首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In seedlings of Ipomoea purpurea secondary roots are initiated in the primary root pericycle opposite immature protoxylem. Cells derived from immature endodermis, pericycle, and incipient protoxylem and stelar parenchyma contribute to the primordium. The derivatives of the endodermis become a uniseriate covering over the tip and flanks of the primordium and emerged secondary root; the endodermal covering is sloughed off when the lateral root reaches 1–5 mm in length. A series of periclinal and anticlinal divisions in the pericycle and its derivatives gives rise to the main body of the secondary root. The initials for the vascular cylinder, cortex, and rootcap-epidermis complex are established very early during primordium enlargement. After emergence from the primary root, the cortical initials undergo significant structural modifications related to enlargement of the ground meristem and cortex, and the rootcapepidermal initials are partitioned into columellar initials and lateral rootcapepidermal initials. Procambium diameter increases by periclinal divisions in peripheral sectors. The mature vascular cylinder is comprised of several vascular patterns, ranging from diarch to pentarch, that are probably related ontogenetically. Cells derived from incipient protoxylem and stelar parenchyma cells of the primary root form the vascuar connection between primary and secondary roots.  相似文献   

2.
The organization of the root meristem in selected Compositae was investigated to determine whether changes in the pattern of cell arrangement occurred during root growth in species other than Helianthus annuus. Embryonic, short, and long primary roots of one species of each of twelve genera were prepared for microscopic examination. Additional intermediate growth stages were prepared for Echinacea pallida. The meristem of embryonic roots showed layers of initials typical for dicotyledons. The meristem in many of the short roots of eight species was reorganized by the development of a secondary columella. The long roots showed patterns similar to the embryonic roots. In three species which maintained closed meristems, two layers of cortical initials were common in the embryonic root, and as a general trend, a single layer of cortical initials became more common during root elongation. The cellular changes that resulted in the initiation of a secondary columella are characterized by the conversion of cortical initials to secondary columella initials by a shift in their plane of cell division. It is proposed that the size and shape of the quiescent center changes as the conversion takes place. No intermediate stages were observed which could account for the reduction of two layers of cortical initials to one layer.  相似文献   

3.
小麦种子根的发育解剖   总被引:1,自引:0,他引:1  
小麦胚胎发育过程中通常形成5条幼根(少数可形成6条),这些根统称为种子根,中间最先发生的为初生根.初生根的原基在胚胎发育的早期就在胚轴的一侧发生,原基细胞由不规则到规则排列。侧生种子根的原基在胚胎发育后期才出现,通常成对发生,并且是由胚轴上的节(盾片节和胚芽鞘节)维管束外方的细胞形成。侧生种子根的发育明显较初生根的快,分化能力也较强,后生木质部导管母细胞出现早,数目较多.因此,小麦胚胎发育过程中从胚轴上形成的这些侧生的种子根,形态上,仍应看作是一些不定根,其结构特征与后来形成须根系的不定根的比较近似。  相似文献   

4.
Wheat embryo usually gives rise to five seminal roots in matured caryopsls, although, the sixth root might develop in some cases. The first one is known as the primary root. Primary root emerged early, and its primodium was distinctly originated from the proembryo and could be gradually identified as three layers of initials. Lateral seminal roots emerged later from the embryonic axis in pairs, and originated from the surrouding cells of the procambium. Differentiation of lateral roots was much more vigorous than that of the first seminal root (primary root), and, its mother cells of metaxylem vessel appeared soon, Lateral seminal roots usually had more metaxylem vessels. In short, only the first root is the primary root, the lateral seminal roots are adventitious in nature, since their structures are similar to those of other adventitious roots.  相似文献   

5.
核桃试管不定根的组织学研究   总被引:9,自引:2,他引:7  
以核桃品种‘新早丰’试管嫩茎为试材,采用二步生根法诱导生根,对其试管苗不定根发生发育过程进行了解剖学研究。结果表明:核桃试管嫩茎内未发现潜伏根原基;诱导生根后,不定根原基起源于形成层,特别是髓射线正对的形成层部分,属于诱生根原基型;不定根上的侧根起源于中柱鞘细胞。核桃试管嫩茎不定根的发育过程可分为4个阶段:(1)形成层细胞分裂;(2)转变为分生组织细胞群(即根原始细胞);(3)细胞群发育成可见的根原基; (4)根原基内细胞继续分裂分化形成根尖的外形,其内发育出维管束,并向外生长,穿过皮层,突破茎表皮。在组织培养条件下长出的不定根内部解剖构造为典型的初生构造,移栽后68 d出现次生构造。另外,试管苗根毛出现与否及其发育状况受基质理化性质的影响,即生态条件可以改变组织发生及其形状。  相似文献   

6.
Summary The differentiation of the endodermis of mycorrhizal roots of Picea abies and Larix decidua was investigated by means of light and transmission electron microscopy and with fluorescence techniques. The initiation and differentiation of the Hartig net were recorded. Differences between the two tree species were found, as were differences between the two tree species and angiosperms. The Casparian band developed immediately after the origin of endodermal cells from the meristem in mycorrhizae of both tree species. In L. decidua only the primary endodermis was present in most mycorrhizal laterals. The secondary structure of the endodermis was restricted to main roots and proximal parts of larch mycorrhizae. In P. abies mycorrhizae, however, the secondary stage of the endodermis developed soon after the primary endodermis and was characterized by regular alternation of short, active passage cells and elongated, rapidly degenerating cells, the inner surface of which was covered by a thick suberin layer. Hartig net development started in P. abies short roots only after the differentiation of endodermis into the secondary stage, whereas in L. decidua, the Hartig net was already initiated at the primary endodermal stage. Differences were specific for tree species.  相似文献   

7.
Both histological and autoradiographic procedures were used to follow lateral root initiation and development. Lateral roots of M. sylvestris were initiated in the pericycle, and although the endodermis became multiseriate, endodermal derivatives were not incorporated into the lateral root primordium. Apical organization of pre-emergent roots, characterized by two tiers of cortical initials, did not change with growth. During pre-emergent development there was no evidence of cortical lysogeny or quiescent center formation. Quiescent centers were present in both secondary and tertiary roots longer than 0.5 cm.  相似文献   

8.
Miller , Robert H. (U. Nevada, Reno.) Morphology of Humulus luppulus. II. Secondary growth in the root and seedling vascularization. Amer. Jour. Bot. 46(4): 269–277. Illus. 1959.—In the primary state the roots of Humulus lupulus L. have a diarch xylem plate with 2 strands of primary phloem lying on either side of the primary xylem. Secondary histogenesis is described for the primary root. Fibrous and fleshy storage roots are developed by the hop plant and their respective developmental and anatomical structures are described. Lateral roots are initiated in the pericycle opposite the protoxylem poles. The architecture of these secondary roots is similar to that of the primary root. The seedling develops a fleshy storage organ through secondary growth of the primary root and the hypocotyl. The hypocotyl eventually resembles a fleshy taproot throughout most of its extent. The vascular cambium differentiates large amounts of parenchymatous tissues. A relatively smaller amount of tracheary tissue is formed. The secondary phloem comprises a high percentage of phloem parenchyma and ray cells containing numerous large starch grains, and constitutes the larger portion of the fleshy storage root. Numerous thick-walled lignified fibers occur throughout the secondary vascular tissues. Resin and tannin cells are abundantly distributed. A phellogen is differentiated from the pericycle and develops a persistent periderm on the outer surface of the fleshy storage organ. A relatively short transition region occurs in the upper part of the hypocotyl. The transition takes place from a radially alternate arrangement of the vascular tissues in the root to a collateral arrangement in the cotyledons.  相似文献   

9.
The apical organization of the primary root of Malva sylvestris was analyzed at several growth stages, beginning with the embryo, to determine the structural changes that occurred during growth. Seeds were germinated, and plants were grown under controlled conditions. There were three discrete groups of initials in the embryonic root: those of the central cylinder, cortex, and secondary columella. The secondary columella initials consisted of a plate of cells flanked by a ring of cortical initials. The lateral portion of the rootcap shared a common origin with the epidermis. During growth both the initials of the secondary columella and outer cortex produced rootcap cells. The first indication of the outer cortical initials participating in rootcap formation was observed in roots 3 cm long. In 6-, 9-, and 16-cm roots the cellular continuity between the outer cortex and rootcap was marked, but in 23- and 33-cm roots the histogenic continuity between the outer cortex and rootcap was not evident. In all growth stages the initials of the central cylinder and inner cortex retained their histogenic integrity.  相似文献   

10.
The developmental anatomy of Mirabilis jalapa was investigated during the first 90 days of growth. The primary thickening meristem (PTM) initially differentiates in the pericycle at the top of the cotyledonary node 18 days after germination, then basipetally in the pericycle through the hypocotyl. The PTM differentiates acropetally into the stem and in the pericycle of the primaiy root, commencing 22 days after germination. Endodermis is easily identifiable in hypocotyls as well as in primary roots because of Casparian thickenings in its cells. It has not been definitely identified in stems. There are three rings of primary vascular bundles in the stem. The PTM differentiates as segments of cambium in a layer of cells (probably in the pericycle) on an arc between vascular bundles of the outer bundle ring. Later, arcs of PTM differentiate externally to the phloem of each bundle. Each arc forms a connection between original segments of PTM lying on either side of each vascular bundle. Thus, the PTM becomes a continuous cylinder. The PTM differentiates in the pericycle outside vascular tissue in the hypocotyl and root. Differentiation of the PTM and the mode of secondary thickening is similar in plants exposed to short (8-hr) and to long (18-hr) photoperiods, but some differences were observed. The PTM differentiates closer to the stem apex in all plants over 18 clays of age growing vegetatively under long photoperiods. That is, the diffuse lateral meristem, in whose cells the PTM differentiates in young intemodes, is shorter in nearly all investigated plants growing in long photoperiods. The hypocotyl and base of the primary root of 40-day-old plants in short photoperiods were more enlarged than those of the same age plants in long photoperiods; but, at the end of 64 days, the hypocotyl and primaiy root base were larger in plants growing under short photoperiods. Thirty-four days after seed germination, flower initiation occurs in plants exposed to short photoperiods. One hundred fifty days after seed germination, flowers differentiate on plants exposed to long photoperiods.  相似文献   

11.
Anomalous secondary thickening occurs in the main axis of Bougainvillea spectabilis as a result of a primary thickening meristem which differentiates in pericycle. The primary thickening meristem first appears in the base of the primary root about 6 days after germination and differentiates acropetally as the root elongates. It begins differentiating from the base of the hypocotyl toward the shoot apex about 33 days after germination. The primary thickening meristem is first observable at the base of the first internode about 60 days after germination. It then becomes a cylinder in the main axis of the seedling. No stelar cambial cylinder forms in the primary root, hypocotyl, or stem because vascular cambium differentiation occurs neither in the pericycle opposite xylem points in the primary root nor in interfascicular parenchyma in the hypocotyl or stem. The primary vascular system of the stem appears anomalous because an inner and an outer ring of vascular bundles differentiate in the stele. Bundles of the inner ring anastomose in internodes, whereas those of the outer ring do not. Desmogen strands each of which is composed of phloem, xylem with both tracheids and vessels, and a desmogic cambium, differentiate from prodesmogen strands in conjunctive tissue. The parenchymatous cells surrounding desmogen strands then differentiate into elongated simple-pitted fibers and thick-walled fusiform cells that are about the same length as the primary thickening meristem initials.  相似文献   

12.
ABSTRACT

Adventititous rooting is essential for the post-embryonic growth of the root apparatus in various species. In Arabidopsis thaliana, adventitious rooting has been reported in some mutants, and auxin seems to be the inducer of the process. The objective of the study was to identify the tissues involved in adventitious rooting in the most commonly used ecotypes for molecular and genetic studies (i.e. Columbia, Wassilewskija and Landsberg erecta) both in the presence and absence of exogenous auxin. Seedlings of the three ecotypes were grown under various conditions. When grown under 16 hours light/day for 11 days, all seedlings showed adventitious roots, both with and without auxin, however, both adventitious and lateral rooting were enhanced by exogenous auxin (2 µM naphthaleneacetic acid). Independently of the presence of auxin and of the ecotype, the hypocotyl pericycle produced adventitious roots directly (i.e., according to the same pattern of lateral root formation by the pericycle cells in the primary root). However, in the presence of auxin, roots of indirect origin also, and mainly, formed and their formation was preceded by the exfoliation of the tissues external to the stele. Exfoliation was caused by cell hypertrophy, separation, and disintegration, which mainly involved the endodermis. At the exfoliation site, the pericycle, with a minor contribution of a few endodermal cells, produced the callus from which indirect roots arose. The finding that adventitious rooting occurs in the absence of auxin (all ecotypes) indicates that this process is part of the normal root apparatus in Arabidopsis, with the hypocotyl pericycle as the target tissue of the process. Exogenous auxin alters adventitious rhizogenesis mainly affecting the endodermis response.  相似文献   

13.
Summary In onion adventitious roots cellular events have been identified that indicate that lateral root initiation occurs earlier and nearer the apex than previously documented. Lateral roots are not initiated when a pericycle cell divides periclinally but earlier, when a pair of neighbouring pericycle cells in the same column divide transversely and asymmetrically, with both mitoses close to the end towards the neighbouring pericycle cell. Each cell therefore produces two cells of unequal length. The shorter cells produced by the mother pericycle cells are adjacent, while the longer cells are located above and below the shorter cells. This objective morphological criterion allows clear identification of the site of lateral root initiation. Subsequent to these asymmetric divisions, both the longer pericycle cells again divide transversely and asymmetrically producing more short cells adjacent to the previous ones. The first periclinal division occurs in one of these short pericycle cells.  相似文献   

14.
The effects of sugars on root growth and on development of adventitious roots were analyzed in Arabidopsis thaliana. Seeds were sown on agar plates containing 0.0–5.0% sugars and placed vertically in darkness (DD) or under long day (LD, 16 h:8 h) conditions, so that the seedlings were constantly attached to the agar medium. In the sucrose-supplemented medium, seedlings showed sustained growth in both DD and LD. However, only dark-grown seedlings developed adventitious roots from the elongated hypocotyl. The adventitious roots began to develop 5 days after imbibition and increased in number until day 11. They could, however, be initiated at any position along the hypocotyl, near the cotyledon or the primary root. They were initiated in the pericycle in the same manner as ordinary lateral roots. Sucrose, glucose and fructose greatly stimulated the induction of adventitious roots, but mannose or sorbitol did not. Sucrose at concentrations of 0.5–2.0% was most effective in inducing adventitious roots, although 5.0% sucrose suppressed induction. Direct contact of the hypocotyl with the sugar-supplemented agar medium was indispensable for the induction of adventitious roots. Electronic Publication  相似文献   

15.
Summary Far from the apical meristem of adventitious roots ofAllium cepa, the pericycle shows great proliferative activity related to lateral root initiation. A group of mother pericycle cells undergoes asymmetrical transverse and periclinal divisions following a well-established pattern. Successive asymmetrical transverse divisions, progressing from one end of the cell to the other, divide the original mother cell into very short derivatives. Later, these short derivative cells undergo periclinal divisions. This proliferative activity starts nearly simultaneously in two elongated and highly vacuolated pericycle cells located in the same column in front of one of the xylem poles. Then proliferation expands centrifugally towards other pericycle cells in the same and adjacent columns. The proliferative activity of the pericycle cells decreases progressively outwards. Only the most central of these cells produce derivatives which contribute to the future lateral root.  相似文献   

16.
Studies of the distribution of lateral roots in banana show that they are initiated along the pericycle in a non-random, dispersed pattern. This is demonstrated by the failure of laterals to conform to a Poisson distribution and by a nearest neighbor analysis in which the mean distance for nearest laterals is found to be consistently greater than the expected distance based on random association. The slight degree of dispersion indicates that the protoxylem positions adjacent either radially or longitudinally to existing laterals are not as favorable as the remaining protoxylem positions for the development of the next acropetal lateral. Results which show a greater longitudinal distance between successive laterals that form in the same segment of the root, and a tendency for each lateral to form at an angle greater than 30° from the previous one offer further evidence that established lateral primordia may influence the site where the next lateral will arise. It is concluded that the regulation of the positions for lateral roots in banana is dependent both on the presence of special conditions in cells of the pericycle opposite the protoxylem and also on the location of the previous lateral.  相似文献   

17.
冰凉花根系发育形态学的初步研究   总被引:1,自引:1,他引:0  
冰凉花属于宿根植物,其根几乎终生为初生结构。一年生苗直根系的主根和侧根的初生木质部均为二原型。二至多年生植株的不定根分为二原型、三原型、四原型和五原型,其分枝均为二原型。根在一年中有两个生长期。展叶结果营养期产生新的不定根,旧根顶端恢复延长生长或产生新的分枝。夏季枯萎休眠期新生根变成黄褐色,停止生长。秋季地下生长期根系又开始生长。冬季严寒迫使生长趋于停止。研究冰凉花根系发育形态学不仅具有理论意义而且有很好的应用前景。  相似文献   

18.
Coralloid roots of cycads were found to originate endogenously from the pericycle of apogeotropic secondary roots or adventitious roots that have become exposed or nearly exposed to the soil surface. All mature coralloid roots are susceptible to infection by algal endophytes, which seem to enter from the soil through a break in the dermal layers. In the coralloid roots the algae inhabit intercellular spaces in a definite zone that arises from the protoderm, and in which the cells elongate radially following algal infection. The zone is completely surrounded by a persistent rootcap which is interpreted by most authors as a secondary cortex. The secondary cortex was shown to be derived from the rootcap in this investigation.  相似文献   

19.
Lateral roots of Typha glauca arose from the pericycle of the parent adventitious root. Periclinal divisions of the pericycle gave rise to two layers; the outermost initially produced the ground meristem and protoderm, and the innermost produced the procambium. The immature endodermis of the parent root contributed to the early stages of the root tip as an endodermal covering. Prior to emergence, the ground meristem/protoderm produced cells into the endodermal covering. After emergence, the endodermal covering was replaced by a calyptrogen, which was derived from the ground meristem/protoderm and which, in turn, formed the rootcap. A typical monocotyledonous three-tiered meristem was then produced. An outer ground meristem also arose before emergence to form a hypodermis in many lateral roots; in these, crystalliferous cell production began in midcortex cells before emergence, and a small aerenchyma developed in their cortices. The rootcap columella stored small amounts of starch shortly after emergence. Lateral roots of T. glauca were smaller than their parental adventitious roots; they normally had only two to six poles of xylem and phloem, and the cortex was less than six cells across. During 1–3-cm elongation, the lateral root apical meristem and mature regions narrowed, stored starch disappeared, fewer crystals formed, aerenchyma production ceased, and the roots stopped elongation.  相似文献   

20.
Excised cultured roots of Raphanus sativus L. cv. White Icicle elongate and produce a few lateral roots but do not increase in diameter. Lateral expansion is effected when both an auxin (indoleacetic acid or naphthaleneacetic acid) and a cytokinin (benzyladenine) are applied at the cut end of the root. The growth regulator effects are apparent first in the pericycle and subsequently in the procambium. Both of these groups of cells divide, producing large numbers of secondary derivatives. The increase in number of cells is reflected in an increase in root diameter. When cultured roots are treated with auxin only, a limited number of pericycle cells divide and lateral roots develop. When roots are treated with cytokinin only, all pericycle cells divide and a multiseriate zone of pericycle-derived cells develops. The procambium is not markedly affected by application of a single growth regulator. The distinct and separable responses of pericycle cells to different regulators suggest that the pericycle can be characterized in a functional, as well as a topographic, sense.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号