki of 1 ± 0.3 μM. Presumably, the Zn2+-binding group at the positively charged side is not reactive in the oxidized enzyme, but becomes accessible to the cation in some partially reduced state(s) of the oxidase; reduction of CuB is tentatively proposed to be responsible for the effect.  相似文献   

9.
1. Both valinomycin and p-trifluoromethoxy carbonyl cyanide phenylhydrazone (FCCP) are required for full release of respiration by cytochrome c oxidase-containing proteoliposomes (prepared by sonicating beef heart cytochrome aa3 in salt solution with 4 parts phosphatidylcholine, 4 parts phosphatidylethanolamine and 2 parts cardiolipin) in the presence of external ascorbate and cytochrome c. In the absence of valinomycin the response to FCCP is rather sluggish, as reported by Wrigglesworth et al. (1976) (Abstracts, 10th Int. Congr. Biochem., No. 06-6-230).2. The Km for cytochrome c in 67 mM, pH 7.4, phosphate buffer with ascorbate as substrate, was 9 μM in both absence and presence of valinomycin and FCCP. Energization thus acts non-competitively towards cytochrome c oxidation.3. The apparent Km for oxygen is greater in the energized than in the deenergized state; double reciprocal plots of respiration rate versus oxygen concentration are concave downward in the absence of uncouplers, as found with intact mitochondria. Energization thus acts “competitively” towards oxygen.4. Despite the lack of a functional ATPase system, all the kinetic features of energization found in intact mitochondria can be mimicked in the reconstituted liposomes. This supports the chemiosmotic idea that electrical and perhaps H+ gradients modify the oxidase activity in reconstituted vesicles.  相似文献   

10.
Effect of heavy metal ions on the growth and the iron-oxidizing activity of Thiobacillus ferrooxidans were investigated.

Cupric, zinc, cadmium, and chromium ions had no effect on the growth and the iron-oxidizing activity of cell suspensions or cell-free extracts of the bacterium in high concentrations (10?3~10?2M). Lead ion delayed the start of the growth slightly in 10?3 M, but it did not inhibit the iron-oxidizing activity of the cells in the concentration. Tin and molybdenum oxide ions inhibited both of them in the concentration above 10?3 M.

Mercuric mercurous, and silver ions had the most harmful effect. In the concentration of 10?3 .M, each of the cations inhibited almost completely both the growth and the iron-oxidizing activity of the cells.

In the experiments with cell-free extracts it was observed that the activity of cytochrome oxidase (cytochrome a597) operating in the iron-oxidizing system of the bacterium was specifically inhibited with mercuric ion in the concentration above 5 × 10?4 M.  相似文献   

11.
Exposure of HeLa and L cells to chloramphenicol causes a progressive dose-dependent decrease in cytochrome oxidase and succinate-cytochrome c reductase activities, concomitant with an increase in the amount of cytochrome c. At 2–3 days, the specific activities of the enzymes have fallen to about one-half of control values; the mitochondria appear swollen. By day 5, enzyme activities are about one-quarter of control values; the mitochondria are more swollen, with disorientation and disintegration of cristae. By day 6–8, after three generations, growth has stopped, enzyme activities are approximately the same as on day 5, and cytochrome c content has reached 170% of control value. Mitochondria show severe changes, cristae being affected more than peripheral inner membrane. The number of profiles continues to be nearly normal. After 30 days, cytochrome oxidase activity remains low but now there are mitochondria in intermediate and condensed configuration. There is a gradual accumulation in the cytoplasm of smooth membrane elements. If chloramphenicol is removed, cells recover. Ethidium bromide treatment for up to 8 days yields results virtually identical to those obtained with chloramphenicol. Cells treated with 10-4 M KCN show a decrease in cytochrome oxidase activity to about one-third of control value and an elevated amount of cytochrome c. Only a small number of mitochondria appear damaged. Autochthonous mitochondrial syntheses appear to be essential for the organization of the cristae. When cytochrome oxidase activity is impaired, a regulatory mechanism for cytochrome biosynthesis geared to mitochondrial function may be lacking, resulting in an increase in cytochrome c content.  相似文献   

12.
Summary Cytochrome oxidase activity was demonstrated in unfixed root segments from Lupinus albus at the ultrastructural level using the osmiophilic reagent 3,3-diaminobenzidine (DAB). Precipitate, the formation of which was completely inhibited by 0.01 M KCN, and observed almost entirely on mitochondrial cristae, is considered to be produced by cytochrome oxidase activity. Heterogeneity of mitochondria as to the intensity of the reaction in the same cell could not be established with certainity. However, mitochondria of the root tip cells and cells belonging to the plerome consistently did not show histochemically demonstrable cytochrome oxidase activity.  相似文献   

13.
The larval midgut of the tobacco hornworm, Manduca sexta, has high ecdysone 20-monooxygenase (E20MO) activity, located both in the mitochondria and in the microsomes. The apparent kinetic parameters for E20MO in mitochondria and microsomes were determined. The Km5 (for ecdysone) of the mitochondrial and microsomal enzymes were 1.63 × 10−5 and 3.67 × 10−7 M, respectively. The Vmax was 82.7 pmol/min/mg protein for mitochondria and 32.0 pmol/min/mg protein for microsomes. Although the mitochondrial E20MO has the higher Vmax, at physiological ecdysone concentrations (10−7 − 10−8 M) it is only one-eighth to one-tenth as active as the microsomal enzyme. It is concluded that the microsomal E20MO is the primary, if not the only, enzyme involved in ecdysone 20-hydroxylation in M. sexta midgut. © 1996 Wiley-Liss, Inc. This article is a US Government work and, as such, is in the public domain in the United States of America.  相似文献   

14.
The claim of methane (CH4) formation in plants has caused much controversy and debate within the scientific community over the past 4 years. Here, using both stable isotope and concentration measurements, we demonstrate that CH4 formation occurs in plant cell cultures that were grown in the dark under sterile conditions. Under non‐stress conditions the plant cell cultures produced trace amounts [0.3–0.6 ng g?1 dry weight (DW) h?1] of CH4 but these could be increased by one to two orders of magnitude (up to 12 ng g?1 DW h?1) when sodium azide, a compound known to disrupt electron transport flow at the cytochrome c oxidase (complex IV) in plant mitochondria, was added to the cell cultures. The addition of other electron transport chain (ETC) inhibitors did not result in significant CH4 formation indicating that a site‐specific disturbance of the ETC at complex IV causes CH4 formation in plant cells. Our study is an important first step in providing more information on non‐microbial CH4 formation from living plants particularly under abiotic stress conditions that might affect the electron transport flow at the cytochrome c oxidase in plant mitochondria.  相似文献   

15.
A new form of cell death has been observed. The death occurs at liquid-air interfaces when Tetrahymena cells are grown in a chemically defined medium (CDM) at low inocula. The cells die by lysis at the liquid-air interface (medium surface), which they reach due to negative gravitaxis as well as positive aerotaxis. When the cells are grown in a closed compartment, with no liquid-air interface, the death is not observed, and the cells proliferate. Cloning of cells in CDM is thus possible. The addition of effectors such as NGF (10−11 M), EGF (10−10 M), PDGF (10−10 M), and insulin (10−10 M) to cells in CDM prevents the surface mediated death. Since detergents/surfactants like SDS (7 × 10−5 M), NP-40 (2 × 10−5 M), Tween 80 (10−4% w/v), Pluronic F-68 (10−7 M), and the biosurfactant surfactin (10−6 M) have the same effect, we suggest that the effectors act by stimulating the cells to exudate surfactant(s) of their own. Furthermore, lyzed cells and exudates from living cells (pre-conditioned medium) prevent the death. In conditions with liquid-air interfaces, certain physical parameters are of great importance for the survival of cells at low inocula. The parameters are the distance to the surface, the temperature, and the inoculum. By increasing the height of the medium, lowering the temperature, and increasing the inoculum of the culture, the survival can be greatly enhanced. There is no evidence for programmed cell death (PCD) or apoptosis. © 1996 Wiley-Liss, Inc.  相似文献   

16.
With Candida utilis cells that had been removed directly from a 61 chemostat culture, in steady state, well-coupled mitochondria generally could be isolated. This required a modified snail-gut enzyme procedure that allowed the total processing time to be decreased to 3 h, or less. Examination of these mitochondria in an oxygraph showed the presence of 3 sites of energy conservation when the cells were grown at various dilution rates between 0.1 and 0.45 h-1 in environments that were, successively, glucose-, ammonia-, magnesium-, phosphate- and sulphate-limited. Potassium-limited cells also apparently possessed 3 sites of oxidative phosphorylation when growing at dilution rates greater than 0.2 h-1, but only 2 sites when growing at lower dilution rates. Analysis of cytochrome spectra obtained with these intact mitochondria revealed large quantitative (but not qualitative) differences, depending on the environmental conditions under which the yeast had been cultured. In particular, comparison of the ratio of cytochrome b to cytochrome a showed a pattern of change with dilution rate in mitochondria from potassium-limited cells that was distinctly different from those evident in mitochondria from cells that had been limited in their growth by the availability of other nutrients.  相似文献   

17.
R-1 (1450g) and R-2 (25,000g) liver fractions from T/t 6 and B6CBAF1 hybrid mice were analyzed for their protein content, mitochondria concentrations, and activities of three respiratory-chain enzymes of the mitochondrial inner membrane: cytochrome c oxidase (ferrocytochrome c: oxygen oxidoreductase, E.C. 1.9.3.1), -glycerophosphate dehydrogenase [l-glycerol-3-phosphate: (acceptor) oxidoreductase, E.C. 1.1.99.5], and succinate-cytochrome c reductase. Only cytochrome c oxidase activity, calculated as units per 1010 mitochondria, was significantly lower in both R-1 and R-2 fractions of T/t 6 mice. Cytochrome c oxidase activity varied greatly among T/t 6 mice, as did their liver mitochondria concentrations and body weights. Cytochrome c oxidase activity in the R-1 fraction of T/t 6 mice, calculated as units per 1010 mitochondria per gram of body weight, averaged about 40% lower than in B6CBAF1 mice. -Glycerophosphate dehydrogenase activity was often elevated in T/t 6 mice, particularly in the R-2 fraction. The T/t locus, a complex genetic locus on chromosome 17, may contain genes important to the function and biogenesis of mitochondria.This investigation was supported by institutional funds from the Jackson Laboratory and by an allocation from NIH Biomedical Research Support Grant (RR-05545). The Jackson Laboratory is fully accredited by the American Association for Accreditation of Laboratory Animal Care.  相似文献   

18.
Intracellular ion concentration and respiratory activity in the marine cyanobacterium Spirulina subsalsa was analyzed during cell transition from saline to hypersaline medium. During salt upshock, an early phase of Na+ and Cl- influx was observed, followed by an adaptation phase where both Na+ and Cl- were excluded from the cell. Respiration in intact cells was enhanced during salt upshock. S. subsalsa spheroplasts exhibited a high rate of O2 uptake, which was further enhanced in cells grown in hypersaline medium, upon addition of NaCl to the assay mixture. This effect was found to be specific to sodium ions. Plasma membrane fractions from cells grown in hypersaline medium exhibited a high rate of cytochrome oxidase activity, which was further stimulated by NaCl, and was sensitive to DCCD. Immunoblot analysis of Spirulina plasma membrane polypeptides with anti-cytochrome oxidase serum demonstrated high content of 53.4 kDa polypeptide of cytochrome oxidase, which was enriched in membranes obtained from hypersaline Spirulina cells. The enhanced respiration, and more specifically the enrichment of cytochrome oxidase activity in salt-adapted cells in situ, as well as its stimulation by NaCl in vitro and inhibition by DCCD, suggest that cytochrome oxidase is involved in the extrusion of sodium ions from cells of the salt-tolerant Spirulina subsalsa.Abbreviations DCCD dicyclohexylcarbodiimide - CCCP carbonylcyanide m-chlorophenyl hydrazone - TMPD N, N, N, N, tetramethyl p-phenylenediamine dichloride  相似文献   

19.
Ca2+ ions shift the absorption spectrum of reduced cytochromea in mitochondria by acting from the outside of the membrane. In isolated cytochrome oxidase the shift may be induced by either Ca2+ or H+, the apparent pK varying between 6.20 and 5.75 depending on the state of cytochromea 3. Studies of the Soret band show that Ca2+ also shifts the spectrum of ferrocytochromea 3 in isolated oxidase in contrast to the situation in mitochondria or isolated oxidase reconstituted into liposomes. Model studies with reduced bis-imidazole heme A reveals an analogous spectral shift induced by Ca2+. Esterification of the propionate carboxyls of heme A abolishes the spectral shift, suggesting that it is due to interaction of Ca2+ with these groups. When taken together with the data with intact mitochondria, this suggests that the propionate side chains of cytochromea are accessible to Ca2+ and H+ from the outside of the mitochondrial membrane. In the soluble enzyme both hemesa anda 3 are accessible. Thus hemea may be located near the outside of the inner membrane whereas hemea 3 experiences a different environment in which no Ca2+ shift occurs.  相似文献   

20.
Studies were conducted to elucidate the mechanism of action of 2-chloro-6-(trichloromethyl)pyridine or Technical N-SERVE on the nitrification process brought about byNitrosomonas europaea. The growth ofNitrosomonas was completely inhibited in the presence of 0.2 ppm N-SERVE while 1.0 ppm of the chemical was effective in the complete inhibition of ammonia oxidation by fresh cell suspensions. Cells stored at 4 C for a period of three days required somewhat higher concentrations (1.5 ppm) of N-SERVE for the complete inhibition of their ammonia oxidizing ability while the cytochrome oxidase of these cells was inhibited to the extent of 65 to 70 percent in the presence of a corresponding amount of N-SERVE. A 45 – 70 percent reversal of the inhibition of ammonia oxidation caused by N-SERVE was obtained by the addition of 6×10–4 M Cu++. An equivalent concentration of Cu++ was also effective for the complete reversal of the inhibition of cytochrome oxidase present in whole cells.Hydroxylamine oxidation by intactNitrosomonas cells was not affected by levels of N-SERVE ranging from 1 – 3 ppm. The cytochrome oxidase effective in hydroxylamine oxidation and present in cell-free extracts was not inhibited by even 100 ppm N-SERVE. Likewise, the hydroxylamine activating enzyme hydroxylamine cytochromec reductase was also not inhibited by such levels of the chemical. Raising the concentration to 170 ppm N-SERVE, however, caused a 90 percent inhibition of the enzyme.Although a 5×10–6 M concentration of allylthiourea completely inhibited ammonia oxidation byNitrosomonas cells, concentrations up to 10–3 M of this compound did not affect the cytochrome oxidase activity of whole cells or cell-free extracts. The inhibition of ammonia oxidation caused by 5×10–6 M allythiourea, unlike the inhibition by N-SERVE, could not be reversed by the addition of 6×10–4 M Cu++.Evidence is presented that the action of N-SERVE is on that component of cytochrome oxidase which is involved in ammonia oxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号