首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary F1 interspecific hybrids involving nine tetraploid Triticum species were studied. Some developed leaf tumours at the seedling stage. Tumorous hybrids were restricted to crosses involving either T. timopheevi or T. araraticum as one parent. The hybrids from the rest of the crosses, including those of T. timopheevi × T. araraticum, were non-tumorous. Genetically divergent and non-integrated parental species appeared to be inducing spontaneous tumour formation in their hybrids.  相似文献   

2.
Summary As somatic hybridization and genetic transformation are not yet applicable to beans, a programme of hybridization between a male sterile line ofP. coccineus and a wild genotype ofP. acutifolius var.tenuifolius was carried out in order to introduce useful characters from the wild parent into the genome of the cultivated species. This interspecific cross is of particular interest sinceP. acutifolius is a source of resistance to many diseases, drought and high temperature. The difficulties in producing these hybrids were overcome by repeated pollinations and with the help of embryo culture. The F1 hybrid shows a high sterility which may be explained by the poor pollen quality and the presence of a chromosomic asynapsis at meiosis. Fertile allotetraploids (Co) were successfully produced in progeny from colchicine treated cuttings of F1 hybrids. Several (C2) mature seeds were harvested from selfed allotetraploid plants.Abbreviations Co initial allotetraploid plants - C1, C2 first and second allotetraploid generation - PMC pollen mother cell  相似文献   

3.
Approximately 1,700 plants representing five species of Tragopogon (Compositae) and their F1 and F2 hybrids were analyzed by two-dimensional descending paper chromatography. Each species, or population within a species, was chromatographically distinct. Often, however, the differences were more quantitative than qualitative. The chromatographic data generally supported the species relationships which had been determined from previous morphologic, hybridization, and fertility studies. Inheritance of the flavonoid compounds was usually additive in the F1's. Segregation and recombination of the genes controlling the synthesis of these compounds sometimes approximated 3:1 or 9:7 ratios in the F2's. Occasionally parental compounds were missing from some of the hybrids. “Hybrid” compounds which had not been found in either parent were absent from the F1 but did occur in several F2 populations. Two linkage groups were present. The first contains genes controlling the synthesis of three compounds and the second, four compounds.  相似文献   

4.
Transgene outflow from genetically modified (GM) rice to its wild relatives may cause undesirable ecological consequences. Understanding the level of transgene expression in wild rice following gene flow is important for assessing such consequences, providing that transgene escape from GM rice cannot be prevented. To determine the expression of a transgene in common wild rice (Oryza rufipogon), we analyzed the content of Cry1Ac protein in three GM rice lines containing a Bt transgene, their F1 hybrids with common wild rice and F2 progeny at different growth stages, using the sandwich enzyme-linked immunosorbent assay. The average content of Cry1Ac protein in leaf samples of the wild rice lines ranged between 0.016 and 0.069% during the entire growth period, whereas that in stems varied between 0.12 and 0.39%. A great variation in Cry1Ac protein content was detected among individuals of F1 hybrids and F2 progeny, with some wild individuals showing higher level of Bt toxin than the cultivated GM rice. The results suggest that the Bt transgene can express normally in the interspecific hybrids between insect-resistant GM rice and common wild rice, and may have similar effects on the target insects as in GM rice.  相似文献   

5.
Summary New interspecific hybrids between alfalfa (Medicago sativa L.) and several perennial Medicago species were obtained by embryo rescue techniques. The methodology, designated ovule-embryo culture, involved preculturing the fertilized ovule (10 to 20 days post-pollination) for a period of six to 12 days followed by excision and direct culture of the embryo. Placement of the hybrid embryo directly onto culture medium without the interim ovule culture was unsuccessful. Ovule culture to germination without removing the embryo also was unsuccessful. Ovule-embryo culture was essential for recovering interspecific hybrids between diploid alfalfa (2n=2x=16) and the following diploid (2n=2x=16) species: M. hybrida Traut., M. marina L., M. papillosa Boiss., M. rhodopea Velen. and M. rupestris M.B. In addition, trispecies hybrids between M. sativa x M. dzhawakhetica Bordz. F1 hybrids (2n=3x=24) and either M. cancellata M.B. (2n=6x=48) or M. saxatilis M.B. (2n=6x=48) were obtained from ovuleembryo culture. Media manipulations using M. sativa x M. rupestris F1 and first backcross generation embryos demonstrated the optimum concentration of 12.5 mM NH4 + for successful embryo rescue; ammonium salt formulation (whether chloride, nitrate or sulfate) was not critical. From a few thousand crosses, hybrids between M. sativa and either M. rhodopea or M. rupestris were recovered relatively efficiently with 157 and 66 hybrids, respectively. However, only 13 hybrids between M. sativa and M. papillosa were obtained from more than 2,000 crosses, and just two hybrids each have been recovered from the combinations M. sativa x M. hybrida and M. sativa x M. marina from 2,000 to 3,000 crosses. The predominant chromosome number between diploid alfalfa and the other diploid perennial species was 2n=2x=16. Morphology of the hybrids was generally intermediate. Electrophoretic analysis of the F1 hybrids and parental clones on uniform or gradient polyacrylamide gels demonstrated that peroxidase phenotypes could be used to confirm hybridity. For all interspecific combinations there was at least one peroxidase isozyme unique to the wild species that was present in the F1 interspecific hybrid.  相似文献   

6.
Pollen stainability appears to be a reliable indication of the ultimate seed set in diploid interspecific hybrid and backcross populations in Triticum L. The correlation between percent pollen stained and number of seeds set is positive and highly significant (r = 0.92). Estimates of male and female fertility in the hybrids and backcrosses are interpreted to indicate that the domesticated diploid Triticum monococcum L. and wild diploid T. boeoticum Boiss. em. Schiem, are one and the same species, and that T. urartu Tum. is not a variety of monococcum or boeoticum, but rather a separate species. The F1 hybrids and backcrosses between monococcum and boeoticum are normally male and female fertile. The F1 hybrids between monococcum and urartu are completely sterile and complete to partial sterility exists in backcrosses.  相似文献   

7.
In the sexual interspecific cross, Nicotiana rustica L.xN. tabacum L., N. rustica can serve as the female but not as the male parent. By fusion of protoplasts, the barrier to fertilization was overcome and somatic hybrids containing N. tabacum cytoplasm were produced as shown by isoelectric focusing of the Fraction-1 protein (F-1-protein). All somatic hybrids displayed polypeptides of the large subunit of F-1 protein (which is coded by the chloroplast genome) characteristic of only one or the other parental species. Two hybrids had large subunits of the N. tabacum type and two hybrids had those of the N. rustica type. Three hybrids contained three smallsubunit polypeptides (coded by the nuclear genome), one being characteristic of N. rustica, one characteristic of N. tabacum, and one with an isoelectric point common to both species. A fourth hybrid contained only two small-subunit polypeptides of the N. tabacum type but in a F-1 protein macromolecule whose large subunits were of the N. rustica type. One somatic hybrid was self-fertile and its F2 progeny contained large- and small-subunit polypeptides indistinguishable in their isoelectric points from those in the parent F1 hybrid. All somatic hybrids showed an aneuploid chromosome number and morphological characteristics intermediate between those of N. rustica and N. tabacum.  相似文献   

8.
Pandey , K.K. (Crop Res. Div., D.S. & I.R., Lincoln, Christchurch, New Zealand.) Interspecific incompatibility in Solanum species. Amer. Jour. Bot. 49(8): 874–882. Illus. 1962.—A diallel cross involving 11 self-incompatible and 3 self-compatible species of Solanum was made to study the genetic basis of interspecific incompatibility. Interspecific incompatibility was not limited to crosses in which a self-compatible species was used as the male parent onto a self-incompatible species (unilateral incompatibility). A number of crosses between self-incompatible species were incompatible. In one cross, Q vernei X verrucosum, a self-compatible species was successful as a pollen parent with a self-incompatible species. Unlike other hybrids between self-compatible and self-incompatible species, which are self-incompatible, these F1 hybrids were self-fertile, and cross-fertile among themselves and with both parents. The self-fertile S. polyadenium was cross-incompatible as a female as well as a male parent with all other species. It is suggested that the unilateral incompatibility is a property of the allele SC which originated as a consequence of one kind of breakdown of the SI gene; the SC allele produces “bare” pollen growth substances which are inactivated in an incompatible style. It is proposed that the failure of the principle of unilateral interspecific incompatibility in solanaceous species may be due to the action of alleles at the second incompatibility locus revealed in certain Mexican species. It is assumed that the South American species are selected intraspecifically only for the action of S alleles but that in certain interspecific crosses and rarely in intraspecific crosses the alleles at the second locus may be expressed, thus interfering with the usual action of S alleles. The F1 hybrids Q verrucosum (self-fertile) X simplicifolium (self-sterile) were self-incompatible at the tetraploid as well as the diploid level, and their cross-compatibility behavior was consistent with the expected activity of the SC and SI alleles of the 2 parents respectively.  相似文献   

9.
Summary In order to clarify the interspecific relationships between T. carmeli Boiss., T. echinatum M.B. and T. latinum Seb., numerous F1, F2 and BC1 hybrids of these species were raised, and their growth, pollen fertility, cytology and seedset were determined. T. carmeli was found to differ from both T. echinatum and T. latinum by at least three translocations, and their hybrids were semisterile as to pollen and seedset. T. latinum was more or less interfertile with T. echinatum and hybrids had normal meiosis, except for T. echinatum NYT 1401, whose hybrids with T. latinum were semisterile and evinced major chromosomal changes. Some implications of sterility and chromosomal heterogeneity are discussed. Backcrosses of T. echinatum × T. latinum F1s to either parent resulted in partial breakdown of the self-incompatibility system found in both parental species and their F1 hybrids.Contribution from the Volcani Center, Agricultural Research Organization, Bet Dagan, Israel, 1972 Series, No. 2207-E. The work reported here was financed by Grant FG-IS-222 from the U.S. Department of Agriculture under P.L.480.  相似文献   

10.
The crossability between Brassica tournefortii (TT, 2n = 20) and Brassica rapa (AA, 2n = 20) and the cytomorphology of their F1 hybrids were studied. Hybrids between these two species were obtained only when B. tournefortii was involved as a female parent. The hybrid plants were intermediate for most of the morphological attributes and were found to be free from white rust under field conditions. The F1 plants showed poor pollen fertility, although occasional seed set was achieved from open pollination. Self-pollination or backcrosses did not yield any seeds in these plants. The occurrence of chromosome association ranging from bivalents (0–7), trivalents (0–2) to a rare quadrivalent (0–1) in the dihaploid hybrids indicates pairing between the T and A genomes. The homoeologous pairing coupled with seed set in the F1 plants offer an opportunity for interspecific gene transfers from B. tournefortii to B. rapa and vice-versa through interspecific hybridization. Received: 3 July 2000 / Accepted: 22 September 2000  相似文献   

11.
Genetic relationships among the annual species of Cicer L.   总被引:3,自引:0,他引:3  
Summary Genetic relationships between 7 annual species of the genus Cicer, including the cultivated chickpea, have been studied. These species were assigned to 3 crossability groups. In each group interspecific hybrids could be obtained but their fertility differed considerably in the various cross combinations. Crosses between members of different groups yielded no viable seeds. The possibility of gene transfer from the wild species to the cultivated chickpea C. arietinum was also assessed. Only two species could be considered for this purpose, C. reticulatum, which is the wild progenitor of the cultivated species, and C. echinospermum, which is in the secondary gene pool of C. arietinum. A unique postzygotic reproductive barrier mechanism was found between the members of Group II, C. judaicum, C. pinnatifidum and C. bijugum. It is based on a disharmony in the growth rate of the stigma and the anthers at the time of anthesis of the F1 interspecific hybrid so that selfpollination is avoided. It is proposed that this kind of mechanism has been involved only when an effective spatial isolation between the three species had been obtained.  相似文献   

12.
Molecular analysis of Arachis interspecific hybrids   总被引:1,自引:0,他引:1  
Incorporation of genetic resistance against several biotic stresses that plague cultivated peanut, Arachis hypogaea (2n=4x=40), is an ideal option to develop disease resistant and ecologically safe peanut varieties. The primary gene pool of peanut contains many diploid wild species (2n=2x=20) of Arachis, which have high levels of disease and insect resistances. However, transfer of resistant genes from these species into A. hypogaea is difficult due to ploidy level differences and genomic incompatibilities. This study was conducted to monitor alien germplasm transmission, using Random Amplified Polymorphic DNA (RAPD) markers, from two diploid wild species, A. cardenasii and A. batizocoi, into A. hypogaea. Triploid interspecific hybrids were produced by crossing two A. hypogaea cultivars (NC 6 and Argentine) with the two species and by colchicine-treating vegetative meristems, fertility was restored at the hexaploid (Co) level in the four hybrids. Hexaploids were allowed to self-pollinate for four generations, each referred to as a cycle (C1, C2, C3, and C4). At each cycle, a backcross was made with the respective A. hypogaea cultivar as the maternal parent and only lineages tracing back to a single hexaploid hybrid were used for RAPD analysis. Analysis of mapped, species-specific RAPD markers in BC1F1 to BC1F3 hybrids indicated that alien germplasm retention decreased every generation of inbreeding, especially in Argentine and in A. batizocoi crosses. A similar trend was also observed for every cycle in BC1F2 and BC1F3 families, possibly, due to the loss of alien chromosomes following selfing of hexaploids. RAPD marker analysis of 40–chromosome interspecific hybrid derivatives from the four crosses supported previous reports that reciprocal recombination and/or translocations are the predominant mechanisms for exchange of chromosomal segments. No evidence was found for preferential transfer of alien chromosomal regions to specific linkage groups. The implications for developing disease resistant peanut breeding lines are discussed in light of these findings.  相似文献   

13.
Summary Reciprocal differences for male sterility, dwarfism and morphological traits have been studied in intra- and interspecific crosses of five Epilobium species. Male sterility occurred in two interspecific hybrids with E. montanum as the male parent while dwarfism has been found to varying degrees in three interspecific crosses with E. watsonni. In contrast to transient differences in plant height and leaf morphology in reciprocal hybrids of the cross between E. hirsutum and E. parviflorum, male sterility and dwarfism persistently occur as reciprocally different traits which may be influenced by determinants of the cytoplasm. The molecular characterization of the plastid DNA of the parental lines and the F1 hybrids indicate that the plastome of male sterile and dwarf plants is identical to that of the female parents. Furthermore, in spite of these developmental disturbances, the expression of plastid genes coding for polypeptides of thylakoid-membrane complexes is unchanged. Thus, it seems unlikely that the genetic compartement of the plastids is responsible for the expression of the male sterile or the dwarfed phenotype.  相似文献   

14.
Electrophoretic spectra of storage proteins in parental plants and interspecific F1 and F2 hybrids Pisum sativum × Pisum fulvum have been studied. Correspondence between the polymorphism levels of protein components among the species and within the species P. sativum was established. Accessions of P. fulvum I609881 and I609885 manifested low polymorphism. Storage proteins of both parents were observed in spectra of F1 hybrids. F2 hybrids segregated at a limited set of bands. Accession I609881 of P. fulvum is characterized by unique band 7, which was inherited in F1.  相似文献   

15.
“Ecological” speciation occurs when reproductive isolation evolves as a consequence of divergent selection between populations exploiting different resources or environments. We tested this hypothesis of speciation in a young stickleback species pair by measuring the direct contribution of ecological selection pressures to hybrid fitness. The two species (limnetic and benthic) are strongly differentiated morphologically and ecologically, whereas hybrids are intermediate. Fitness of hybrids is high in the laboratory, especially F1 and F2 hybrids (backcrosses may show some breakdown). We transplanted F1 hybrids to enclosures in the two main habitats in the wild to test whether the distribution of resources available in the environment generates a hybrid disadvantage not detectable in the laboratory. Hybrids grew more slowly than limnetics in the open water habitat and more slowly than benthics in the littoral zone. Growth of F1 hybrids was inferior to the average of the parent species across both habitats, albeit not significantly. The contrast between laboratory and field results supports the hypothesis that mechanisms of F1 hybrid fitness in the wild are primarily ecological and do not result from intrinsic genetic incompatibilities. Direct selection on hybrids contributes to the maintenance of sympatric stickleback species and may have played an important role in their origin.  相似文献   

16.
The diploid wheats Triticum boeoticum and T. urartu are sympatric with one another throughout the geographic range of the wild tetraploids. Reciprocal crosses between ecogeographic types within each diploid species gave viable seed, but interspecific crosses consistently gave viable seed only when T. boeoticum was the female parent. Apparently urartu cytoplasm in combination with the boeoticum genome resulted in nonviable seed. The endosperm failed to develop normally despite regular endosperm fertilization. The F1 plants obtained were completely self sterile although they showed regular intergenomic pairing (7II) at meiosis. Presumably the accumulation of cryptic differences between the two closely related genomes under reproductive isolation accounts for this sterility. The same accumulated cryptic differences could largely account for the preferential diploid pairing in the tetrapolid wheats which presumably were derived from such hybrids by chromosome doubling. The behavior of reciprocal crosses between the diploids and tetraploids suggested that T. boeoticum contributed the cytoplasm to both of the wild tetraploid species.  相似文献   

17.
Trigonelline alkaloid is present in coffee beans, and during roasting it gives rise to the major coffee aroma compounds (several alkyl-pyridines and pyrroles). In this study we investigated the genetic inheritance of trigonelline accumulation in green beans in an interspecific cross between a wild east African species, Coffea pseudozanguebariae (PSE) and the west African species C. liberica var. dewevrei (DEW). Trigonelline content was measured by HPLC in both parental species, F1 hybrids and the reciprocal backcross hybrids (BCDEW and BCPSE). The results showed that, on average, PSE accumulated twice as much trigonelline as DEW. No year effect or interaction (genotype×year) was recorded. Trigonelline showed high heritability (71%), which meant that the genotypic value could be easily estimated from the phenotypic value. However, the fact that this trait was not additive suggested the possibility of nucleo-cytoplasmic inheritance. This hypothesis was confirmed by: (1) similar levels of trigonelline content in the PSE, F1, BCPSE and BCDEW groups, all having the same maternal cytoplasm, and (2) the location of one nuclear QTL on the G linkage group. Received: 2 May 2000 / Accepted: 19 June 2000  相似文献   

18.
Summary Crosses were made to obtain interspecific hybrids between B. fruticulosa (wild species , 2n = 16) × B. campestris (cultivar , 2n = 20). Although many pollen grains germinated and their tubes entered the style, only about 30% of the ovules received pollen tubes. Fertilized ovules aborted at various stages of development. A few hybrid seeds resulted from hand pollinations in the field, and they showed poor germination and seedling establishment. The in vitro culture of ovaries, ovules, and seeds increased the frequency of obtaining hybrid seeds and plants: the most effective method was ovary culture followed by ovule culture. The hybrid nature of the plants was confirmed through morphological, cytological, and electrophoretic studies. A meiotic analysis of F1 hybrids (2n = 18) showed that they had 0–5 bivalents and were completely pollen sterile. Electrophoretic analysis of leaf esterases and acid phosphatases of F1 hybrids revealed bands derived from each parent. Induced amphidiploids of F1 hybrids contained mostly bivalents, and had about 50% fertile pollen.  相似文献   

19.
Summary The alkaloid profiles and morphological traits of the capsules of Papaver bracteatum, P. pseudo-orientale, and their hybrids were studied. Dominance of the hexaploid parent P. pseudo-orientale was observed for various characters. A genetic model assuming allelic additive effects and polysomic inheritance was elaborated for the control of isothebaine content in the capsules. The distribution of thebaine content in the segregating generations, F2 and BCF1 was evidence of the transfer of genes from the diploid parent P. bracteatum in the gametes of the interspecific hybrid and their expression in its progenies. These findings indicate the potential use of inter-specific hybrids between the Oxytona species in the breeding of cultivars for industrial or ornamental purposes.Contribution No. 3066-E, 1990 series from The Agricultural Research Organization, The Volcani Center, Bet Dagan 50 250, Israel  相似文献   

20.
The breeding value of tetraploid F1 hybrids between tetrasomic tetraploid S. tuberosum and the disomic tetraploid wild species S. acaule was examined. The F1 hybrids showed a tuber yield and appearance comparable to those of their cultivated parent, indicating a potential as acceptable breeding stocks despite the 50% contribution to their pedigree from wild S. acaule. The cytological behavior of the tetraploid F1 hybrids was examined to determine the probability of recombination for the introgression of S. acaule genes. The majority of the meiotic configurations at metaphase I was bivalents and univalents with mean frequencies of 17.6 and 9.9, respectively. Further, a low frequency of trivalents and quadrivalents was observed. An acceptable low level of meiotic irregularities were observed at the later stages of microsporogenesis, and a reasonable level of pollen stainability was obtained. Therefore, these hybrids could likely be employed for further introgression. From the cytological observations, the following speculations were drawn: (1) some genomic differentiation exists between the S. acaule genomes, (2) at least one of the S. acaule genomes may be homoeologous to the S. tuberosum genomes, (3) intergenomic recombination would likely occur due to the nature of the genomic constitution of the hybrids, and (4) the nature of sesquiploidy of the hybrids may facilitate efficient introgression and establishment of unique aneuploid and euploid recombinant genetic stocks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号