首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
A critique of comparative studies of brain size   总被引:4,自引:0,他引:4  
In recent years, there have been over 50 comparative analyses carried out in which social or ecological variables have been used to explain variation in whole brain size, or a part thereof, in a range of vertebrate species. Here, we review this body of work, pointing out that there are a number of substantial problems with some of the assumptions that underpin the hypotheses (e.g. what brain size means), with the data collection and with the ways in which the data are combined in the analyses. These problems are particularly apparent in those analyses in which attempts are made to correlate complex behaviour with parts of the brain that carry out multiple functions. We conclude that now is the time to substantiate these results with data from experimental manipulations.  相似文献   

2.
Prosimians have smaller brains relative to their body sizes than do monkeys. Brain and body weights, however, are associated not only on the basis of the brain integrating sensorimotor functions, but also on the basis of the body's requirement to support the energetic needs of the brain. Prosimians differ from monkeys in that they have lower rates of oxygen turnover. When body size is adjusted for its rate of oxygen turnover, monkeys and prosimians have equivalent relative brain sizes. A consideration of the brain's energy requirements helps to clarify brain-body relationships.  相似文献   

3.
Relative brain size and ecology in birds   总被引:2,自引:0,他引:2  
We test the hypothesis that the relative sizes of the different parts of the brain (brain stem, optic lobes, cerebellum and cerebral hemispheres), measured after body size effects have been removed, are associated with differences in behaviour and ecology across bird species.
The results demonstrate that behavioural and ecological correlates of relative brain size are not independent of each other. When the effects of variation in other categories are accounted for, the strongest single effect is due to relatively large brain sizes being associated with altricial development. It is unlikely that this effect is due to the confounding influence of taxonomic associations.
Overall, the results do not provide support for the idea that differences in measures of environmental complexity select for differences in relative brain size.  相似文献   

4.
Folding of the cerebral cortex is a critical phase of brain development in higher mammals but the biomechanics of folding remain incompletely understood. During folding, the growth of the cortical surface is heterogeneous and anisotropic. We developed and applied a new technique to measure spatial and directional variations in surface growth from longitudinal magnetic resonance imaging (MRI) studies of a single animal or human subject. MRI provides high resolution 3D image volumes of the brain at different stages of development. Surface representations of the cerebral cortex are obtained by segmentation of these volumes. Estimation of local surface growth between two times requires establishment of a point-to-point correspondence ("registration") between surfaces measured at those times. Here we present a novel approach for the registration of two surfaces in which an energy function is minimized by solving a partial differential equation on a spherical surface. The energy function includes a strain-energy term due to distortion and an "error energy" term due to mismatch between surface features. This algorithm, implemented with the finite element method, brings surface features into approximate alignment while minimizing deformation in regions without explicit matching criteria. The method was validated by application to three simulated test cases and applied to characterize growth of the ferret cortex during folding. Cortical surfaces were created from MRI data acquired in vivo at 14 days, 21 days, and 28 days of life. Deformation gradient and Lagrangian strain tensors describe the kinematics of growth over this interval. These quantitative results illuminate the spatial, temporal, and directional patterns of growth during cortical folding.  相似文献   

5.
The relationships between relative brain size and both stratification and social structure were examined in a total of 82 species of anthropoids. The species were divided into a total of 42 congeneric groups which consisted of congeneric species with similar ecologies and social structures. The relative brain size (RBS) was calculated for each congeneric group in each superfamily, based on an allometric equation describing the relationship between brain weight and body weight for each superfamily. Among congeneric groups with a common category of diet, RBS was significantly greater for terrestrial groups than for arboreal groups, and for polygynous (i.e. multi-female) groups than for monogynous (single-female) groups. Furthermore, RBS was significantly and positively correlated with the size of the home range per individual for the Cercopithecoidea, and with troop size for frugivorous groups of the Ceboidea. The results obtained suggest that factors associated with terrestriality and polygyny have been involved in the increases in relative brain size of anthropoids.  相似文献   

6.
An increase in brain size is a hallmark of human evolution. Questions regarding the evolution of brain development and obstetric constraints in the human lineage can be addressed with accurate estimates of the size of the brain at birth in hominins. Previous estimates of brain size at birth in fossil hominins have been calculated from regressions of neonatal body or brain mass to adult body mass, but this approach is problematic for two reasons: modern humans are outliers for these regressions, and hominin adult body masses are difficult to estimate. To accurately estimate the brain size at birth in extinct human ancestors, an equation is needed for which modern humans fit the anthropoid regression and one in which the hominin variable entered into the regression equation has limited error. Using phylogenetically sensitive statistics, a resampling approach, and brain-mass data from the literature and from National Primate Research Centers on 362 neonates and 2802 adults from eight different anthropoid species, we found that the size of the adult brain can strongly predict the size of the neonatal brain (r2 = 0.97). This regression predicts human brain size, indicating that humans have precisely the brain size expected as an adult given the size of the brain at birth. We estimated the size of the neonatal brain in fossil hominins from a reduced major axis regression equation using published cranial capacities of 89 adult fossil crania. We suggest that australopiths gave birth to infants with cranial capacities that were on average 180 cc (95% CI: 158–205 cc), slightly larger than the average neonatal brain size of chimpanzees. Neonatal brain size increased in early Homo to 225 cc (95% CI: 198–257 cc) and in Homo erectus to approximately 270 cc (95% CI: 237–310 cc). These results have implications for interpreting the evolution of the birth process and brain development in all hominins from the australopiths and early Homo, through H. erectus, to Homo sapiens.  相似文献   

7.
8.
A new dissimilarity measure, Uppsala dissimilarity, is proposed. It is a Manhattan-type measure in between the Canberra and Gower measures, based on the differences between scores in relevés compared, but it also takes both the sums of scores and the difference between maximum and minimum score into account. The measure is considered realistic for phytosociological material.A new optimality criterion has been developed after unsatisfactory results had been obtained with the DOL criterion (Popma et al. 1983) which was developed previously by our group. Problems with DOL were especially met when the criterion was applied to the distribution of only one species over the cluster array obtained. The new criterion takes both internal cluster homogeneity and between-cluster dissimilarity into account. Between-cluster dissimilarity is calculated for all other clusters and not only for the nearest neighbour, as in DOL. The new criterion has both an unweighted form: SOM, and a form with weighting for cluster size: SWOM.This new criterion was successfully applied to the evaluation of the sharpness of distribution of individual species over cluster arrays, under the name of SIM: species indication measure and SWIM, species weighted indication measure.The measures were applied to some test data. Differences between the unweighted and weighted forms were found which could not be easily interpreted.Some remarks are made on the coherence of d-SAHN and h-SAHN approaches in agglomerative clustering within the new strategy proposed.Abbreviations DOL = Detection of Optimal Level - S(W)IM = Species (Weighted) Indication Measure - S(W)OM = Standardized (Weighted) Optimality Measure - UD = Uppsala Dissimilarity measure - WPGMA = Weighted Pair-Group Method Average linking clustering - SAHN = Sequential Agglomerative Hierarchical Non-overlapping clustering  相似文献   

9.
10.
11.
12.
13.
C S Weil 《Mutation research》1978,50(2):285-291
A statistical reanalysis was performed on the data fecently reported on a 6-laboratory, collaborative cytogenetic study to measure and minimize interlaboratory variation. Three of the laboratories had mean values significantly different from the others on most of the 6 indexes of chemically-induced aberration; one laboratory with values higher and two with values lower. Furthermore, relative variability of the values around the means was consistently lower in one of the 6 participating laborabories. The results of the reanalysis of this collaborative study demonstrates that significant interlaboratory differences exist and that these should be adjusted or diminished before rat cytogenetic analysis can be an effective test system for evaluation of a compound for mutagenic potential.  相似文献   

14.
Skull base height increases significantly with better nutrition and health conditions, as seen in comparing 163 nineteenth to twentieth century dissecting-room skeletons (Terry Collection) with 237 modern American middle-class adults (forensic and willed skeletons). The increase parallels the change in pelvic inlet depth index, known to respond sensitively to nutrition, and in stature, and is over six times greater than the general skull size change. Skull base height (porion-basion) is easy to measure with depth gauge and sliding caliper, or by subtraction, and is in adults a sensitive indicator of childhood growth stress.  相似文献   

15.
The control of balance is a primary objective in most human movements. In many cases, research or practice, it is essential to quantitatively know how good the balance is at a body posture or at every moment during a task. In this paper we suggest a new measure for postural upright stability which assigns a value to a body state based on the probability of avoiding a fall initiation from that state. The balance recovery problem is solved for a population sample using a strength database, and the probability of successfully maintaining the balance is found over the population and called the probability of recovery (PoR). It, therefore, describes an attribute of a body state: how possible the control of balance is, or how safe being at that state is. We also show the PoR calculated for a 3-link body model for all states on a plane, compare it to that found using a 2-link model, and compare it to a conventional metric: the margin of stability (MoS). It is shown, for example, that MoS may be very low at a state from which most of the people will be able to easily control their balance.  相似文献   

16.
17.
18.
The brain is a trait of central importance for organismal performance and fitness. To date, evolutionary studies of brain size variation have mainly utilized comparative methods applied at the level of species or higher taxa. However, these studies suffer from the difficulty of separating causality from correlation. In the other extreme, studies of brain plasticity have focused mainly on within‐population patterns. Between these extremes lie interpopulational studies, focusing on brain size variation among populations of the same species that occupy different habitats or selective regimes. These studies form a rapidly growing field of investigations which can help us to understand brain evolution by providing a test bed for ideas born out of interspecific studies, as well as aid in uncovering the relative importance of genetic and environmental factors shaping variation in brain size and architecture. Aside from providing the first in depth review of published intraspecific studies of brain size variation, we discuss the prospects embedded with interpopulational studies of brain size variation. In particular, the following topics are identified as deserving further attention: (i) studies focusing on disentangling the contributions of genes, environment, and their interactions on brain variation within and among populations, (ii) studies applying quantitative genetic tools to evaluate the relative importance of genetic and environmental factors on brain features at different ontogenetic stages, (iii) apart from utilizing simple gross estimates of brain size, future studies could benefit from use of neuroanatomical, neurohistological, and/or molecular methods in characterizing variation in brain size and architecture.  相似文献   

19.
Bacterial taxonomy: a critique   总被引:1,自引:0,他引:1  
  相似文献   

20.
Quantitative genetics: a critique   总被引:2,自引:0,他引:2  
E A Murphy 《Social biology》1979,26(2):126-141
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号